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Copyright c© 2014 by Dóra Matzke
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Chapter 1

Introduction

How can we best understand data obtained from psychological experiments? Throughout this dis-
sertation, I will argue that this is best done by means of formal mathematical models. The goal of
mathematical modeling is to capture regularities in the data using parameters that represent sep-
arate statistical of psychological processes. Mathematical models come in many flavors. Consider,
for instance, the following two-choice task: You have to indicate with a button press whether an
arrow presented on the computer screen points to the left or to the right. You perform this simple
task, say, five times, and produce the following response times (RTs): 440, 409, 326, 482, and 511
ms. We may, for instance, model these five RTs with a normal distribution, RTi ∼ Normal(µ, σ),
for i = 1, ..., 5, and use the sample mean (i.e., 433.6 ms) and the sample standard deviation (71.39
ms) as estimators for µ and σ; it is not a very sophisticated model, but it is model nevertheless.

If additional to the mean and the standard deviation, we also want to describe the —most likely
right-skewed— shape of your RT distribution, we have to dig a bit deeper and rely on descriptive RT
models such as the ex-Gaussian distribution. RT distributions, however, only provide a descriptive
summary of the data and do not account for the psychological processes that underlie performance
in a given experimental paradigm. If we want to relate the observed responses to psychological
processes, we need to rely on more sophisticated —cognitive— models that go beyond statistical
description. Performance in our hypothetical RT experiment, for instance, may be accounted for
by the diffusion model (Ratcliff, 1978), one of the most prominent RT models with parameters
that correspond to well-defined cognitive processes, such as the rate of information accumulation
and response caution.

Let us now make the hypothetical RT experiment slightly more difficult: On some of the trials,
the arrow is followed by a tone that tells you to withhold —inhibit– your response on that trial. We
are no longer interested in the left-right responses, rather we would like to measure the time required
to stop the primary response to the arrow. In this situation, we necessarily have to go beyond
observable measurements; after all, stopping latencies cannot be observed directly. We may, for
instance, formalize our assumptions about the cognitive processes that underlie successful response
inhibition using the independent horse race model (Logan & Cowan, 1984). If we conceptualize
response inhibition as a horse race between a go process and a stop process, we can derive and
estimate the unobservable latency of stopping. Even better, if we are willing to make parametric
assumptions about the distribution of the finishing times of the go and the stop process, we can
estimate the entire distribution of stopping times.

Mathematical models can take a variety of forms and this dissertation mirrors this diversity.
In addition to descriptive and process models of performance in two-choice RT tasks, I will focus
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1. Introduction

on multinomial processing tree models for the analysis of categorical data as well as well-known
statistical models, such as the t test, analysis of variance, (partial) correlations, structural equation
models, and mediation analysis.

Once we chose a mathematical model for our data, we need to estimate the model parameters
and assess the degree to which the chosen model provides an adequate description of the data.
How can we best analyze psychological data sets that are described with mathematical models?
Throughout this dissertation, I will argue that this is best done by means of Bayesian inference.
In Bayesian inference, uncertainty is expressed in terms of probability. We start with a prior
probability distribution that quantifies our existing beliefs about the state of the world. The prior is
then updated by the incoming data using Bayes’ rule to yield the posterior probability distribution.
The posterior quantifies our updated beliefs about the state of the world and takes account of the
prior as well as the observed data. In fact, the “...Bayesian approach is a common sense approach...”
(Edwards, Lindman, & Savage, 1963, p. 195) that describes how rational decision makers should
revise their opinion after considering incoming data. Although contemporary psychology heavily
relies on frequentist inference, the application of Bayesian methods in psychological research has
increased greatly over the past decade. This increase is partly fueled by the development of
Markov chain Monte Carlo sampling (MCMC; Gamerman & Lopes, 2006; Gilks, Richardson, &
Spiegelhalter, 1996), the introduction of Bayesian statistical software, such as WinBUGS, and the
availability of the Bayesian equivalent of popular hypothesis tests (e.g., Rouder, Speckman, Sun,
Morey, & Iverson, 2009; Wetzels, Grasman, & Wagenmakers, 2012).

In this dissertation, I will focus on two applications of Bayesian inference: parameter estimation
and model selection. With respect to parameter estimation, I will demonstrate that the Bayesian
approach can be extremely valuable for hierarchical models where maximum likelihood estimation
becomes practically difficult. With respect to model selection, I will rely on Bayes factors to mea-
sure statistical evidence in the context of competing cognitive models as well as standard statistical
tests, such as the t test. I will make a case for the use of Bayesian model selection for the following
reasons. First, Bayesian inference —as opposed to frequentist inference— does not depend on the
intention with which the data were collected and hence does not require adjustments for sequential
testing. Second, Bayesian hypothesis testing —as opposed to its frequentist counterpart— enables
researchers to measure evidence in favor of the null hypothesis. Finally, Bayes factors —as opposed
to p values— quantify the probability of the data under one hypothesis relative to the other; that
is, Bayes factors tell researchers what they arguably would like to know in the first place when
they engage in hypothesis testing.

The focus on Bayesian inference does not imply that frequentist solutions are always inappro-
priate nor that we are unable to reach valid conclusions relying on classical statistics. In fact,
throughout the dissertation, the reader will stumble upon a number of p values and various other
concepts related to classical null hypothesis testing. I will nevertheless argue that the Bayesian
approach provides important theoretical and practical advantages that make it particularly suited
for tackling problems that research psychologists face on a daily basis.

In the remainder of the introduction, I will give an overview and a brief description of the
problems to be addressed in the coming chapters. The dissertation encompasses variety of topics;
the glue that holds the diversity of topics together is the commitment to mathematical modeling
and principled statistical inference.

2



1.1. Chapter Outline

1.1 Chapter Outline

Part I. The Analysis of Response Time Distributions

The first part of the dissertation focuses on modeling RTs —observed and unobserved— in two-
choice tasks with descriptive RT models, such as the ex-Gaussian and the shifted Wald distribu-
tions.

In Chapter 2, I investigate the validity of the cognitive interpretation of the parameters of
the ex-Gaussian and shifted Wald distributions. The ex-Gauss and the shifted Wald are popular
RT distributions to summarize RT data for speeded two-choice tasks. The parameters of these
distributions are often interpreted in terms of specific cognitive processes. We study the validity
of this interpretation by relating the parameters of the ex-Gaussian and shifted Wald distributions
to those of the Ratcliff diffusion model (Ratcliff, 1978), a successful model whose parameters have
a well-established cognitive interpretation (e.g.,Voss, Rothermund, & Voss, 2004). The results
clearly demonstrate that the ex-Gaussian and shifted Wald parameters do not correspond uniquely
to parameters of the diffusion model.

In Chapter 3, I introduce a Bayesian parametric approach for the estimation of stopping la-
tencies (SSRTs) in the stop-signal paradigm, a popular experimental paradigm to study response
inhibition. Based on the horse race model (Logan & Cowan, 1984), several methods have been
developed to estimate SSRTs. However, none of these approaches allow for the accurate estima-
tion of the entire distribution of SSRTs. Here we introduce a Bayesian parametric approach that
addresses this limitation. The new method assumes that SSRTs are ex-Gaussian distributed and
uses MCMC sampling to obtain posterior distributions for the model parameters. We present
the results of a number of parameter recovery and robustness studies and apply the approach to
published data from a stop-signal experiment.

In Chapter 4, I present BEESTS, an efficient and user-friendly software implementation of
the Bayesian parametric approach introduced in Chapter 3. BEESTS comes with an easy-to-use
graphical user interface and provides users with summary statistics of the posterior distribution of
the parameters as well various diagnostic tools to assess the quality of the parameter estimates.
We illustrate the use of BEESTS with published stop-signal data.

Part II. Multinomial Processing Tree Models

The second part of the dissertation focuses on parameter estimation and model selection for multi-
nomial processing tree (MPT) models. MPT models are theoretically motivated stochastic models
for categorical data. Due to their simplicity, MPT models have been applied to a variety of areas
in cognitive psychology (e.g., Batchelder & Riefer, 1999).

In Chapter 5, I introduce a Bayesian approach that accounts for parameter heterogeneity in
MPT models as a result of differences between participants as well as items. Traditionally, sta-
tistical analysis for MPT models is carried out on aggregated data, assuming homogeneity in
participants and items (Hu & Batchelder, 1994). In many applications, however, it is reasonable to
treat both participant and items effects as random and base statistical inference on unaggregated
data. Here we focus on a crossed-random effects extension of the pair-clustering model (Batchelder
& Riefer, 1980), one of the most extensively studied MPT models for the analysis of free recall data.
We apply the crossed-random effects pair-clustering model to novel experimental data featuring
the manipulation of word frequency.

In Chapter 6, I present various procedures for model comparison in the context of MPT models.
The topic of quantitative model comparison has received —and continues to receive— considerable
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1. Introduction

attention (Pitt & Myung, 2002). Here we focus on two popular information criteria, the AIC (“an
information criterion”, Akaike, 1973) and the BIC (“Bayesian information criterion”, G. Schwarz,
1978), on the Fisher information approximation of the minimum description length principle (MDL;
Grünwald, 2007), and on Bayes factors as obtained from importance sampling (Hammersley &
Handscomb, 1964).

Part III. Correlations, Partial Correlations, and Mediation

The third part of the dissertation focuses on estimating and testing observed and unobserved
(partial) correlations.

In Chapter 7, I examine the power to reject the hypothesis of perfect correlation in the context
of higher-order structural equation models. In higher-order factor models, general intelligence (g)
is often found to correlate perfectly with lower-order common factors, suggesting that g and some
well-defined cognitive ability, such as working memory, may be identical. Here we investigate the
power to reject the equivalence of g and lower-order factors using artificial data sets, based on
realistic parameter values and on the results of selected publications. The results of the power
analyses indicate that most case studies that reported a perfect correlation between g and a lower-
order factor were severely underpowered to detect the distinctiveness of the two factors.

In Chapter 8, I discuss a Bayesian method for correcting the correlation coefficient for the un-
certainty of the observations. The Pearson product-moment correlation coefficient can be severely
underestimated when the observations are subject to measurement noise. Various approaches exist
to correct the estimation of the correlation in the presence of measurement error, but none are
routinely applied in psychological research. Here we outline a Bayesian correction method for the
attenuation of correlations proposed by Behseta, Berdyyeva, Olson, and Kass (2009). We illustrate
the Bayesian correction with two empirical data sets and demonstrate that its application can
substantially increase the correlation between noisy observations.

In Chapter 9, I discuss a default Bayesian hypothesis test for mediation. In order to quantify the
relationship between multiple variables, researchers often carry out a mediation analysis. In such
an analysis, a mediator (e.g., knowledge of healthy diet) transmits the effect from an independent
variable (e.g., classroom instruction on healthy diet) to a dependent variable (e.g., consumption
of fruits and vegetables). Almost all mediation analyses in psychology use frequentist parameter
estimation and hypothesis testing techniques. Here we describe a default Bayesian hypothesis test
based on the Jeffreys-Zellner-Siow approach (Rouder et al., 2009).

Part IV. Improving Research Practice

The fourth and final part of the dissertation focuses on suboptimal research practices in psychology.
In Chapter 10, I introduce a novel variant of proponent-skeptic collaboration that focuses on the

association between horizontal eye movements and episodic memory. A growing body of research
suggests that horizontal saccadic eye movements facilitate the retrieval of episodic memories in free
recall and recognition memory tasks. Nevertheless, a minority of studies have failed to replicate
this effect. Here we attempt to resolve the inconsistent results by introducing a novel variant
of proponent-skeptic joint research. The proposed approach combines the features of adversarial
collaboration (Kahneman, 2003) and purely confirmatory preregistered research (Wagenmakers,
Wetzels, Borsboom, van der Maas, & Kievit, 2012). As anticipated by the skeptics, the results of
a series of Bayesian hypothesis tests indicate that horizontal eye movements did not improve free
recall performance in the joint experiment.

4



1.1. Chapter Outline

In Chapter 11, I describe a comparison of the statistical evidence provided by p values, effect
sizes, and default Bayes factors. Statistical inference in psychology heavily relies on p value signif-
icance testing. This traditional approach, however, has been widely criticized. Here we present a
practical comparison of p values, effect sizes, and default Bayes factors as measures of statistical ev-
idence, using 855 recently published t tests in psychology. The comparison yields two main results.
First, although p values and default Bayes factors almost always agree about what hypothesis is
better supported by the data, the measures often disagree about the strength of this support. That
is, 70% of the p values that fall between .01 and .05 correspond to Bayes factors that indicate that
the data are no more than three times more likely under the alternative hypothesis than under the
null hypothesis. Second, effect sizes can provide additional evidence to p values and default Bayes
factors.

In the twelfth and final chapter, I focus on multiway analysis of variance (ANOVA). Many
empirical researchers do not realize that the common multiway ANOVA harbors a multiple com-
parison problem. We illustrate the use of the sequential Bonferroni (Hartley, 1955) correction for
multiple comparison and show that its application often alters the conclusions drawn from ANOVA
designs.

5
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Chapter 2

Psychological Interpretation of the

Ex-Gaussian and Shifted Wald

Parameters: A Diffusion Model Analysis

This chapter has been published as:
Dora Matzke and Eric-Jan Wagenmakers (2009).

Psychological interpretation of the ex-Gaussian and shifted Wald Parameters: A diffusion model
analysis.

Psychonomic Bulletin & Review, 16, 798–817.1

Abstract

A growing number of researchers use descriptive distributions such as the ex–Gaussian and the
shifted Wald to summarize response time data for speeded two–choice tasks. Some of these
researchers also assume that the parameters of these distributions uniquely correspond to spe-
cific cognitive processes. We studied the validity of this cognitive interpretation by relating the
parameters of the ex–Gaussian and shifted Wald distributions to those of the Ratcliff diffusion
model, a successful model whose parameters have a well–established cognitive interpretation. In
a simulation study, we fitted the ex–Gaussian and shifted Wald distributions to data generated
from the diffusion model by systematically varying its parameters across a wide range of plau-
sible values. In an empirical study, the two descriptive distributions were fitted to published
data that featured manipulations of task difficulty, response caution, and a priori bias. The
results clearly demonstrate that the ex–Gaussian and shifted Wald parameters do not corre-
spond uniquely to parameters of the diffusion model. We conclude that researchers should resist
temptation to interpret changes in the ex–Gaussian and shifted Wald parameters in terms of
cognitive processes.

1The final publication is available at http://link.springer.com/article/10.3758%2FPBR.16.5.798.
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2. Psychological Interpretation of the Ex-Gaussian and Shifted Wald

Parameters: A Diffusion Model Analysis

2.1 Introduction

The analysis of response times (RT) has a long history in cognitive psychology (e.g., Hohle, 1965;
Luce, 1986; Ratcliff & McKoon, 2008; Townsend & Ashby, 1983). To draw inferences about mental
processes, researchers originally relied on measures of central tendency such as mean RT and median
RT. As it became clear that these measures may lose important information (e.g., Heathcote, Popiel,
& Mewhort, 1991), a growing number of researchers has started to use mathematical and statistical
models that can accommodate not just mean RT, but also the shape of entire RT distributions.

Primary among the statistical models that facilitate the analysis of RT distributions are the
ex–Gaussian and the shifted Wald. Changes in the parameters of these distributions may be used
to summarize the effects of experimental manipulations. For instance, Leth-Steensen, King Elbaz,
and Douglas (2000) found that children with ADHD differed from age–matched controls specifically
in the ex–Gaussian parameter that captures the tail of the RT distribution.

