Publications
Categories:
Publication types:
Matzke, D., Dolan, C.V, Logan, G.D., Brown, S.D., & Wagenmakers, E.-J. (2013). Bayesian parametric estimation of stop-signal reaction time distributions. Journal of Experimental Psychology: General, 142, 1047-1073. [Supplementary Materials]
Matzke, D., Love, J., Wiecki, T.V., Brown, S.D., Logan, G.D., & Wagenmakers, E.-J. (2013). Release the BEESTS: Bayesian ex-Gaussian estimation of stop-signal reaction time distributions. Frontiers in Psychology: Quantitative Psychology and Measurement, 4:918. Download BEESTS [Supplementary Materials]
Bakker, M., Cramer, A.O.J., Matzke, D., Kievit, R.A., van der Maas, H.L.J., Wagenmakers, E.-J., & Borsboom, D. (2013). Dwelling on the past. European Journal of Personality, 27, 120-144.
Matzke, D., Lee, M.D., & Wagenmakers, E.-J. (2013). Multinomial processing trees. In M.D. Lee, & E.-J. Wagenmakers, Bayesian cognitive modeling: A practical course (pp. 187-195). Cambridge University Press.
Matzke, D., Lee, M.D., & Wagenmakers, E.-J. (2013). Signal detection theory: Parameter expansion. In M.D. Lee, & E.-J. Wagenmakers, Bayesian cognitive modeling: A practical course (pp. 164-167). Cambridge University Press.
Matzke, D., Lee, M.D., & Wagenmakers, E.-J. (2013). Getting started with WinBUGS. In M.D. Lee, & E.-J. Wagenmakers, Bayesian cognitive modeling: A practical course (pp. 16-34). Cambridge University Press.
Trueblood, J. S., Brown, S. D., Heathcote, A., & Busemeyer, J. R. (2013). Not just for consumers: Context effects are fundamental to decision making. Psychological Science, 24(6), 901–908.
Provost, A., Johnson, B., Karayanidis, F., Brown, S. D., & Heathcote, A. (2013). Two routes to expertise in mental rotation. Cognitive Science, 37(7), 1321–1342.
Todd, J., Heathcote, A., Mullens, D., Whitson, L. R., Provost, A., & Winkler, I. (2014). What controls gain in gain control? Mismatch negativity (MMN), priors and system biases. Brain Topography, 27(4), 578–589.
Prince, M., Brown, S., & Heathcote, A. (2012). The design and analysis of state-trace experiments. Psychological Methods, 17(1), 78–99.
Heathcote, A., & Hayes, B. (2012). Diffusion versus linear ballistic accumulation: Different models for response time with different conclusions about psychological mechanisms? Canadian Journal of Experimental Psychology/Revue Canadienne de Psychologie Expérimentale, 66(2), 125–136.
Heathcote, A., & Love, J. (2012). Linear deterministic accumulator models of simple choice. Frontiers in Psychology, 3.
Prince, M., Hawkins, G., Love, J., & Heathcote, A. (2012). An R package for state-trace analysis. Behavior Research Methods, 44(3), 644–655.
Todd, J., Provost, A., Whitson, L. R., Cooper, G., & Heathcote, A. (2012). Not so primitive: Context-sensitive meta-learning about unattended sound sequences. Journal of Neurophysiology, 109(1), 99–105.
Heathcote, A., Brown, S., & Cousineau, D. (2004). QMPE: Estimating Lognormal, Wald, and Weibull RT distributions with a parameter-dependent lower bound. Behavior Research Methods, Instruments, & Computers, 36(2), 277–290.
Heathcote, A. (2004). Fitting Wald and ex-Wald distributions to response time data: An example using functions for the S-PLUS package. Behavior Research Methods, Instruments, & Computers, 36(4), 678–694.
Cousineau, D., Brown, S., & Heathcote, A. (2004). Fitting distributions using maximum likelihood: Methods and packages. Behavior Research Methods, Instruments, & Computers, 36(4), 742–756.
Heathcote, A., & Brown, S. (2004). Beyond curve fitting? Comment on Liu, Mayer-Kress, and Newell (2003). Journal of Motor Behavior, 36(2), 225–232.
Heathcote, A., & Brown, S. (2004). Reply to Speckman and Rouder: A theoretical basis for QML. Psychonomic Bulletin & Review, 11(3), 577–578.
Heathcote, A., & Mewhort, D. J. K. (1990). Is unbounded visual search intractable? Comment on Tsotsos, J. K., Analysing vision at the complexity level. Behavioral and Brain Sciences, 13(3), 449–449.
Heathcote, A. (1988). Screen control and timing routines for the IBM microcomputer family using a high-level language. Behavior Research Methods, Instruments, & Computers, 20(3), 289–297.