Although the ex–Gaussian and the shifted Wald distributions are sometimes used as purely de-
scriptive tools (see, e.g., Wagenmakers, van der Maas, Dolan, & Grasman, 2008), many researchers
go one step further and assume that changes in the parameters of these distributions map on to
changes in specific cognitive processes. For instance, Kieffaber et al. (2006) argued that changes
in the Gaussian component of the ex–Gaussian distribution reflect changes in attentional cognitive
processes, whereas changes in the exponential component reflect changes in intentional cognitive
processes. The purpose of our study is to examine whether this mapping from parameters to pro-
cesses is warranted. To this end, we attempt to link the parameters of the descriptive distributions
to those of the Ratcliff diffusion model (Ratcliff, 1978). The diffusion model provides a theoretical
account of performance in speeded two–choice tasks and it has been successfully applied across a
wide range of paradigms. Most importantly, the parameters of the diffusion model correspond to
well–defined psychological processes such as the rate of information accumulation (influenced by
task difficulty or subject ability), response caution, a priori bias, and the time taken up by processes
unrelated to decision making (e.g., encoding and motor processes). The association between the
diffusion model parameters and the psychological processes that they are supposed to represent has
been confirmed in numerous experiments (e.g., Voss et al., 2004; Wagenmakers, Ratcliff, Gomez,
& McKoon, 2008).

The outline of this article is as follows. In the first and second section we describe the ex–
Gaussian and shifted Wald distributions, respectively. In the third section we briefly explain the
diffusion model and previous research that studied the association between the diffusion model
parameters and the parameters of the two descriptive distributions. The fourth section describes
the simulation study in which we systematically varied parameters of the diffusion model to study
the corresponding changes in the parameters of the descriptive distributions. In the fifth section
we apply the descriptive distributions to recently published lexical decision data that feature ma-
nipulations of task difficulty, response caution, and a priori bias (Wagenmakers, Ratcliff, et al.,
2008). The sixth section concludes our investigation.

2.2 The Ex–Gaussian Distribution

The ex–Gaussian distribution results from the convolution of a Gaussian and an exponential distri-
bution and can be described by three parameters: µ and σ, the mean and the standard deviation
of the Gaussian component, and τ , the mean of the exponential component. Roughly, µ and σ
reflect the leading edge and τ reflects the tail of the distribution. The ex–Gaussian distribution
has a positively skewed unimodal shape and generally produces an excellent fit to empirical RT
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2.2. The Ex–Gaussian Distribution

distributions. Figure 2.1 shows changes in the shape of the ex–Gaussian distribution as a result
of changes in the ex–Gaussian parameters µ, σ, and τ . The probability density function of the
ex–Gaussian is given by

f(x|µ, σ, τ) = 1

τ
√
2π

exp

(

σ2

2τ2
− x− µ

τ

)
∫ [(x−µ)/σ]−(σ/τ)

−∞
exp

(

−y2

2

)

dy (2.1)

and its mean and variance are

E(x) = µ+ τ (2.2)

and
V ar(x) = σ2 + τ2. (2.3)
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Figure 2.1 Changes in the shape of the ex–Gaussian distribution as a result of changes in the
ex–Gaussian parameters µ, σ, and τ . The parameter sets used to generate the distributions are
µ=0.5, σ=0.05, τ=0.3 (panel a), µ=1, σ=0.05, τ=0.3 (panel b), µ=0.5, σ=0.2, τ=0.3 (panel c),
and µ=0.5, σ=0.05, τ=0.8 (panel d).

Originally, the ex–Gaussian distribution was thought to represent the durations of two succes-
sive components of cognitive processing. In particular, Hohle (1965) suggested that the exponential
component represents “the decision and perceptual portion of an RT”, whereas the Gaussian com-
ponent reflects “the time required for organization and execution of the motor response” (p. 384).
Although it may be tempting to associate these particular cognitive processes with the ex–Gaussian
parameters, Hohle’s interpretation of the ex–Gaussian parameters has been frequently challenged.

First, there is disagreement as to which processing mechanism should be attributed to the two
ex–Gaussian components. McGill (1963) and McGill and Gibbon (1965), for example, suggested
that residual motor latency corresponds to the exponential component of the ex–Gaussian, not to
the Gaussian component. This interpretation is diametrically opposed to that of Hohle (1965).

Second, the rationale underlying Hohle’s (1965) interpretation of the two ex–Gaussian com-
ponents has been criticized. Hohle based his interpretation on the finding that the mean of the
Gaussian component, µ, was somewhat more sensitive to manipulations of foreperiod duration,
but the mean of the exponential component, τ , was more sensitive to manipulations of stimulus
intensity. Because foreperiod duration was assumed to influence motor response time and stimulus
intensity was assumed to influence decision time, Hohle concluded that the Gaussian component
must reflect residual time and the exponential component the decision portion of the RT.
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Luce (1986, pp. 100–102), however, has argued that Hohle’s (1965) data are equally consistent
with many other decompositions of RT, and that the influence of foreperiod duration can in fact
be attributed to either component of RT. Also, experimental results often fail to support the dif-
ferential sensitivity of the ex–Gaussian parameters to manipulations that are assumed to influence
the decision component of RT. For example, the manipulation of word frequency, which is assumed
to affect the decision portion of RT, commonly influences the τ as well as the µ parameter (e.g.,
Andrews & Heathcote, 2001; Plourde & Besner, 1997; Yap & Balota, 2007; Yap, Balota, Cortese,
& Watson, 2006). Table 2.1 summarizes the effects that experimental manipulations have on the
ex–Gaussian parameters, on the basis of a literature review of 54 studies.2

Third, and most important, it has been argued that the ex–Gaussian distribution lacks a
plausible theoretical basis, and that it is consequently unable to account for the psychological
mechanisms that drive performance (see, e.g., Heathcote et al., 1991; Luce, 1986). Specifically,
the Gaussian component necessarily assigns positive probability to negative RTs, a conceptual
inadequacy that highlights the fact that the ex–Gaussian distribution can never correspond to a
plausible cognitive process model.

Table 2.1 The Effects of Experimental Manipulations on the Ex–Gaussian Parameters.

Experimental manipulation N µ σ τ

Word frequency (high or low) 18 16 7 12
Flanker task condition (no flanker, neutral, congruent, and incongruent) 14 13 7 4
Age (children, young adults, and older adults) 11 8 8 7
Length of study list 13 6 2 10
Number of stimulus presentations 9 1 0 8
Stimulus quality (clear or degraded) 9 8 3 8
Stroop task condition (neutral, congruent, and incongruent ) 8 8 4 6
Study position of probe items 12 12 1 9
Local/global taska condition (neutral, congruent, and incongruent) 6 4 2 1
Output position of recalled items 5 0 0 5
Animacy of stimulus 4 1 1 2
Length of retention interval 4 1 0 4
Nonword type (pseudohomophone, legal, and illegal) 4 4 0 4
Cue–to–target stimulus onset asynchrony 3 3 0 0
Interstimulus interval 3 3 3 3
Speed–accuracy instruction 2 2 0 2

Note. Table 2.1 summarizes the results of an extensive literature review, covering 54 applications of the ex–Gaussian
distribution. The summary is created by selecting the most frequently used experimental manipulations encountered
in the literature and tallying how often, out of N attempts, the manipulations influenced each ex–Gaussian parameter.
The criterion that researchers used to evaluate whether a given experimental manipulation influenced the ex–Gaussian
parameters varied across the experiments. The criterion either was one of < 0.1, p < 0.05, p < 0.001, or was based
on visual inspection of the changes in parameter values. a An example of a congruent stimulus in the local/global
task is the letter H, constructed with small Hs. An example of an incongruent stimulus is the letter H, constructed
with small Zs. An example of a neutral stimulus is a circle, constructed with small Hs.

As a consequence of its problematic theoretical underpinning, some researchers have adopted a
cautious attitude and warned against the cognitive interpretation of the ex–Gaussian parameters.

2An extensive overview of the effects of experimental manipulations on the ex–Gaussian parameters, including
interaction effects, is available in the supplemental materials at http://dora.erbe-matzke.com/publications.html.
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2.3. The Shifted Wald Distribution

As Heathcote et al. (1991) stated, “Although the ex–Gaussian model describes RT data successfully,
it does so without the benefit of an underlying theory.” (p. 346). Consistent with this view, the
ex–Gaussian distribution has been sometimes used as an economical three–parameter summary
of RT data and as a tool to evaluate the predictions of competing cognitive models beyond the
level of mean RT (e.g., Heathcote et al., 1991; Hockley, 1982, 1984; Ratcliff, 1978, 1993; Ratcliff
& Murdock, 1976).

Other researchers, however, have not been so cautious and persisted on the substantive inter-
pretation of the ex–Gaussian parameters. Rohrer and Wixted (1994), for example, interpreted the
Gaussian component as “a brief initiation that precedes retrieval” and the exponential component
as “an ongoing search” (p. 512–513). Balota and Spieler (1999) related the Gaussian component
to “more stimulus driven automatic (nonanalytic) processes”, and the exponential component to
“more central attention demanding (analytic) processes” (p. 34). Kieffaber et al. (2006) inter-
preted µ in terms of attentional and τ in terms of intentional cognitive processes (p. 348). As a
final example, Gordon and Carson (1990) argued that the “lumped sensory input/motor output
component” of RT has a Gaussian distribution, and that the “decisional phase” of RT has an ex-
ponential distribution (p. 150; see also Madden et al., 1999; Possamäı, 1991; Rotello & Zeng, 2008
for similar interpretations). Table 2.2 gives an overview of the cognitive interpretations attributed
to the ex–Gaussian parameters;3 since the σ parameter is rarely given a cognitive interpretation,
it is omitted from the overview. As can be seen in Table 2.2, there is some consistency in the
cognitive interpretation of the ex–Gaussian parameters: Lower–order processes are generally as-
cribed to µ and higher–order processes are generally ascribed to τ . Note, however, that the precise
interpretation of the ex–Gaussian parameters varies considerably across researchers.

To summarize, the ex–Gaussian distribution provides a description of empirical RT data that
is accurate but lacks a plausible theoretical rationale. Despite this limitation, the ex–Gaussian
parameters have often been interpreted in terms of underlying cognitive processes. The following
section introduces the shifted Wald distribution, a descriptive distribution that has the potential
to provide parameters that are theoretically more meaningful.

2.3 The Shifted Wald Distribution

The Wald distribution (Wald, 1947) represents the density of the first passage times of a Wiener
diffusion process toward a single absorbing boundary (see Figure 2.2). This distribution can be
characterized by two parameters: γ, reflecting the drift rate of the diffusion process, and α, reflect-
ing the separation between the starting point of the diffusion process and an absorbing barrier.
In the RT context, the Wald distribution is often supplemented with a positive parameter θ that
shifts the entire RT distribution. The shifted Wald has a positively skewed unimodal shape that
generally produces an excellent fit to empirical RT distributions. Figure 2.3 shows changes in the
shape of the shifted Wald distribution as a result of changes in the parameters α, θ, and γ. The
probability density function of the shifted Wald is given by

f(x|α, θ, γ) = α
√

2π(x− θ)3
exp

{

− [α− γ(x− θ)]2

2(x− θ)

}

, (2.4)

where x > θ, and its mean and variance are

E(x) = θ + α/γ (2.5)

3Specific quotations are available in the supplemental materials.
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Table 2.2 Cognitive Interpretations Attributed to the Ex–Gaussian Parameters

Authors µ τ

Balota and Spieler (1999) stimulus driven automatic (nonanalytic) processes central attention demanding (analytic) processes

Blough (1988, 1989) component of RT unrelated to stimulus variables
(e.g., neural transmission and motor response)

momentary probability of target detection/search
component of RT

Epstein et al. (2006); Leth-Steensen
et al. (2000)

– attentional lapses

Gholson and Hohle (1968a, 1968b) – response choice latency/response competition

Gordon and Carson (1990); Hohle
(1965); Madden et al. (1999); Pos-
samäı (1991); Rotello and Zeng
(2008)

duration of residual processes (e.g., sensory and mo-
tor processes)

durations of the decisional phase of RT

Kieffaber et al. (2006) attentional cognitive processes intentional cognitive processes

Penner-Wilger, Leth-Steensen, and
LeFevre (2002)

retrieval processes nonretrieval/procedure use

Rohrer (1996, 2002); Rohrer and
Wixted (1994); Wixted, Ghadisha,
and Vera (1997); Wixted and Rohrer
(1993)

initial pause preceding the retrieval of the first re-
sponse

mean recall latency/ongoing memory search

Schmiedek, Oberauer, Wilhelm, Suss,
and Wittmann (2007)

– higher cognitive functioning (e.g.,working memory
and reasoning)

Spieler, Balota, and Faust (1996) – more central processing component

Note. A dash indicates that the parameter is not given any cognitive interpretation.
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2.3. The Shifted Wald Distribution

Figure 2.2 The shifted Wald model of RT and its parameters. See text for details.

and
V ar(x) = α/γ3. (2.6)

For further discussion and applications of the Wald distribution, see Burbeck and Luce (1982),
Luce (1986), and Emerson (1970). For discussion and application of a more general version of a
single–boundary diffusion process, see P. L. Smith (1995).

The cognitive interpretation of the shiftedWald parameters is straightforward (see, e.g., Heathcote,
2004; Luce, 1986; W. Schwarz, 2001, 2002). Participants are assumed to accumulate noisy infor-
mation until a predefined threshold amount is reached and a response is initiated. Drift rate γ
quantifies task difficulty or subject ability, response criterion α quantifies response caution, and
the shift parameter θ quantifies the time needed for non–decision processes.

Although the shifted Wald distribution has a sound theoretical basis, the cognitive interpre-
tation of its parameters has rarely been subject to empirical validation. The shifted Wald model
may be particularly suited for paradigms in which there is likely only a single response boundary.
Such paradigms may include simple RT tasks (Luce, 1986, pp. 51–57), go/no–go tasks (Heathcote,
2004; W. Schwarz, 2001) or tasks that involve saccadic eye movements that result in very few errors
(Carpenter & Williams, 1995). It is not clear whether the cognitive interpretation of the shifted
Wald parameters still holds when the distribution is applied to data from a paradigm that clearly
involves two response alternatives.

In summary, both the ex–Gaussian and the shifted Wald distributions provide excellent tools to
summarize RT distributions. However, the cognitive interpretation of their parameters is unclear.
The ex–Gaussian distribution lacks an adequate theoretical basis and the substantive interpreta-
tion of its parameters has been repeatedly questioned. Although the shifted Wald distribution is
theoretically better justified, it is currently unclear whether the substantive interpretation of its
parameters carry over from one–boundary paradigms to two–boundary paradigms.
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Figure 2.3 Changes in the shape of the shifted Wald distribution as a result of changes in the shifted
Wald parameters α, θ, and γ. The parameter sets used to generate the distributions are α=1, θ=0,
γ=2 (panel a), α=2.5, θ=0, γ=2 (panel b), α=1, θ=0.8, γ=2 (panel c), and α=1, θ=0, γ=3.8
(panel d).

2.4 The Ratcliff Diffusion Model

The diffusion model (Ratcliff, 1978; for reviews see Ratcliff & McKoon, 2008; Wagenmakers, 2009)
is a prominent cognitive process model of speeded two–choice decisions. The diffusion model
assumes that noisy information is accumulated over time from a starting point toward one of
two response boundaries (see Figure 2.4). A response is initiated when one of the two response
boundaries is reached. The diffusion model has been successfully applied to a wide range of
experimental paradigms, including brightness discrimination, letter identification, lexical decision,
recognition memory and signal detection (e.g., Ratcliff, 1978, 2002; Ratcliff, Gomez, & McKoon,
2004; Ratcliff & Rouder, 2000; Ratcliff, Thapar, Gomez, & McKoon, 2004; Ratcliff, Thapar, &
McKoon, 2001, 2003, 2004; Thapar, Ratcliff, & McKoon, 2003; Wagenmakers, Ratcliff, et al.,
2008). The diffusion model generally provides an excellent fit to all aspects of the observed RT
data, including response accuracy and the RT distributions of both correct and error responses.
As indicated by Ratcliff and McKoon (2008, p. 918), “( ... ) the class of diffusion models has as
near to provided a solution to simple decision making as is possible in behavioral science.”

One of the major strengths of the diffusion model is its ability to provide parameter estimates
that can be interpreted in terms of the cognitive components underlying the decision process (e.g.,
Voss et al., 2004). The central parameters of the model are drift rate v, boundary separation a,
starting point z, and nondecision time Ter. Drift rate v represents the mean rate of information
accumulation and it is determined by the quality of information that is extracted from the stimulus.
Drift rate can be influenced either by individual differences in the quality of information processing
or by stimulus characteristics that reflect task difficulty. Boundary separation a quantifies the
distance between the two response boundaries and represents response caution. Large values of a
indicate that more information must be accumulated before a decision can be made. Boundary
separation is usually manipulated via speed–accuracy instructions. Starting point z represents
subjects’ a priori bias for one of the two response alternatives. Starting point is usually manipulated
either by varying the proportion of stimuli that is associated with the upper and the lower response
boundaries or by payoff manipulations. Both boundary separation a and starting point z are
assumed to be under the subjective control of participants. Nondecision time Ter quantifies the
duration of processes that are unrelated to the decision process, including stimulus encoding and
response execution.
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Figure 2.4 The diffusion model and its central parameters. See text for details.

In addition to these key parameters, the diffusion model also features parameters that describe
how the values of these key parameters fluctuate from one trial to the next. Specifically, the model
assumes across–trial variability in drift rate (according to a normal distribution with variance η),
starting point (according to a uniform distribution with range sz), and nondecision time (according
to a uniform distribution with range st).

4

To summarize, the diffusion model provides a general theoretical account of decision making
in speeded two–choice tasks. Previous research has shown that the parameters of the model
correspond to the psychological processes that they are assumed to represent (e.g., Ratcliff &
McKoon, 2008; Voss et al., 2004; Wagenmakers, 2009). Therefore, the diffusion model can be used
to judge whether the cognitive interpretation of the ex–Gaussian and shifted Wald parameters
is warranted when these descriptive distributions are applied to data from speeded two–choice
tasks. Ideally, the parameters of the ex–Gaussian and shifted Wald distributions would correspond
uniquely with parameters of the diffusion model. For instance, one would hope that, say, a change
in drift rate in the diffusion model would correspond to a change in the τ parameter in the ex–
Gaussian and the γ parameter in the shifted Wald.

Links between the Ex–Gaussian and the Diffusion Model Parameters

Several attempts have been made to relate the ex–Gaussian parameters to those of the diffusion
model. For instance, Schmiedek et al. (2007) showed that both the ex–Gaussian parameter τ and
the diffusion model parameter v correlated strongly with people’s higher cognitive functions such
as working memory and reasoning. In addition, Schmiedek et al. demonstrated by simulations
that the relation between τ and higher cognitive functions could be fully explained in terms of

4The model also features a parameter s that quantifies the amplitude of the noise in the information accumulation
process. This scaling parameter is usually fixed at 0.1, a convention that we adhere to throughout the present article.

17



2. Psychological Interpretation of the Ex-Gaussian and Shifted Wald

Parameters: A Diffusion Model Analysis

individual differences in drift rate v. Schmiedek et al. concluded that τ is associated with drift rate
v.

Other researchers adopted a different approach and used simulations to examine changes in
the ex–Gaussian parameters as a result of changes in diffusion model drift rate v and boundary
separation a parameters. The results typically showed that (1) an increase in drift rate mainly
causes a decrease in τ and (2) an increase in boundary separation mainly causes an increase in µ
(e.g., Spieler, 2001; Spieler, Balota, & Faust, 2000; Yap et al., 2006).

Finally, Ratcliff (1978) used the ex–Gaussian µ and τ parameters to fit the diffusion model to
data obtained from various experimental paradigms, such as the study–test paradigm (e.g., Ratcliff
& Murdock, 1976), the Sternberg paradigm (e.g., Sternberg, 1966), and the continuous recognition
memory paradigm (e.g., Okada, 1971). Contrary to the simulation results above, Ratcliff found
that µ and τ are both sensitive to changes in drift rate and boundary separation. In particular,
the results indicated that (1) increases in drift rate and starting point cause decreases in both µ
and τ and (2) an increase in boundary separation causes increases in both µ and τ .

The above results are therefore far from conclusive. Some studies (e.g., Spieler, 2001) report
that τ and µ are selectively influenced by drift rate v and boundary separation a, respectively.
Other studies (e.g., Ratcliff, 1978), however, show that τ and µ are sensitive to changes in a
variety of diffusion model parameters. In addition, previous work examined only a limited range
of values for the diffusion model parameters. A comprehensive investigation will require that the
diffusion model parameters be manipulated on a realistic and sufficiently large range.

Links between the Shifted Wald and the Diffusion Model Parameters

To the best of our knowledge, no one has yet attempted to relate the shifted Wald parameters to
those of the diffusion model. Nevertheless, both the shifted Wald distribution and the diffusion
model conceptualize the decision process as a gradual information accumulation process. In fact,
the shifted Wald can be thought of as a single–boundary diffusion process (cf. Figures 2.2 and
2.4). On the basis of the conceptual similarities of the two models, one might expect that (1) an
increase in drift rate v mainly causes an increase in γ, (2) an increase in boundary separation a
mainly causes an increase in α, (3) an increase in starting point z mainly causes a decrease in α,
and (4) an increase in nondecison time Ter mainly causes an increase in θ.

Empirical evidence for some of these relations has been reported by W. Schwarz (2001).
W. Schwarz (2001) used a go/no–go digit comparison task and manipulated numerical distance (1
or 4) and the prior probability of go trials (0.5 or 0.75). Shifted Wald analyses by Heathcote (2004)
confirmed that the manipulation of numerical distance selectively influenced the Wald drift rate γ
and that the manipulation of prior probability selectively influenced the Wald response criterion
α. As expected, the Wald nondecision time θ was not influenced by either of these two manipula-
tions. These results are encouraging, but it remains unclear to what extent the parameters from
the shifted Wald correspond to those from the diffusion model in case the data are obtained in a
speeded task that clearly features two response alternatives.

2.5 Validation of the Ex–Gaussian and Shifted Wald Parameters
Using Diffusion Model Simulations

In this section, we investigate the association between parameters from the ex–Gaussian and the
shifted Wald and parameters from the diffusion model. To this end, we simulated data from
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2.5. Validation of the Ex–Gaussian and Shifted Wald Parameters Using Diffusion Model
Simulations

Table 2.3 Minimum, Maximum, and Mean Values of the Diffusion Model Parameters Used in the
Simulations

Diffusion Model Parameter Minimum Maximum Mean

Drift rate v 0.0 0.586 0.223
Boundary separation a 0.056 0.393 0.125
Starting point z 0.028 0.182 0.063
Nondecision time Ter 0.206 0.942 0.435
Trial–to–trial variability in drift rate η 0.0 0.329 0.133
Trial–to–trial variability in starting point sz 0.0 0.169 0.037
Trial–to–trial variability in nondecision time st 0.0 0.630 0.183
Bias z/a 0.272 0.782 -
sz/a 0.0 0.900 -

the diffusion model by systematically varying its parameter values. Next, we fitted both the ex–
Gaussian and the shifted Wald distributions to the simulated data sets.

Diffusion Model Simulations and Model Fitting

In each simulation, we generated data by manipulating a particular diffusion model parameter
from a minimum to a maximum value while keeping the other parameters constant on their aver-
age values. Realistic parameter values were based on an extensive literature survey that covered
23 diffusion model applications. Table 2.3 shows the minimum, maximum, and mean values of the
parameters used in the simulations. Note that some of the estimates from which the minimum,
maximum, and mean values are derived result from parameter estimation with theoretically moti-
vated constraints on some of the diffusion model parameters. For the histograms of the diffusion
model parameter values found in the literature, the reader is referred to Appendix A.1.5

For the manipulation of boundary separation a, starting point z was assumed to be equidistant
from the two response boundaries, so that z = a/2. Further, the manipulation of starting point z
was carried out with respect to the mean value of boundary separation a by using the minimum
and maximum values of the z/a ratios, the so–called bias parameters, found in the literature. A
z/a ratio of 0.5 indicates that starting point z is equidistant from the two response boundaries.
Similarly, the manipulation of the trial–to–trial variability of starting point sz parameter was
carried out with respect to the mean value of a by using the minimum and maximum values of
the sz/a ratios. Each parameter was manipulated in 1,000 steps of equal size, resulting in 1,000
data sets per parameter. In order to obtain relatively noise–free parameter estimates, each data
set contained 10,000 RTs. The simulations were carried out using the Diffusion Model Analysis
Toolbox (DMAT; Vandekerckhove & Tuerlinckx, 2007, 2008).

Next, the ex–Gaussian and shifted Wald distributions were fitted to the simulated data sets
using maximum likelihood estimation (e.g., Myung, 2003). Extreme parameter estimates (i.e.,
15 ex–Gaussian and 8 shifted Wald estimates) were removed from the analyses. Note that the
descriptive distributions were fitted to the RTs of correct responses only.

5The exact parameter values are available in the supplemental materials.
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Simulation Results

Figure 2.5 and Figure 2.6 show the changes in the ex–Gaussian and shifted Wald parameters
as a function of changes in the diffusion model parameters. Table 2.4 gives a summary of the
associations between the two sets of parameters. In this section, we present only the results related
to the manipulation of the key diffusion model parameters: drift rate v, boundary separation a,
starting point z, and nondecision time Ter. Because the across–trial variability parameters cannot
be interpreted in terms of cognitive processes, the results related to these parameters are presented
in Appendix A.2.

Table 2.4 The Associations Between Parameters of the Ex–Gaussian and Shifted Wald Distributions
and Parameters of the Diffusion Model.

Diffusion model parameters
v a z Ter

Ex–Gaussian
µ – ++ – – ++
σ – + – ×
τ – – ++ – ×

Shifted Wald
α ++ – – – – +
θ – ++ – ++
γ ++ – – –/+ ×

Note. ++, substantial positive association; +, weak positive association; – –, substantial negative association; –,
weak negative association; ×, no association; v, drift rate; a, boundary separation; z, starting point; Ter, nondecision
time.

Ex–Gaussian Parameters

With respect to drift rate v, Figure 2.5a shows that the three ex–Gaussian parameters all decrease
as v increases. The decrease in both µ and σ are, however, extremely small. In fact, changes in v
are primarily reflected in τ . Also, τ continues to decrease until extreme values of v, whereas µ and
σ level off already at intermediate values of v.

Turning to boundary separation a, Figure 2.5b shows that the three ex–Gaussian parameters
all increase as a increases. Although τ increases more than either µ or σ, the increase in µ is also
substantial. Note that τ changes substantially more as a function of a than as a function of any
other diffusion model parameter.

With respect to starting point z, Figure 2.5c shows that the three ex–Gaussian parameters
all decease as z increases. However, the decrease in both σ and τ are negligible. Also, τ seems
relatively constant for low values of z. Changes in z are thus primarily reflected in µ.

Turning to nondecision time Ter, Figure 2.5d shows that µ increases as Ter increases. In
contrast, both the τ and the σ parameters are unaffected by Ter. Note that µ changes substantially
more as a function of Ter than as a function of any other diffusion model parameter.

To summarize, the results of the simulations indicate that the ex–Gaussian parameters do
not correspond uniquely to parameters of the diffusion model. The µ parameter is substantially
influenced by boundary separation a, starting point z, and nondecision time Ter. The σ parameter
is not influenced substantially by any of the key diffusion model parameters, and τ is substantially
influenced by both drift rate v and boundary separation a.
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Figure 2.5 Changes in the ex–Gaussian parameters µ, σ, and τ as a function of systematic changes
in the diffusion model parameters drift rate v (panel a), boundary separation a (panel b), starting
point z (panel c), and nondecision time Ter (panel d). The left-hand figures in each panel plot the
results on scales ranging from the minimum to the maximum values of the ex–Gaussian parameters
found across all simulations. The right-hand figures in each panel plot the same results on scales
ranging from the minimum to the maximum values of the ex–Gaussian parameters found for the
manipulation of the given diffusion model parameter.
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2. Psychological Interpretation of the Ex-Gaussian and Shifted Wald

Parameters: A Diffusion Model Analysis

Shifted Wald Parameters

With respect to drift rate v, Figure 2.6a shows that both α and γ increase as v increases. In
contrast, θ seems to decrease with increasing v. However, the decrease in θ is extremely small. In
fact, changes in drift rate v are primarily reflected in α and γ. Note that the three shifted Wald
parameters all level off for high values of v and that α and θ are relatively constant for low values
of v.

Turning to boundary separation a, Figure 2.6b shows that γ decreases and θ increases with
increasing a. Quite unexpectedly, the response criterion α parameter decreases as a increases. The
changes in all three parameters are substantial. Note that the rates of decrease in both α and γ
slow down as a increases. In fact, α levels off at intermediate values of a.

With respect to starting point z, Figure 2.6c shows that both α and θ decrease as z increases. In
contrast, γ decreases for lower values and increases for higher values of z. The point of reversal in γ
seems to correspond to the point where z is equidistant to the two response boundaries. However,
the changes in both θ and γ are extremely small. Changes in z are thus primarily reflected in α.

Turning to nondecision time Ter, Figure 2.6d shows that γ is unresponsive to changes in Ter.
In contrast, both α and θ increase as Ter increases. However, the increase in α is negligible and
limited to high values of Ter. Changes in Ter are thus primarily reflected in θ. In fact, θ changes
substantially more as a function of Ter than as a function of any other diffusion model parameter.

To summarize, the results of the simulations indicate that the shifted Wald parameters likewise
do not correspond uniquely to parameters of the diffusion model. The α parameter is substantially
influenced by drift rate v, boundary separation a, and starting point z. Remarkably, α decreases
as a increases. The θ parameter is substantially influenced by both boundary separation a and
nondecision time Ter. Finally, the γ parameter is substantially influenced by both drift rate v and
boundary separation a.

2.6 Validation of the Ex–Gaussian and Shifted Wald Parameters
Using Experimental Manipulations

In this section, we present a concrete empirical illustration of the simulation results reported above
by examining how the parameters of the descriptive distributions relate to experimentally induced
changes in the diffusion model parameters. Specifically, we investigate how the ex–Gaussian and
shifted Wald parameters respond to experimental manipulations that selectively affect the key
parameters of the diffusion model (i.e., drift rate v, boundary separation a, and starting point z ).
To this end, we fitted the ex–Gaussian and shifted Wald distributions to data sets obtained from
two lexical decision experiments.

The Lexical Decision Data

To separately estimate the effects of lexical processing from the effects of strategic threshold ad-
justments, Wagenmakers, Ratcliff, et al. (2008) applied the diffusion model to the data of two
lexical decision experiments. In the first experiment (N=15), task difficulty was manipulated on
three levels by varying word frequency (high, low, and very low frequency), and response caution
was manipulated on two levels by instructions and feedback that emphasized either response speed
or response accuracy. The resulting 3 (word frequency) × 2 (speed–accuracy instruction) cells of
the experimental design each contained 160 trials per participant. The diffusion model was able
to account for the effects of the manipulations with only two parameters free to vary across con-
ditions. The effects of word frequency were entirely accounted for by changes in drift rate v, with
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Figure 2.6 Changes in the shifted Wald parameters α, θ, and γ as a function of systematic changes
in the diffusion model parameters drift rate v (panel a), boundary separation a (panel b), starting
point z (panel c), and nondecision time Ter (panel d). The left-hand figures in each panel plot the
results on scales ranging from the minimum to the maximum values of the shifted Wald parameters
found across all simulations. The right-hand figures in each panel plot the same results on scales
ranging from the minimum to the maximum values of the shifted Wald parameters found for the
manipulation of the given diffusion model parameter.
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2. Psychological Interpretation of the Ex-Gaussian and Shifted Wald

Parameters: A Diffusion Model Analysis

higher word frequency associated with higher values of v. In contrast, the effects of the speed–
accuracy instructions were entirely accounted for by changes in boundary separation a, with speed
instructions associated with lower values of a.

In the second experiment (N=19), in addition to the task difficulty manipulation, participants’ a
priori bias was manipulated on two levels by varying the proportion of word versus nonword stimuli
in a list (i.e., 75% words or 75% nonwords). The resulting 3 (word frequency) × 2 (word/nonword
proportion) cells of the experimental design each contained 160 trials per participant. As in Ex-
periment 1, the effects of word frequency were entirely accounted for by changes in drift rate v. In
contrast, the effects of the proportion manipulation were accounted for by changes in starting point
z, with the 75% word condition associated with higher values of z (in the modeling, the upper and
lower boundaries were associated with the “word” and “nonword” responses, respectively).

We fitted this data set using the ex–Gaussian and shifted Wald distributions and examined
how their parameters relate to the experimental manipulation of drift rate v, boundary separation
a, and starting point z. We expected that the pattern of association between the two sets of
parameters would largely follow the pattern found in our simulations. The empirical results are,
however, unlikely to precisely mirror the results of the simulations. Although the effects of the
experimental manipulations were adequately accounted for by changes in the above-mentioned
diffusion model parameters, the manipulations might not have had completely selective influence on
these parameters. Hence, changes in the ex–Gaussian and the shifted Wald parameters as a function
of the experimental manipulations might reflect slight changes in diffusion model parameters other
than the intended ones.

Hierarchical Bayesian Modeling

We used hierarchical Bayesian modeling (e.g., Farrell & Ludwig, 2008; Gelman & Hill, 2007;
Rouder, Lu, Speckman, Sun, & Jiang, 2005; Rouder, Sun, Speckman, Lu, & Zhou, 2003; Shiffrin,
Lee, Kim, & Wagenmakers, 2008) to fit the ex–Gaussian and shifted Wald distributions to the
lexical decision data. We used a hierarchical Bayesian approach to fit the descriptive distributions
because the individual subject data obtained from the lexical decision tasks were considerably
noisier than the synthetic data used in the previous section. As shown by Farrell and Ludwig (2008)
and Rouder et al. (2005), hierarchical Bayesian methods reduce the variability in the recovered
parameters and produce more accurate individual parameter estimates than single–level maximum
likelihood estimation.

The hierarchical Bayesian approach assumes that the parameters of individual participants are
drawn from group–level distributions that specify how the individual parameters are distributed
in the population. The group–level distributions define thus the between–subject variations of the
parameters and can themselves be characterized by a set of parameters. For example, suppose
that the RT data of each participant is assumed to come from an ex–Gaussian distribution, but
with different values of µ, σ, and τ . The individual subject parameters µi, σi, and τi might in
turn be assumed to come from normal distributions with means m, s, and t and with variances
s2m, s2s, and s2t , respectively. The benefits of hierarchical modeling arise from using the group–level
distributions as priors to adjust extreme individual parameter estimates to more moderate values.
In summary, hierarchical Bayesian modeling involves a

( ... ) tension between fitting each subject as well as possible (optimal choice of indi-
vidual parameters) and fitting the group as a whole ( ... . ) This tension results in a
movement of the individual parameters toward the group mean, a desirable characteris-
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tic given that we do not desire to overfit the data, and fit the noise in each individual’s
data. (Shiffrin et al., 2008, p. 1261).

Figure 2.7 and Figure 2.8 show the graphical models for the hierarchical ex–Gaussian and shifted
Wald analyses reported in this section. The nodes represent variables of interest, and the graph
structure is used to indicate dependencies between the variables, with children depending on their
parents. We use the convention of representing unobserved variables without shading and observed
variables with shading (e.g., M. D. Lee, 2008). Figure 2.7 shows that the ex–Gaussian parameters
µi, σi, and τi vary from participant to participant and are assumed to be drawn from group–level
normal distributions with means m, s, and t, respectively. Similarly, Figure 2.8 shows that the
shifted Wald parameters αi, θi, and γi vary from participant to participant and are assumed to be
drawn from group–level normal distributions with means a, h, and g, respectively.

dij

µi σi τi

m sm s ss t st

trial j
subject i

m ∼ Uniform
(

0.25, 0.99
)

sm ∼ Uniform
(

0, 0.214
)

s ∼ Uniform
(

0.02, 0.18
)

ss ∼ Uniform
(

0, 0.046
)

t ∼ Uniform
(

0.05, 0.85
)

st ∼ Uniform
(

0, 0.231
)

µi ∼ Gaussian
(

m, s2m
)

σi ∼ Gaussian
(

s, s2s
)

τi ∼ Gaussian
(

t, s2t
)

dij ∼ Ex−Gaussian
(

µi, σi, τi
)

Figure 2.7 Graphical model for the hierarchical ex–Gaussian analysis. Note that the ranges of the
uniform prior distributions for the group means are based on the minimum and maximum values
of the corresponding ex–Gaussian parameters found in the simulation study reported above.

The ranges of the uniform prior distributions for the group means are based on the minimum
and maximum values of the corresponding ex–Gaussian and shifted Wald parameters found in the
simulation study reported above. The uniform prior distributions for the group standard deviations
range from 0 to the standard deviations of the uniform priors for the corresponding group means.
For example, the uniform prior for the ex–Gaussian group mean m parameter ranges from 0.25 to
0.99; values of µ more extreme than this did not occur in our earlier diffusion model simulation
study. The uniform prior for the associated group standard deviation sm ranges from 0 to 0.214.
The latter value is the maximum standard deviation for a unimodal distribution on m — that is,
the standard deviation for a uniform distribution on m (i.e., (0.99− 0.25)/

√
12 ≈ 0.214).

The starting values for the hierarchical Bayesian analysis were based on the individual param-
eter estimates.6 At the beginning of each sampling run, the first 1,000 trials of the Markov chain

6We later confirmed our results by using overdispersed starting values and multiple chains to obtain an R̂ statistic
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dij

αi θi γi

a sa h sh g sg

trial j
subject i

g ∼ Uniform
(

0.85, 7.43
)

sg ∼ Uniform
(

0, 1.899
)

a ∼ Uniform
(

0.67, 2.35
)

sa ∼ Uniform
(

0, 0.485
)

h ∼ Uniform
(

0, 0.82
)

sh ∼ Uniform
(

0, 0.237
)

γi ∼ Gaussian
(

g, s2g
)

αi ∼ Gaussian
(

a, s2a
)

θi ∼ Gaussian
(

h, s2h
)

dij ∼ ShiftedWald
(

αi, θi, γi
)

Figure 2.8 Graphical model for the hierarchical shifted Wald analysis. Note that the ranges of the
uniform prior distributions for the group means are based on the minimum and maximum values
of the corresponding shifted Wald parameters found in the simulation study reported above.

Monte Carlo (MCMC) chains were discarded. Each analysis was based on 10,000 recorded samples.
We used the WinBUGS program (Lunn, Thomas, Best, & Spiegelhalter, 2000) for parameter esti-
mation.7 Note that the descriptive distributions were fitted only to the RTs of correct responses.
Similar to the procedure of Wagenmakers, Ratcliff, et al. (2008), we used only RTs that were slower
than 300 ms and faster than 2,500 ms.

Results

Figure 2.9 shows the boxplots of the posterior distributions for the ex–Gaussian group mean param-
eters m, s, and t. Figure 2.10 shows the boxplots of the posterior distributions for the shifted Wald
group mean parameters a, h, and g. Our discussion of the results is based on a visual inspection
of the posterior distributions.

Ex–Gaussian Parameters

With respect to m (i.e., the group mean for the µ parameter), Figure 2.9a shows that m increases
when instructions emphasize choice accuracy. Since the effects of the speed–accuracy manipulation
can be accounted for by changes in boundary separation a, this result suggests that µ increases
with increasing boundary separation. Similarly, m increases when stimuli consist of 75% nonwords.
Since the effects of the proportion manipulation can be accounted for by changes in starting point z,
this result suggests that µ increases with decreasing starting point. The effect of the word frequency
manipulation is less clear—m increases from high-frequency words to low-frequency words, but does

of about 1, indicating that the chains have converged to the stationary distribution (Brooks & Gelman, 1998).
7The WinBUGS code and the lexical decision data are available in the supplemental materials.
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not change considerably from low-frequency words to very-low-frequency words. Since the effects
of the word frequency manipulation can be accounted for by changes in drift rate v, this result
suggests that µ increases slightly with decreasing drift rate.
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Figure 2.9 Boxplots of the posterior distributions for the ex–Gaussian group means m, s, and t,
derived separately for each condition of the two lexical decision experiments of Wagenmakers, Rat-
cliff, et al. (2008). HF, high-frequency words; LF, low-frequency words; VLF, very-low-frequency
words.

With respect to s (i.e., the group mean for the σ parameter), Figure 2.9b shows that s is influ-
enced by the effects of neither the speed–accuracy instructions nor the proportion manipulation.
These results suggest that σ is not influenced by either boundary separation a or starting point
z. Again, the effect of the word frequency manipulation is less clear—s increases somewhat from
high-frequency words to low-frequency words, but does not change considerably from low-frequency
words to very-low-frequency words. This finding suggests that σ increases slightly with decreasing
drift rate v. Note, however, that the increase in σ is relatively small.

Turning to t (i.e., the group mean for the τ parameter), Figure 2.9c shows that t increases
with decreasing word frequency and when instructions emphasize choice accuracy. In contrast, t is
unresponsive to the effects of the proportion manipulation. These results suggest that τ increases
with increasing boundary separation a and with decreasing drift rate v but is unaffected by changes
in starting point z.
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Parameters: A Diffusion Model Analysis

In summary, the results above indicate that the ex–Gaussian parameters do not respond selec-
tively to the effects of the word frequency, speed–accuracy, and proportion manipulations. Consis-
tent with the diffusion model simulations reported above, these results suggest that the ex–Gaussian
parameters do not correspond uniquely to the drift rate v, boundary separation a and starting point
z parameters of the diffusion model. The µ parameter is sensitive to changes in all three diffusion
model parameters. Although σ seems to be influenced only by drift rate v, this influence is rela-
tively small. Finally, τ is responsive to changes in both drift rate v and boundary separation a.
These results indicate that changes in the two most important ex–Gaussian parameters, µ and τ ,
can reflect changes in a variety of diffusion model parameters.

Shifted Wald Parameters

With respect to a (i.e., the group mean for the α parameter), Figure 2.10a shows that a increases
when instructions emphasize fast responding. In contrast, a seems to be unresponsive to the effects
of the proportion manipulation. These results suggest that α increases with decreasing boundary
separation a and is unaffected by changes in starting point z. The effect of word frequency is
less clear—a increases somewhat with decreasing word frequency when stimuli consists of 75%
words but is relatively constant in the other conditions. This result suggests that, under certain
conditions, α increases slightly with decreasing drift rate v.

Turning to h (i.e., the group mean for the θ parameter), Figure 2.10b shows that h increases
when instructions emphasize choice accuracy and when stimuli consist of 75% nonwords. These
results suggest that θ increases with increasing boundary separation a and with decreasing starting
point z. Again, the effect of the word frequency manipulation is less clear—h seems to decrease
with decreasing word frequency when stimuli consist of 75% words but is relatively constant in the
other conditions. This result suggests that, under certain conditions, θ decreases with decreasing
drift rate v.

With respect to g (i.e., the group mean for the γ parameter), Figure 2.10c shows that g increases
when instructions emphasize fast responding and decreases with decreasing word frequency. In
contrast, it seems unresponsive to the effects of the proportion manipulation. These results suggest
that γ increases with decreasing boundary separation a, decreases with decreasing drift rate v, and
is unaffected by changes in starting point z.

To summarize, the above results indicate that the shifted Wald parameters also do not respond
selectively to the effects of the word frequency, speed–accuracy, and proportion manipulations.
Consistent with the diffusion model simulations reported above, these results indicate that the
shifted Wald parameters do not correspond uniquely to the drift rate v, boundary separation a,
and starting point z parameters of the diffusion model. The α and the γ parameters are responsive
to changes in both boundary separation a and drift rate v, and θ is influenced by all three diffusion
model parameters. These results indicate that changes in the shifted Wald parameter can reflect
changes in a diversity of diffusion model parameters.

2.7 Discussion

The goal of this study was to examine the extent to which the ex–Gaussian and shifted Wald
parameters could be associated with the kind of psychological processes that are hypothesized
by the diffusion model, one of the most successful process models of speeded two–choice decision
making. First, we generated synthetic data by systematically manipulating the parameters of
the diffusion model, and examined the associated changes in the parameters of the ex–Gaussian
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Figure 2.10 Boxplots of the posterior distributions for the shifted Wald group means a, h, and g,
derived separately for each condition of the two lexical decision experiments of Wagenmakers, Rat-
cliff, et al. (2008). HF, high-frequency words; LF, low-frequency words; VLF, very-low-frequency
words.

and shifted Wald distributions. Second, we investigated empirical data and studied how the ex–
Gaussian and shifted Wald parameters relate to the experimental manipulation of the diffusion
model processes drift rate v, boundary separation a, and starting point z. The results were clear–
cut: In the context of a two–choice task, the ex–Gaussian and shifted Wald parameters cannot be
associated uniquely with the parameters of the diffusion model.

The Ex–Gaussian Distribution

Similar to the results of Ratcliff (1978), our results demonstrated that the two most important ex–
Gaussian parameters, µ and τ , were sensitive to changes in a variety of diffusion model parameters.
Specifically, µ was influenced by boundary separation a, starting point z, and nondecision time Ter.
The τ parameter was sensitive to changes in both drift rate v and boundary separation a. The
results related to the experimental manipulation of the diffusion model parameters followed a
similar pattern. The only discrepancy was that µ also appeared to be influenced by the effects
of the word frequency manipulation, suggesting that it was also sensitive to changes in drift rate
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Parameters: A Diffusion Model Analysis

v. This difference notwithstanding, the results indicate that the ex–Gaussian parameters do not
correspond uniquely to those of the diffusion model.

The Shifted Wald Distribution

The results of the simulations indicated that the shifted Wald parameters also could not be uniquely
associated with parameters of the diffusion model. Each of the shifted Wald parameters appeared
to be sensitive to changes in a diversity of diffusion model parameters. The α parameter was
sensitive to changes in drift rate v, boundary separation a, and starting point z. Surprisingly, α
decreased as boundary separation a increased. The θ parameter was affected by both boundary
separation a and nondecision time Ter. Finally, the γ parameter was substantially influenced by
both drift rate v and boundary separation a. The results related to the experimental manipulation
of the diffusion model parameters largely followed the same pattern. However, α was unresponsive
to the effects of the proportion manipulation, suggesting that this parameter was unaffected by
changes in starting point z. Also, α seemed to increase, rather than decrease, with decreasing word
frequency, suggesting that it increased with decreasing drift rate v. Finally, θ was responsive to the
effects of the word frequency and proportion manipulations, suggesting that it was also sensitive to
changes in v and z. These differences notwithstanding, the results indicate that the shifted Wald
parameters do not correspond uniquely to parameters of the diffusion model.

The finding that neither the simulation nor the experimental results support the interpretation
of the shifted Wald parameters in terms of the psychological processes of subject ability/task diffi-
culty, response caution, and nondecision time is disappointing and comes somewhat as a surprise.
First, in view of the conceptual similarities of the shifted Wald distribution and the diffusion model,
one might expect some correspondence between the two sets of parameters and their underlying
cognitive processes. Yet none of our predictions derived from the theoretical similarities of the two
models was supported by the results. Second, our results indicate that the differential sensitivity
of the shifted Wald parameters found in the go/no–go task (Heathcote, 2004) does not generalize
to tasks that involve two response boundaries. Our results strongly suggest that when the shifted
Wald is applied to paradigms that involve more than a single response boundary, the cognitive
interpretation of the shifted Wald parameters no longer holds. It must further be noted that the
results of Gomez, Ratcliff, and Perea (2007) suggest that the cognitive interpretation of the shifted
Wald parameters might be problematic even when the distribution is applied to one–choice tasks.
In particular, Gomez et al. showed that an adequate model of the go/no–go task must feature two
response boundaries: one associated with the go response and another associated with the implicit
choice not to respond (i.e., no–go decision).

The Effects of Error Rate, Parameter Correlations, and Parameter
Combinations

Our results strongly suggest that the ex–Gaussian and shifted Wald parameters should not be
interpreted in terms of the cognitive processes assumed by the diffusion model. Nevertheless, some
issues warrant further discussion.

First, our method of data generation resulted in error rates ranging from 10% to 15% across
the simulations. However, the shifted Wald distribution may perhaps be appropriate for paradigms
that result in very few errors, such as tasks that involve saccadic eye movements (Carpenter &
Williams, 1995). We therefore investigated how the ex–Gaussian and shifted Wald parameters
change as a function of the manipulation of the diffusion model parameters in data sets with lower
(0.9% – 4%), as well as higher (19% – 28%) error rates. Regardless of whether the error rate was
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low or high, the results clearly indicated that the ex–Gaussian and shifted Wald parameters cannot
be associated uniquely with the parameters of the diffusion model.8

Second, we generated data by manipulating each diffusion model parameter separately while
holding the other parameters constant on their average values. Although this approach yields
clear–cut and comprehensible results, it ignores the possible associations among the diffusion model
parameters. We therefore investigated how changes in the ex–Gaussian and shifted Wald parame-
ters relate to changes in the diffusion model parameters when we take into account the correlations
between the latter parameters. The simulations indicated that using parameter sets with realistic
parameter associations yields results that are noisier but qualitatively similar to those reported in
the present article.

Finally, our results indicate that the individual ex-Gaussian and shifted Wald parameters can-
not be mapped uniquely onto the parameters of the diffusion model. However, the parameters of
the descriptive distributions need not be considered in isolation. Unlike the individual parame-
ters, certain (nonlinear) combinations of the ex-Gaussian or shifted Wald parameters might map
uniquely onto parameters of the diffusion model. This possibility awaits further investigation.

A Common Problem?

Neither the ex–Gaussian nor the shifted Wald parameters appear to correspond to the psychological
processes hypothesized by the diffusion model. A possible reason for this unfortunate result may be
that neither of the two distributions take into account response accuracy. Without any knowledge
of response accuracy, it is very difficult to distinguish between effects of task difficulty (or subject
ability) and effects of response caution. For example, does an decrease in RT come about because
of an increase in drift rate v or a decrease in boundary separation a? It is evident that in this case,
a change in response accuracy is highly diagnostic; an increase in drift rate leads to fewer errors
(i.e., an overall improvement), whereas a decrease in boundary separation leads to more errors
(i.e., the speed–accuracy trade–off; e.g., Schouten & Bekker, 1967; Wickelgren, 1977). Because
performance in RT tasks reflects the combined effects of task difficulty and response caution, a
model that cannot separate these influences is unlikely to capture the cognitive processes that
determine performance (Wagenmakers, van der Maas, & Grasman, 2007).

Conclusion

The present results indicate that—in the context of speeded two–alternative tasks—the ex–Gaussian
and shifted Wald parameters should not be interpreted in terms of the cognitive processes hy-
pothesized by the diffusion model. This does not imply that the ex–Gaussian and shifted Wald
distributions should no longer be used as purely descriptive tools to economically summarize RT
data and to constrain model development. Such descriptive use of the ex–Gaussian and shifted
Wald distributions is perfectly legitimate and highly encouraged. What our findings do imply is
that it may be ill–advised to attribute changes in the ex–Gaussian and shifted Wald parameters
to changes in specific components of cognitive processing.

8The results of these additional simulations are available in the supplemental materials.
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Chapter 3

Bayesian Parametric Estimation of

Stop-Signal Reaction Time Distributions

This chapter has been published as:
Dora Matzke, Conor V. Dolan, Gordon D. Logan, Scott D. Brown. and Eric-Jan Wagenmakers

(2013).
Bayesian parametric estimation of stop-signal reaction time distributions.

Journal of Experimental Psychology: General, 142, 1047-1073, doi: 10.1037/a0030543.1

Abstract

The cognitive concept of response inhibition can be measured with the stop-signal paradigm. In
this paradigm, participants perform a two-choice response time (RT) task where, on some of the
trials, the primary task is interrupted by a stop signal that prompts participants to withhold
their response. The dependent variable of interest is the latency of the unobservable stop
response (stop-signal reaction time or SSRT). Based on the horse race model (Logan & Cowan,
1984), several methods have been developed to estimate SSRTs. None of these approaches allow
for the accurate estimation of the entire distribution of SSRTs. Here we introduce a Bayesian
parametric approach that addresses this limitation. Our method is based on the assumptions
of the horse race model and rests on the concept of censored distributions. We treat response
inhibition as a censoring mechanism, where the distribution of RTs on the primary task (go
RTs) is censored by the distribution of SSRTs. The method assumes that go RTs and SSRTs
are ex-Gaussian distributed and uses Markov chain Monte Carlo sampling to obtain posterior
distributions for the model parameters. The method can be applied to individual as well as
hierarchical data structures. We present the results of a number of parameter recovery and
robustness studies and apply our approach to published data from a stop-signal experiment.

1This chapter may not exactly replicate the final version published in the Journal of Experimental Psychology:

General. It is not the copy of record.
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3. Bayesian Parametric Estimation of Stop-Signal Reaction Time Distributions

3.1 Introduction

The stop-signal task (Lappin & Eriksen, 1966; Logan & Cowan, 1984) is frequently used to inves-
tigate response inhibition. Response inhibition refers to the ability to stop an ongoing action that
is no longer appropriate: for example, driving your car and rapidly hitting the break when you
notice that the traffic light turned red. The stop-signal paradigm can be used to investigate the
operation of such simple type of inhibitory control in a carefully controlled laboratory setting.

In the standard stop-signal paradigm, participants perform a two-choice response time (RT)
task, such as responding to the orientation of the visually presented stimuli. On some of the trials,
this primary task is interrupted by an auditory stop signal that prompts participants to withhold
their response on that trial. One of the primary dependent variables is the time required to inhibit
the ongoing response (stop-signal RT [SSRT]). However, unlike the latency of the overt primary
response, SSRTs cannot be observed directly.

To formally account for performance in the stop-signal paradigm, Logan (1981) and Logan
and Cowan (1984) proposed that response inhibition can be viewed as a horse race between two
competing processes: a go process that is set into motion by the primary task and a stop process
that is initiated by the stop signal. If the go process wins the race, the primary response is executed;
if the stop process wins the race, the primary response is successfully inhibited.

Since its development, the horse race model (Logan, 1981; Logan & Cowan, 1984) has suc-
cessfully accounted for stop signal data in various settings and has facilitated the interpretation of
numerous stopping experiments. For instance, the stop signal task has been used extensively to
investigate response inhibition in different age groups (e.g., Kramer, Humphrey, Larish, Logan, &
Strayer, 1994; Ridderinkhof, Band, & Logan, 1999; Schachar & Logan, 1990; Williams, Ponesse,
Schachar, Logan, & Tannock, 1999) and clinical populations, such as children with Attention Deficit
Hyperactivity Disorder (ADHD; Oosterlaan, Logan, & Sergeant, 1998; Schachar & Logan, 1990;
Schachar, Mota, Logan, Tannock, & Klim, 2000).

The horse race model owes its popularity to the ability to quantify the otherwise unobservable
latency of stopping. Various methods are available to estimate SSRTs. The standard analysis
methods for the horse race model only yield a summary measure of the latency of inhibition,
such as the mean SSRT; they do not reveal the shape of the entire SSRT distribution. It is well
known that important features of the data may be missed in focusing only on the mean (e.g.,
Heathcote et al., 1991). A growing number of researchers therefore rely on distributional models,
like the ex-Gaussian distribution (e.g., Balota & Yap, 2011; Matzke & Wagenmakers, 2009) to
estimate the shape of entire RT distributions. For instance, Leth-Steensen et al. (2000) reported
that children with ADHD differed from age-matched controls only in the ex-Gaussian parameter
that quantifies the tail (i.e., very long RTs) of the RT distribution. Similarly, the RT distribution
of schizophrenia patients is more variable and follows a markedly different shape than the RT
distribution of controls, without necessarily differing in the mean (Belin & Rubin, 1995).

In the context of the stop-signal paradigm, focusing only on mean SSRT may likewise mask
crucial features of the data and result in erroneous conclusions about the nature of response inhi-
bition. Consider, for instance, the two SSRT distributions shown in Figure 3.1. The distributions
have the same mean, but have clearly different shapes. The distribution drawn in solid line is more
peaked, whereas the distribution drawn in dashed line is more spread out, with a faster leading
edge and a longer tail. Ignoring such differences in the shapes of SSRT distributions may lead to
the incorrect conclusion that two clinical groups or experimental conditions do not differ in SSRT.
Unfortunately, the existing methods for obtaining SSRT estimates do not enable researchers to
accurately estimate and evaluate differences in the shape of SSRT distributions.

The goal of this article therefore is to introduce a method that allows for the estimation of
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Figure 3.1 Examples of stop-signal reaction time (SSRT) distributions with synthetic data. The
solid line shows an SSRT distribution with a slow leading edge and a short tail. The dashed line
shows an SSRT distribution with a fast leading edge and a long tail. Despite the differences in
their shapes, the means (i.e., black triangle) of the two distributions are equal.

the entire distribution of SSRTs, such as those shown in Figure 3.1. Our approach is based on
the assumptions of the horse race model. The new method rests on the concept of censored
distributions, where response inhibition is treated as a mechanism for censoring observed RTs. In
order to quantify the shape of the distributions, the method assumes that the go RTs and SSRTs
follow a parametric form, namely an ex-Gaussian distribution. Note, however, that our method
does not hinge on this choice of parametric form; almost any other choice of distribution would
do just as well. The ex-Gaussian distribution is purely used as a convenient choice to summarize
the go RTs and the SSRTs. The ex-Gaussian is a commonly used distributional model, and it
typically produces excellent fit to empirical RT distributions. (Heathcote et al., 1991; Hockley,
1982, 1984; Ratcliff, 1978, 1993; Ratcliff & Murdock, 1976). Our approach relies on Markov chain
Monte Carlo (MCMC) sampling (Gamerman & Lopes, 2006; Gilks et al., 1996) and calculates
posterior distributions for the model parameters.

An important advance of our Bayesian parametric method is that it makes it relatively easy
to conduct both individual and hierarchical analyses. In individual analysis, the parameters of
the SSRT distribution are estimated separately for each participant. In contrast, the hierarchi-
cal analysis (e.g., Gelman & Hill, 2007) recognizes that participants share some similarities and
uses information available from the entire group to improve parameter estimation for the indi-
vidual participants. The hierarchical approach has the potential to provide accurate parameter
estimates with relatively few observations. Hierarchical modeling is therefore especially valuable
in developmental and clinical stop-signal studies that typically use a very small number of trials
per participant.

The outline of the article is as follows. In the first section, we describe the stop-signal paradigm
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in more detail and discuss existing methods for estimating SSRTs. In the second section, we
introduce the individual and the hierarchical Bayesian parametric approach to the estimation of
SSRT distributions. In the third section, we report the results of various parameter recovery
studies and show that our method accurately recovered the parameters of the generating SSRT
distributions. In the fourth section, we apply the Bayesian parametric approach to an existing
stop-signal data set. The fifth section concludes our investigation.

3.2 The Stop-Signal Paradigm

In the standard stop-signal paradigm (Lappin & Eriksen, 1966; Logan & Cowan, 1984), participants
perform a two-choice RT task (i.e., the go task), such as responding to the orientation of the
visually presented stimuli (e.g., press the right button for a right-pointing arrow and press the left
button for a left-pointing arrow). Occasionally, the go stimulus is followed by an auditory stop
signal (e.g., a high-pitched tone) that prompts participants to withhold their response on that
trial. Typically, the stop signal is presented on a random 25-30% of the trials. The probability of
successful inhibition can be experimentally manipulated by varying the time interval between the
onset of the go stimulus and the onset of the stop signal (i.e., stop-signal delay [SSD]). The shorter
the SSD, the more likely participants are to inhibit their response to the go stimulus.

To facilitate the interpretation of stop-signal data, Logan (1981) and Logan and Cowan (1984)
introduced the horse race model. The horse race model conceptualizes response inhibition as a
horse race between a go and a stop process. If the go process finishes before the stop process,
the response is an error of commission. If the stop process finishes before the go process, the
response is successfully inhibited. According to the horse race model, response inhibition is thus
determined by the relative finishing times of the go and the stop process. Figure 3.2 illustrates how
the probability of responding to the go stimulus (i.e., gray area) and the probability of inhibiting
the response to the go stimulus (i.e., white area) are determined by the SSD, the SSRT, and the go
RT distribution. Go RTs that are longer than SSD+SSRT are successfully inhibited. In contrast,
go RTs that are shorter than SSD+ SSRT cannot be inhibited and result in signal-respond RTs.

The standard horse race model depicted in Figure 3.2 assumes that, conditional on SSD, SSRT is
constant (Logan & Cowan, 1984). This assumption is implausible, as SSRTs are certainly variable.
Also, estimated SSRTs tend to decrease as SSD increases, a common finding that is explained in
terms of the variability in SSRT. At short SSDs, almost all SSRTs are fast enough to win the race
against the go RTs. The estimated mean SSRT therefore closely approximates the mean of the
entire SSRT distribution. At long SSDs, only very fast SSRTs can win the race against the go
RTs. The estimated mean SSRT is therefore lower than the mean of the entire SSRT distribution.
As a result, SSRT estimates are longer at short SSDs than at long SSDs (de Jong, Coles, Logan,
& Gratton, 1990; Logan & Burkell, 1986; Logan & Cowan, 1984).

To account for variability in SSRT, Logan and Cowan (1984) introduced the complete version
of the horse race model. The complete race model treats both go RTs and SSRTs as independent
random variables. To formalize the model, Logan and Cowan made the following simplifying
assumptions about the independence of the go and the stop process. According to the context
independence assumption, the distribution of go RTs is the same for go trials and for stop-signal
trials. According to the stochastic independence assumption, the finishing times of the go and the
stop process are uncorrelated. These two independence assumptions allow one to treat the go RT
distribution on go trials as the underlying distribution of go RTs on stop-signal trials.

The formulation of the complete race model is closely connected to the concept of inhibition
functions: functions that describe the relationship between the P (respond | stop signal) and SSD.
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SSRT time
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P(respond | stop signal) P(inhibit | stop signal)

Figure 3.2 Graphical representation of the horse race model. RT = response time; SSD = stop-signal
delay; SSRT = stop-signal reaction time.

As shown in Figure 3.3, the P (respond | stop signal) typically increases with increasing SSD. Logan
and Cowan (1984) treated the inhibition function as a cumulative distribution and showed that its
mean equals the difference between the mean go RT and the mean SSRT:

E(I) = E(goRT)− E(SSRT). (3.1)

Further, they showed that the variance of the inhibition function equals the sum of the variances
of the go RTs and the SSRTs:

Var(I) = Var(goRT) + Var(SSRT). (3.2)

Note that the derivation of the complete horse race model is not based on any specific distribution
shapes for the go RT and SSRT distributions.

Estimating SSRTs

One of the major advantages of the horse race model is that it allows for the estimation of the
otherwise unobservable SSRT. Various methods are available for estimating SSRTs. The choice of
method depends on the way SSDs are set in a particular experiment.

The SSD can be set according to the fixed-SSDs procedure or according to the staircase tracking
procedure (e.g., Logan, 1994). The fixed-SSDs procedure requires a number of a priori chosen delays
to be presented to the participants (e.g., SSDs of 80, 160, 240, 320, 400, and 480 ms; Logan &
Burkell, 1986). Stop signals at the different SSDs are presented with equal frequencies at a random
order. The challenge is to find a set of SSDs that span the entire range of the inhibition function.
For the fixed-SSDs procedure, the integration method (Logan, 1981; Logan & Cowan, 1984) is
the most popular approach to estimate SSRTs. The integration method assumes that SSRT is
constant. SSRTs are estimated from the observed go RT distribution and the P(respond | stop
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Figure 3.3 Example of an inhibition function based on synthetic data from the recovery study for
the individual Bayesian parametric approach. The figure shows how the probability of responding
on a stop-signal trial increases with increasing stop-signal delay (SSD).

signal) by finding the point (i.e., SSRT + SSD) at which the integral of the go RT distribution
equals the P (respond | stop signal),

P (respond | stop signal) =

∫ SSRT+SSD

−∞
fgo(t)dt. (3.3)

In terms of Figure 3.2, the integration method involves deriving the time point at which the
internal response to the stop signal occurs and subtracting SSD to obtain the SSRT. In practice,
the following procedure is used: Go RTs are collapsed into a single distribution and are rank
ordered. Subsequently, the nth go RT is selected, where n is obtained by multiplying the number
of go RTs by the P (respond | stop signal) at a given SSD. Lastly, the SSD is subtracted to arrive
at the SSRT. The integration method yields SSRT estimates for each SSD. As estimated SSRTs
tend to decrease with increasing SSD (Logan & Burkell, 1986; Logan & Cowan, 1984), SSRTs at
different SSDs are often averaged to yield a summary score for each participant.

The integration method has several drawbacks. It assumes that SSRT is constant, an assump-
tion that is certainly incorrect. Moreover, the integration method requires a relatively large number
of observations to produce accurate estimates of average SSRT. Researchers are advised to present
participants with at least 900 go trials and 60 stop-signal trials on each of five different SSDs (Band,
van der Molen, & Logan, 2003).

The second method for presenting SSDs, the staircase tracking procedure, sets SSDs dynam-
ically, contingent on participants’ performance. A typical staircase procedure will increase SSD
by, say, 50 ms after successful inhibition, and decrease SSD by 50 ms after unsuccessful inhibi-
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tion (see e.g., Bissett & Logan, 2011; Logan, Schachar, & Tannock, 1997; Osman, Kornblum, &
Meyer, 1986; Verbruggen, Logan, & Stevens, 2008). This tracking procedure results in an overall
P (respond | stop signal) of 0.50 for each participant.

For the staircase tracking procedure, the mean method is the easiest approach to estimate
SSRTs. The mean method originates from Logan and Cowan’s (1984) treatment of SSRT as a
random variable and is based on the following relationship:

E(SSRT) = E(goRT)− E(I). (3.4)

Mean SSRT is thus given by the difference between the mean go RT and the mean of the inhibition
function. Several approaches are available to compute the mean of the inhibition function (see,
e.g., Logan, 1994; Logan & Cowan, 1984). The simplest way is to exploit the fact that when the
staircase tracking procedure yields an overall P (respond | stop signal) of 0.50, the mean of the
inhibition function equals the mean of the SSDs. As shown in Equation 3.4, the mean SSRT can
be obtained by subtracting the mean SSD form the mean of the go RTs (Logan & Cowan, 1984;
Logan et al., 1997).

The mean method can be used with a relatively small amount of data. Stop-signal experiments
with healthy young adults typically include a total of 500-1,000 trials. Developmental and clinical
studies generally include 250-500 trials, but investigations with as few as 100-250 trials are also
common. Note, however, that contrary to the integration method, the mean method cannot be
used to calculate SSRTs for each SSD separately.

Several variants of the integration and the mean method are available for the fixed-SSDs as well
as the staircase tracking procedure (for a summary, see Verbruggen & Logan, 2009). Band et al.
(2003) used simulations to show that SSRT estimates for which the P (respond | stop signal) equals
0.50, such as the mean method, are the most reliable. The mean method therefore has become the
dominant method for estimating SSRTs.

Estimating Variability in SSRT

Logan and Cowan’s (1984) treatment of SSRT as a random variable provides a method for estimat-
ing the variability in SSRT. Logan and Cowan showed that the variance of the inhibition function
can be calculated from its slope at the median. Once the variance of the inhibition function is
known, the variance of SSRTs can be obtained from Equation 3.2. Logan and Cowan’s method is
based on the observation that in a symmetrical distribution, the variance is proportional to the
slope of the cumulative distribution at the median. If we treat the inhibition function as a cumula-
tive distribution and assume a particular parametric form, say normal, the slope of the inhibition
function at the median is given by

B0.5 =
1√

2π × SD(I)
. (3.5)

It then follows from Equation 3.2 that the variance of SSRTs can be obtained by

Var(SSRT) =

(

1

B0.5

√
2π

)2

−Var(goRT). (3.6)

In contrast to the generality of the horse race model, the Logan and Cowan method for estimating
SSRT variability assumes a particular parametric form of the inhibition function. Most importantly,
Band et al. (2003) showed with simulations that the Logan and Cowan method overestimates the
true variability in SSRT.
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An Existing Method for Estimating SSRT Distributions

Up to now, the only existing approach for estimating the entire distribution of SSRTs was developed
by Colonius (1990, see also de Jong et al., 1990, p. 181). Colonius showed that the survival
distribution of SSRTs can be recovered using the distribution of go RTs, the distribution of signal-
respond RTs, and the P (respond | stop signal) at a given SSD. Formally,

P (SSRT+SSD > t | SSD) = P (respond | stop signal, SSD)× fSR(t | SSD)

fgo(t)
, (3.7)

where fgo(t) and fSR(t|SSD) are the probability density functions of the go RTs and the signal-
respond RTs, respectively. Colonius’ method does not depend on the specific parameterization of
the go RT and the signal- respond RT distributions. The densities fgo(t) and fSR(t|SSD) can be
estimated with various nonparametric density estimation methods (e.g., Silverman, 1986). Once
the survival distribution of SSRTs is obtained, measures of location (e.g., median) and dispersion
(e.g., interquartile distance) can be calculated easily.

Although Colonius’ (1990) method is straightforward and elegant, it requires a very large
number of observations to perform adequately (Logan, 1994). Band et al. (2003) used simulations
to show that the Colonius method underestimates SSRT and overestimates its variability. In our
implementation, over 250,000 stop-signal trials per SSD were required to obtain relatively accurate
estimates of SSRT distributions. Using a more realistic number of stop-signal trials (e.g., 200
per SSD) resulted in inaccurate estimates, especially in the tails of the SSRT distribution. These
problems are typical of nonparametric methods that estimate distribution tails from data (Luce,
1986).

To summarize, the stop-signal paradigm offers various methods to estimate the otherwise un-
observable latency of stopping. Most methods only provide a summary measure of SSRT and are
unable to accurately estimate the variability in SSRT. The only existing method for estimating
entire SSRT distributions requires an unrealistically large number of observations to produce accu-
rate estimates, particularly in the tail of the SSRT distribution. In what follows, we present a novel
approach that relies on a parametric assumption to quantify the shape of the go RT and the SSRT
distributions. As a result, the new method can provide accurate estimates of SSRT distributions
even with relatively few observations.

3.3 Bayesian Parametric Approach for the Estimation of SSRT
Distributions

Here we introduce a novel approach that allows for the estimation of the entire distribution of
SSRTs. The method assumes that the go RTs and SSRTs follow an ex-Gaussian distribution. The
ex-Gaussian distribution is purely used as a convenient choice to describe the go RTs and SSRTs.
The ex-Gaussian is a frequently used distributional model that typically produces excellent fit
to empirical RT distributions (Heathcote et al., 1991; Hockley, 1982, 1984; Ratcliff, 1978, 1993;
Ratcliff & Murdock, 1976). The new approach may be applied to individual as well as hierarchical
data structures and relies on MCMC sampling to obtain estimates of the parameters of the ex-
Gaussian SSRT distribution.

We first introduce the rationale behind the Bayesian parametric approach (BPA), with special
focus on the ex-Gaussian distribution and the assumptions of the method. We then introduce the
basic concepts of Bayesian parameter estimation. Lastly, we present the individual and hierarchical
BPA models for estimating SSRT distributions.
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Introducing the Bayesian Parametric Approach

Rationale

The BPA rests on the concept of right-censored distributions. In right-censored distributions,
observations to the right of a cutoff point (i.e., the censoring point) are omitted, but the number
of censored observations is known. Censoring is a type of missing data problem that is frequently
encountered in survival analysis (e.g., Elandt-Johnson & Johnson, 1980). In most applications, the
censoring point is known and the focus is on estimating the parameters of the censored distribution.
For instance, imposed censoring has been considered as a method to accommodate outliers in
estimating the parameters of RT distributions (Ulrich & Miller, 1994).

As shown is Figure 3.2, the estimation of SSRT using the standard horse race-model with con-
stant SSRT can be viewed as a censoring problem. Specifically, the signal-respond RT distribution
(i.e., gray area) can be treated as a right-censored go RT distribution with a constant censoring
point that is given by the finishing time of the stop process (i.e., SSD + SSRT ). On a given
SSD, go RTs that are shorter than the finishing time of the stop process are observed. In contrast,
go RTs that are longer than the finishing time of the stop process are successfully inhibited and
therefore cannot be observed. Note that contrary to typical censoring problems, the censoring
point of the go RT distribution is unknown. The estimation of SSRT therefore involves estimating
the censoring point of the go RT distribution.

onset go stimulus onset stop signal

SSD SSRT1

SSRT2

SSRT3

time

go RT distribution

Stop−signal RT distribution

Signal−respond RT distribution

Figure 3.4 Graphical representation of the complete horse race model. RT = response time; SSD
= stop-signal delay; SSRT = stop-signal reaction time.

The same reasoning can be extended to the estimation of the entire SSRT distribution using
the complete horse race model. The censoring problem is, however, complicated by the fact that
both go RTs and SSRTs are treated as random variables. As shown in Figure 3.4, the censoring
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3. Bayesian Parametric Estimation of Stop-Signal Reaction Time Distributions

point on a given SSD takes on different values on each stop-signal trial (i.e., SSD + SSRT1,
SDD + SSRT2, and SSD + SSRT3). The signal-respond RT distribution (i.e., gray area) can be
viewed as a censored go RT distribution with censoring points drawn from the SSRT distribution
that is shifted with the SSD on the time axis to longer RTs. The estimation of the SSRT distribution
therefore involves estimating the finishing time distribution of the stop process that censors the go
RT distribution.

The BPA is a parametric approach and as such involves choosing a parametric form for the go
RT and the SSRT distribution. In what follows, we assume that go RTs and SSRTs —and therefore
the finishing times of the stop process— are ex-Gaussian distributed and focus on simultaneously
estimating the parameters of the two distributions.

Ex-Gaussian Distribution

The BPA assumes that the go RTs and the SSRTs are ex-Gaussian distributed. The ex-Gaussian
distribution is given by the convolution of a Gaussian and an exponential distribution. The ex-
Gaussian has three parameters. The µ and σ parameters give the mean and the standard deviation
of the Gaussian component and reflect the leading edge and mode of the distribution. The τ
parameter gives the mean of the exponential component and reflects the tail of the distribution.

The ex-Gaussian distribution has a positively skewed unimodal shape that typically fits em-
pirical RT distributions well (Heathcote et al., 1991; Hockley, 1982, 1984; Ratcliff, 1978, 1993;
Ratcliff & Murdock, 1976). Figure 3.5 shows changes in the ex-Gaussian distribution as a result
of changes in the µ, σ and τ parameters. Increasing the µ parameter shifts the entire distribution
to longer RTs and increases only the mean. Increasing σ influences the shape of the distribution
and increases only the variance. Lastly, increasing τ influences both the location and the shape of
the distribution and therefore increases both the mean and the variance (see Equation 3.11 and
Equation 3.12).

0 1 2 3 4

Default Parameter Set

t (s)

f(t)

0 1 2 3 4

Increasing µ

t (s)

f(t)

0 1 2 3 4

Increasing σ

t (s)

f(t)

0 1 2 3 4

Increasing τ

t (s)

f(t)

Figure 3.5 Changes in the shape of the ex-Gaussian distribution as a result of changes in the
ex-Gaussian parameters µ, σ, and τ . The parameter sets used to generate the distributions are
µ = 0.5, σ = 0.05, τ = 0.3 (Panel 1); µ = 1, σ = 0.05, τ = 0.3 (Panel 2); µ = 0.5, σ = 0.2, τ = 0.3
(Panel 3); and µ = 0.5, σ = 0.05, τ = 0.8 (Panel 4).
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The probability density function of the ex-Gaussian is

f(t;µ, σ, τ) =
1

τ
exp

(

µ− t

τ
+

σ2

2τ2

)

Φ

(

t− µ

σ
− σ

τ

)

for σ > 0, τ > 0, (3.8)

where Φ is the standard normal distribution function, given by
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2π
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The distribution function of the ex-Gaussian is

F (t;µ, σ, τ) = Φ
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− exp
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(
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σ
− σ

τ

)

, (3.10)

and its mean and variance equal

E(t) = µ+ τ (3.11)

and

Var(t) = σ2 + τ2, (3.12)

respectively. Equation 3.11 and Equation 3.12 show how two SSRT distributions with the same
mean or variance may have very different shapes, as illustrated in Figure 3.1.

We use the ex-Gaussian distribution purely as a descriptive tool to summarize the go RT and the
SSRT distributions (see also Band et al., 2003; Heathcote et al., 1991; Ratcliff, 1978; Wagenmakers,
van der Maas, et al., 2008). We do not assume that changes in the ex-Gaussian parameters map
onto changes in specific cognitive processes (Matzke & Wagenmakers, 2009). Nevertheless, the
ex-Gaussian can excellently accommodate the shape of RT distributions and is easy to fit to data.
Moreover, as will be discussed later, sensitivity analyses indicated that the ex-Gaussian based BPA
is robust to misspecification of the parametric form of the go RT and SSRT distributions. Note
that other distributional assumptions can easily be made within our method.

Assumptions of the BPA

Similar to the complete horse race model, the BPA assumes that go RTs and SSRTs are independent
random variables. The independence of the go and the stop process allows one to treat the go RT
distribution on go trials as the underlying distribution of go RTs on stop-signal trials. The BPA
assumes that the go RTs and the SSRTs follow ex-Gaussian distributions, with parameters µgo,
σgo, and τgo for the go RT distribution, and µstop, σstop, and τstop for the SSRT distribution. The
log-likelihood of the g = 1, ..., G go RTs is given by

lnL(µgo, σgo, τgo)go =
G
∑

g=1

ln fgo(tg;µgo, σgo, τgo), (3.13)

where fgo(t;µgo, σgo, τgo) is the probability density of the ex-Gaussian go RT distribution given in
Equation 3.8.

The log-likelihood of the data on the s = 1, ..., S stop-signal trials on a given SSD consists of
the sum of the log-likelihoods of the r = 1, ..., R signal-respond RTs and the i = 1, ..., I successful
inhibitions. According to the race model, signal-respond RTs are obtained on stop-signal trials
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3. Bayesian Parametric Estimation of Stop-Signal Reaction Time Distributions

where the finishing time of the go process is shorter than the finishing time of the stop process
(i.e., go RT < SSD + SSRT ). The log-likelihood of a given signal-respond RT, tr, can therefore
be computed by (1) evaluating the probability density function of the go RT distribution at tr
and (2) evaluating the probability of obtaining an SSD + SSRT that is longer than tr with the
distribution function of the finishing time distribution of the stop process, that is, the distribution
function of the SSRTs shifted with the SSD.

Similar reasoning can be extended to the log-likelihood of the successful inhibitions on signal-
inhibit trials. According to the race model, successful inhibitions are obtained on stop-signal trials
where the finishing time of the go process is longer than the finishing time of the stop process
(i.e., go RT > SSRT + SSD). The log-likelihood of a given SSD + SSRT , ti, can be computed
by (1) evaluating the probability of obtaining a signal-respond RT that is longer than ti with the
distribution function of the go RT distribution and (2) evaluating the probability density function
of the finishing time distribution of the stop process (i.e., SSRT distribution shifted with SSD)
at ti. Note, however, that SSRTs are by definition unobservable. Obtaining the log-likelihood
on signal-inhibit trials therefore involves integrating out ti from the go RT and the stop process
finishing time distributions. Formally,

lnL(µgo, σgo, τgo, µstop, σstop, τstop)stop =

=
R
∑

r=1

{

ln fgo(tr;µgo, σgo, τgo) + ln
[

1− Fstop(tr;µstop, σstop, τstop, SSD)
]

}

+
I
∑

i=1

ln

∫ ∞

−∞

[

1− Fgo(ti;µgo, σgo, τgo)
]

× fstop(ti;µstop, σstop, τstop, SSD)dt, (3.14)

where fgo(t;µgo, σgo, τgo) and Fgo(t;µgo, σgo, τgo) are the probability density and the distribution
function of the ex-Gaussian go RT distribution given in Equation 3.8 and Equation 3.10, respec-
tively. Similarly, fstop(t;µstop, σstop, τstop, SSD) and Fstop(t;µstop, σstop, τstop, SSD) are the proba-
bility density and the distribution function of the ex-Gaussian finishing time distribution of the
stop process, that is, the SSRT distribution shifted with the SSD.

The goal is to simultaneously estimate the µgo, σgo, and τgo parameters of the go RT distribution
and the µstop, σstop, and τstop parameters of the SSRT distribution. Parameter estimation may
proceed by means of standard maximum likelihood estimation (Dolan, van der Maas, & Molenaar,
2002; Myung, 2003). However, the BPA is intended to handle individual as well as hierarchical
data structures. Maximum likelihood estimation can become practically difficult for hierarchical
problems, so we chose to use Bayesian parameter estimation instead. This also confers the typical
benefits of Bayesian estimation, such as a coherent inferential framework.

Bayesian Parameter Estimation

In Bayesian parameter estimation, we start with a prior probability distribution for the parameter
of interest. The prior distribution quantifies the existing knowledge about the parameter. The prior
distribution is then updated by the incoming data (i.e., likelihood) to yield a posterior probability
distribution under Bayes’ rule:

posterior =
likelihood× prior

marginal likelihood
. (3.15)
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The marginal likelihood is the probability of the observed data and does not involve the parameters
of interest. Equation 3.15 can hence be expressed as

posterior ∝ likelihood× prior. (3.16)

The top panels of Figure 3.6 illustrate the basic concepts of Bayesian estimation for the parameters
of the SSRT distribution with simulated data from a synthetic participant. For each parameter, we
start with a uniform prior distribution reflecting the assumption that all values of the parameter
within some wide range are equally likely a priori. The prior distributions are then updated by
the data to yield the posterior distributions. The posterior distributions quantify all the available
information about the parameters. The central tendency of the posterior distribution can be
expressed by its mean, median or mode. The central tendency of the posterior is often used as a
point estimate of the parameter (e.g., with a uniform prior, the mode corresponds to the maximum-
likelihood estimator). The dispersion of the posterior distribution can be quantified by the standard
deviation or the percentiles. The dispersion of the posterior conveys important information about
the precision of the parameter estimates: The larger the posterior standard deviation, the greater
the uncertainty of the estimated parameter.

In many applications, the posterior distribution cannot be derived analytically. Fortunately,
the posterior can be approximated using numerical sampling techniques such as MCMC sampling
(Gamerman & Lopes, 2006; Gilks et al., 1996). The BPA currently relies on WinBUGS (Bayesian
inference Using Gibbs Sampling for Windows; Lunn et al., 2000; see Kruschke, 2010b for an
introduction) to obtain the posterior distributions of the model parameters. WinBUGS is a general-
purpose statistical software for Bayesian analysis that uses MCMC techniques to sample from the
posterior distribution of the model parameters.

Figure 3.6 gives a simple illustration of Bayesian parameter estimation with MCMC sampling.
The bottom panels show sequences of values (i.e., MCMC chains) sampled from the posterior
distribution of the parameters of the SSRT distribution. More accurate sampling from the pos-
terior distribution can be obtained by running multiple chains and discarding the beginning of
each chain as burn-in. For each parameter, we ran three chains, each with different starting values
(i.e., overdispersed starting values). The starting values were randomly generated from uniform
distributions covering a wide range of possible parameter values. Per chain, we collected 2, 000
iterations, resulting in a total of 6, 000 samples from the posterior distributions. The chains con-
verged successfully from the starting values to their stationary distributions; the individual chains
look like “hairy caterpillars” and they seem identical to one another. Formal diagnostic measures
of convergence are available. For instance, R̂ (Gelman & Rubin, 1992) compares the between-chain
variability to the within-chain variability. As a rule of thumb, R̂ should be lower than 1.1 if the
chains have properly converged. For the present example, R̂ was lower than 1.05 for all of the
parameters.

The top panels of Figure 3.6 show histograms and density estimates of the posterior samples
of the stop parameters. The histograms were plotted by collecting the sampled values across
the three chains and projecting them onto the x-axis of the top panel figures. The median of
the posterior distribution equals 186.80 for µstop, 32.76 for σstop, and 57.43 for τstop. The region
extending from the 2.5th to the 97.5th percentile of the posterior distribution gives the so-called
95% Bayesian confidence interval. For example, the 95% Bayesian confidence interval for µstop

ranges from 178.30 to 195.70, indicating that we can be 95% confident that the true value of µstop

lies within this range. The Bayesian confidence interval is the narrowest for the µstop parameter,
indicating that µstop is estimated the most precisely among the stop parameters.
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Figure 3.6 Illustration of Markov chain Monte Carlo (MCMC)-based Bayesian estimation for the
ex-Gaussian parameters µstop, σstop, and τstop for a synthetic data set with the individual Bayesian
parametric approach. The histograms in the top panels show the posterior distribution of the
parameters. The corresponding thick gray lines indicate the fit of a nonparametric density estimator
to the posterior samples. The horizontal black lines at the bottom show the prior distribution of
the parameters. The horizontal black lines at the top show the 95% Bayesian confidence interval.
The solid, dashed and dotted lines in the bottom panels represent the different sequences of values
(i.e., MCMC chains) sampled from the posterior distribution of the parameters.

The Bayesian approach can be applied to hierarchical as well as individual data. In individual
estimation, the parameters of the SSRT distribution are estimated separately for each participant.
In the hierarchical approach (e.g., Gelman & Hill, 2007; M. D. Lee, 2011; Lindley & Smith,
1972; Rouder et al., 2005, 2003), the estimation of the individual stop parameters is supported
by information from the entire group. In the next section, we introduce the individual and the
hierarchical BPA models for estimating SSRT distributions.

Individual BPA

Figure 3.7 shows the graphical model for the individual BPA. Observed variables are represented
by shaded nodes and unobserved variables are represented by unshaded nodes. The graph structure
indicates dependencies between the nodes, and the plates represent independent replications of the
different types of trials (e.g., M. D. Lee, 2008).

The individual BPA assumes that the g = 1, ..., G go RTs come from an ex-Gaussian distribu-
tion, with parameters µgo, σgo, and τgo (see Equation 3.13). On the s = 1, ..., S stop-signal trials,
the r = 1, ..., R signal-respond RTs (i.e., SR-RT) and the i = 1, ..., I successful inhibitions (i.e., NA)
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µgo σgo τgo µstop σstop τstop

SSDs

goRTg SR −RTr NAi

g go trials r signal–respond trials i signal–inhibit trials

s stop–signal trials

Model parameters :

µgo ∼ Uniform
(

1, 1000)

σgo ∼ Uniform
(

1, 300)

τgo ∼ Uniform
(

1, 300)

µstop ∼ Uniform
(

1, 600)

σstop ∼ Uniform
(

1, 250)

τstop ∼ Uniform
(

1, 250)

Data:

goRTg ∼ ExGaussian
(

µgo, σgo, τgo)

SR−RTr ∼ CensoredExGaussian− SR
(

µgo, σgo, τgo, µstop, σstop, τstop, SSDs)

NAi ∼ CensoredExGaussian− I
(

µgo, σgo, τgo, µstop, σstop, τstop, SSDs)

Figure 3.7 Graphical model for the individual Bayesian parametric approach. Observed variables
are represented by shaded nodes and unobserved variables are represented by unshaded nodes.
The plates represent independent replications of the different types of trials. The go response
times (RTs) come from an ex-Gaussian distribution, with parameters µgo, σgo, and τgo. The
signal-respond RTs (i.e., SR-RT) and the successful inhibitions (i.e., NA) come from censored
ex-Gaussian distributions, with parameters µgo, σgo, τgo, µstop, σstop, τstop, and stop-signal delay
(SSD). The priors for the model parameters are uniform distributions.

come from censored ex-Gaussian distributions, with parameters µgo, σgo, τgo, µstop, σstop, τstop, and
SSDs (see Equation 3.14). The priors for the model parameters are uniform distributions, spanning
a plausible but wide range of parameter values. The range of the uniform prior distributions is
loosely based on the results of a life-span study of stop-signal performance reported in Williams et
al. (1999) and the corresponding ex-Gaussian parameter values used in the simulation studies of
Band et al. (2003).

The individual BPA makes no connections between participants; it assumes that they are
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completely independent. The goal is to estimate the µgo, σgo, τgo, µstop, σstop, and τstop parameters
for each participant separately. To this end, we use WinBUGS to sample from the posterior
distribution of the model parameters. The WinBUGS script for the individual BPA is available
in Appendix B.1. The median of the posterior distributions can be used as a point estimate of
the model parameters. SSRT distributions, such as those shown in Figure 3.1, can be obtained by
evaluating the ex-Gaussian probability density function (Equation 3.8) with the posterior median
of the parameters. The mean and the variance of the SSRT distribution can be computed from
Equation 3.11 and Equation 3.12 with the posterior median of the parameters. Alternatively, we
can quantify the uncertainty of the estimated SSRT distribution by drawing random parameter
vectors from the joint posterior of the stop parameters and evaluating the ex-Gaussian probability
density function using the chosen parameter vectors.

Hierarchical BPA

A particularly useful application of the Bayesian hierarchical approach (Farrell & Ludwig, 2008;
Gelman & Hill, 2007; M. D. Lee, 2011; Nilsson, Rieskamp, & Wagenmakers, 2011; Rouder &
Lu, 2005; Rouder et al., 2005, 2003; Shiffrin et al., 2008; Wagenmakers, Lodewyckx, Kuriyal, &
Grasman, 2010) explicitly models individual differences in the parameter values, but at the same
time recognizes that participants share some similarities. Hierarchical modeling is a compromise
between the assumption that participants are completely independent (i.e., individual BPA) and
the assumption that all participant are identical (Gelman & Hill, 2007). Rather than estimating
the parameters separately for each individual, hierarchical modeling assumes that the individual
parameters are drawn from group-level distributions. The group-level distributions specify how
the individual parameters are distributed in the population and thus define the between-subject
variability in the model parameters. The goal is to obtain individual parameter estimates as well
as estimates for the parameters of the group-level distributions.

Hierarchical methods have the potential to provide more accurate and less variable parameter
estimates than individual Bayesian and maximum likelihood estimation (Farrell & Ludwig, 2008;
Rouder et al., 2005). The advantages of hierarchical modeling are the most pronounced in situations
with only moderate between-subject variability and a small number of observations per participant
(Gelman & Hill, 2007). The benefits of hierarchical modeling arise from using information available
from the whole group to improve parameter estimation for the individual participants. Hierarchical
modeling uses the group-level distributions as priors to adjust poorly estimated extreme parameter
values to more moderate ones. As a result, outlying individual estimates —especially the ones
that are estimated with a great degree of uncertainty— are “shrunk” towards the group mean.
The hierarchical approach is especially valuable in situations with relatively few observations per
participant, as is often the case in stop-signal experiments.

Figure 3.8 shows the graphical model for the hierarchical BPA. The hierarchical BPA assumes
that the g = 1, ..., G go RTs of each participant, j = 1, ..., J , come from ex-Gaussian distributions,
but with different values of µgo, σgo, and τgo. On the s = 1, ..., S, stop-signal trials, the r = 1, ..., R
signal-respond RTs (i.e., SR-RT) and the i = 1, ..., I successful inhibitions (i.e., NA) of each
participant come from censored ex-Gaussian distributions, but again with different values of µgo,
σgo, τgo, µstop, σstop, τstop, and SSDs. The individual µgoj , σgoj , τgoj , µstopj , σstopj , and τstopj
parameters are in turn assumed to come from truncated normal group-level distributions that
are characterized by group-level parameters. For example, the µstop parameters codetermine the
location of the individual SSRT distributions. As SSRTs are by definition positive, the µstop

parameters must be positive as well. The µstop parameters are therefore assumed to come from
a normal group-level distribution truncated at 0 ms, with mean µµstop and standard deviation
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σµstop . Similarly, the σstop parameters are the standard deviations of the Gaussian component of
the individual SSRT distributions and are by definition positive (see Equation 3.8). The σstop
parameters are assumed to come from a normal group-level distribution truncated at one ms, with
mean µσstop and standard deviation σσstop .

2

The use of normal group-level distributions is a common choice in Bayesian hierarchical mod-
eling (e.g., Gelman & Hill, 2007; M. D. Lee & Wagenmakers, 2013). In real data, however, the
distribution of individual parameters may deviate from normality, especially in clinical popula-
tions. As will be described later, sensitivity analyses indicated that the hierarchical BPA is robust
to misspecification of the group-level distribution of the individual go parameters. In contrast, the
BPA with misspecified group-level distributions results in biased stop parameter estimates. Fortu-
nately, the bias decreases substantially as the number of participants and especially as the number
of trials increase. The reader is referred to the Discussion for some suggestions on examining the
validity of the hierarchical assumptions of the BPA.

The priors for the mean and standard deviation of the group-level distributions are normal and
uniform distributions, respectively. For example, the µσstop parameter is the mean of the group-
level distribution of the individual σstop parameters and as such it must be positive. The group
mean µσstop parameter is assumed to come from a normal distribution censored to be positive,

with mean 40 and standard deviation 1/
√
0.001. The group standard deviation σσstop parameter

is assumed to be uniformly distributed between 0 and 100. The parameters of the priors for the
group-level means and standard deviations are loosely based on the results reported in Williams
et al. (1999) and the corresponding ex-Gaussian parameter values used in Band et al. (2003).

In the hierarchical BPA, the goal is to estimate the group-level means and standard deviations
as well as the individual go and stop parameters. The WinBUGS script for the hierarchical BPA
is available in Appendix B.1. The median of the posterior distributions can be used as a point
estimate for the parameters. The SSRT distribution of each participant can be obtained by eval-
uating the ex-Gaussian probability density function with the posterior median of the individual
parameters. The mean and the variance of the individual SSRT distributions can be computed
from Equation 3.11 and Equation 3.12 with the posterior median of the individual parameters.
Also, we can quantify the uncertainty of the individual SSRT distributions by drawing random
parameter vectors from the joint posterior of the individual stop parameters and evaluating the
ex-Gaussian probability density function using the chosen parameter vectors.

3.4 Parameter Recovery Studies

Individual BPA

We conducted two simulation studies to investigate the ability of the individual BPA to recover
underlying true parameter values. The first recovery study examined the asymptotic properties of
the parameter estimates. The second recovery study investigated the number of stop-signal trials
necessary to obtain accurate parameter estimates.

Methods

We generated stop-signal data from the horse race model, where the go RTs and the SSRTs were
drawn from ex-Gaussian distributions, with parameters µgo = 440, σgo = 80, τgo = 60, µstop = 190,

2For computational reasons, the truncated normal group-level distributions of the σgo, τgo, σstop, and τstop
parameters are truncated at 1 ms instead of 0.
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Figure 3.8 Graphical model for the hierarchical Bayesian parametric approach. The go response
times (RTs) of each participant come from ex-Gaussian distributions, with different values of µgo,
σgo, and τgo. The signal-respond RTs (i.e., SR-RT) and the successful inhibitions (i.e., NA) of each
participant come from censored ex-Gaussian distributions, with different values of µgo, σgo, τgo,
µstop, σstop, τstop, and stop-signal delay (SSD). The individual go and stop parameters come from
truncated normal group-level distributions that are characterized by group-level parameters. In
order to maintain consistency with the WinBUGS syntax, the group-level normal and truncated
normal distributions are parameterized in terms of their precision (i.e., inverse variance) rather
than their variance. The I[0,∞] construct denotes distributional censoring with lower bound equal
to 0 and upper bound equal to infinity.
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σstop = 40, and τstop = 50.3 These parameters made the mean and the standard deviation of the
go RT distribution 500 and 100 ms, respectively, and the mean and the standard deviation of the
SSRT distribution 240 and 64 ms, respectively. The SSDs were set to 150, 200, 250, 300, and
350 ms. The above parameter vales and SSDs resulted in P (respond | stop signal, SSD = 150) =
0.17, P (respond | stop signal, SSD = 200) = 0.30, P (respond | stop signal, SSD = 250) = 0.47,
P (respond | stop signal, SSD = 300) = 0.65, and P (respond | stop signal, SSD = 350) = 0.79. The
resulting inhibition function for a randomly chosen data set is shown in Figure 3.3.

In the first recovery study, we generated a single data set containing 200,000 go trials and 5
(SSD) × 100,000 stop-signal trials. The estimated µstop, σstop, and τstop parameters were free to
vary across the five SSDs. In the second recovery study, we conducted four sets of simulations
that varied the number of trials, with 100 data sets for each set. For the first set, each data set
contained 4,500 go trials and 5 (SSD) × 300 stop-signal trials. For the second set, each data set
contained 2,250 go trials and 5 × 150 stop-signal trials. For the third set, each data set contained
750 go trials and 5 × 50 stop-signal trials. For the fourth set, each data set contained 375 go trials
and 5 × 25 stop-signal trials. In contrast to the first recovery study, the estimated µstop, σstop, and
τstop parameters were constrained to be equal across the five SSDs.

We fit the data sets with the individual BPA using WinBUGS. We ran three MCMC chains
and used overdispersed starting values to confirm that the chains have converged to the stationary
distribution (R̂ ≈ 1). The first 500 samples of each MCMC chain were discarded. The reported
parameter estimates are based on 3 × 4,000 recorded samples.

Results

The parameters of the go RT distribution were excellently recovered in both recovery studies.
As the go RT distribution is of little theoretical interest, the remainder of this section focuses
exclusively on results related to the SSRT distribution.

The results of the first recovery study are shown in Figure 3.9. For all SSDs, the posterior
median recovered the generating parameter values, and the mean and the standard deviation of
the true SSRT distributions very well. Across the five SSDs, the posterior standard deviations
ranged from 0.92 to 1.84 for µstop, from 1.50 to 2.2 for σstop, and from 0.91 to 2.09 for τstop. The
posterior standard deviations were small, indicating that the parameters were estimated precisely.
In contrast to the integration method, the mean SSRT estimated with the BPA did not decrease
with increasing SSD. Theoretically, one may obtain accurate estimates for the stop parameters
using stop-signal data on a single SSD.

The results of the second recovery study are shown in Figure 3.10 and Figure 3.11. Figure 3.10
shows the mean of the posterior medians of the stop parameters across the 100 replications and
the mean and standard deviation of the SSRT distribution. Figure 3.11 shows the estimated SSRT
distributions based on the posterior medians for the 100 replications. As shown in the figures, the
BPA recovered the generating parameter values and the shape of the true SSRT distribution with
little bias even with relatively few (i.e., 25) stop-signal trials per SSD. Naturally, as the number of
trials increased, the bias, the standard error, and the posterior standard deviation of the estimates
decreased. The mean posterior standard deviation of µstop across the 100 replications decreased
from 27.40 for the simulation set with 25 stop-signal trials per SSD to 9.51 for the set with 300
stop-signal trials per SSD. The mean posterior standard deviation of σstop decreased from 26.05 to
12.51. The mean posterior standard deviation of τstop decreased from 26.64 to 9.98. Note also that
the BPA parameter estimates as well as the average of the integration method estimates across the

3We conducted several recovery studies using alternative true parameter values. The results were essentially the
same as the ones reported here.
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Figure 3.9 Posterior medians of the stop parameters and the mean and standard deviation of
the stop-signal reaction time (SSRT) distribution from the first recovery study for the individ-
ual Bayesian parametric approach. The results are based on one data set containing 200,000 go
trials and 100,000 stop-signal trials per stop-signal delay (SSD). The estimated µstop, σstop, and
τstop parameters were free to vary across the five SSDs. The dashed lines give the true value of
the stop parameters and the true mean and standard deviation of the SSRT distribution. In the
top panels, the black bullets show the posterior median of the estimated stop parameters. In the
bottom panels, the black bullets show the estimated mean and standard deviation of the SSRT
distribution computed with the the posterior median of the stop parameters. The gray bullets
show SSRT estimates computed with the traditional integration method.
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SSDs recovered the mean of the generating SSRT distribution very accurately even with only 25
stop-signal trials per SSD.

To summarize, the results of the two simulation studies indicated that the individual BPA
accurately recovered the parameters of the generating SSRT distribution. Also, similar to the inte-
gration method, the BPA recovered the mean of the generating SSRT distribution very accurately.
As the number of stop-signal trials increased, the stop parameters and the mean SSRT were esti-
mated more precisely. Nevertheless, the individual BPA was able to provide reasonable estimates
even with relatively scarce data (i.e., 5 × 25 stop-signal trials) often encountered in stop-signal
studies.

Hierarchical BPA

Methods

We generated 100 data sets from the horse race model, each containing the stop-signal data of
j = 1, ..., 25 participants. The individual parameters µgoj , σgoj , τgoj , µstopj , σstopj , and τstopj were
drawn from truncated normal distributions. The individual parameters were then used to generate
300 go trials and 100 stop-signal trials for each participant, using the ex-Gaussian distribution.
The generating parameter values are shown in Figure 3.12. For computational efficiency, we used
a single SSD per participant that produced a P (respond | stop signal) equal to 0.50.

We fit the 100 data sets with the hierarchical BPA using WinBUGS. We ran three MCMC
chains and used overdispersed starting values. The first 3,000 samples of each MCMC chain were
discarded. The reported parameter estimates are based on 3 × 7,750 recorded samples.

Results

In this section, we focus exclusively on results related to the group-level parameters of the go
RT and the SSRT distribution. The individual parameter estimates from the hierarchical BPA is
discussed in the next section with experimental data.

Figure 3.12 shows the posterior median of the group-level parameters averaged over the 100
replications. The hierarchical BPA recovered the group-level parameters quite accurately. The
posterior standard deviations and the standard errors are typically larger for the stop parameters
than for the go parameters. This result is not surprising because the go parameters are estimated
based on the go RTs as well as the signal-respond RTs. The go parameters are therefore better
constrained by the data than the stop parameters.

In sum, the results of the simulation studies indicate that the individual and the hierarchi-
cal BPA accurately recovered the true individual stop parameters and the generating group-level
parameters, respectively. In contrast to Colonius’ (1990) method, the BPA resulted in accurate
estimates with a reasonable amount of data. The individual BPA provided accurate estimates
for the stop parameters with only 125 stop-signal trials per participant. The hierarchical BPA
yielded precise group-level stop parameters with a modest sample size of only 25 participants, each
performing as few as 100 stop-signal trials.

3.5 Fitting Experimental Data

The aim of this section is to illustrate the application of the BPA using the stop-signal data set
reported by Bissett and Logan (2011). Bissett and Logan presented participants with two sessions

53



3. Bayesian Parametric Estimation of Stop-Signal Reaction Time Distributions

Number of stop trials/SSD

µ s
to

p

25 50 150 300

140

160

180

200

220

240
True value
BPA

Number of stop trials/SSD

σ s
to

p

25 50 150 300

10

30

50

70

90

Number of stop trials/SSD

τ s
to

p

25 50 150 300

10

30

50

70

90

Number of stop trials/SSD

M
ea

n 
S

S
R

T

25 50 150 300

210

220

230

240

250

260

270

280
True value
BPA
Integration method average

Number of stop trials/SSD

S
D

 S
S

R
T

25 50 150 300

30

60

90

120

Figure 3.10 Posterior medians of the stop parameters and the mean and standard deviation of the
stop-signal reaction time (SSRT) distribution from the second recovery study for the individual
Bayesian parametric approach. We conducted four sets of simulations that varied the the number
of go and stop-signal trials, with 100 data sets for each set. The estimated µstop, σstop, and τstop
parameters were constrained to be equal across the five stop-signal delays (SSDs). The dashed
lines give the true value of the stop parameters and the true mean and standard deviation of the
SSRT distribution. In the top panels, the black bullets show the mean of the posterior medians of
the estimated stop parameters across the 100 replications. In the bottom panels, the black bullets
show the mean of the estimated mean and standard deviation of the SSRT distribution computed
with the posterior median of the stop parameters across the 100 replications. The gray bullets
show SSRT estimates computed by averaging the integration method SSRT estimates over the five
SSDs. The vertical lines indicate the size of the standard error across the 100 replications.
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Figure 3.11 Estimated stop-signal reaction time (SSRT) distributions from the second recovery study
for the individual Bayesian parametric approach. We conducted four sets of simulations that varied
the number of go and stop-signal trials, with 100 data sets for each set. The estimated µstop, σstop,
and τstop parameters were constrained to be equal across the five stop-signal delays (SSDs). The
solid black line shows the true SSRT distribution. The gray lines show the SSRT distributions
based on the posterior medians of the 100 replications. The dashed white line shows the SSRT
distribution based on the mean of the posterior medians of the stop parameters across the 100
replications. pdf = probability density function.
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Figure 3.12 Posterior medians of the group-level parameters from the hierarchical parameter recov-
ery study. We generated 100 data sets from the horse race model, each containing the stop-signal
data of 25 participants responding to 300 go trials and 100 stop-signal trials. The dashed lines give
the true value of the parameters. The black bullets indicate the mean of the posterior medians
across the 100 replications. The black vertical lines show the size of the posterior standard devia-
tions averaged across the 100 replications. The gray vertical lines indicate the size of the standard
error. BPA = Bayesian parametric approach.

of the stop-signal task in order to investigate the adjustment of speed and caution in a dual-
task environment. Here we focus on the first experiment of the Bissett and Logan study that
manipulated the percentage of stop-signal trials across two sessions. The authors concluded that
the two experimental sessions did not differ significantly in mean SSRT.

The Data Set

The go task required the 24 participants to respond to the shape of the presented stimuli. For
instance, participants responded by pressing the “1” key on the computer keyboard when presented
with a triangle or a circle, and by pressing the “0” key when presented with a square or a diamond.
Each participant performed two sessions of the task. The first session featured 960 go trials and
240 stop-signal trials, resulting in 20% stop-signal trials. The second session featured 720 go
trials and 480 stop-signal trials, resulting in 40% stop-signal trials. The SSD was set using the
staircase tracking procedure; SSD was lengthened by 50 ms after successful inhibitions and SSD
was shortened by 50 ms after incorrect responses, yielding 50% inhibition for each participant.

Incorrect RTs and RTs shorter than 200 ms and longer than 1,850 ms were excluded from all
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subsequent analyses (see Bissett & Logan, 2011). As the ex-Gaussian distribution is sensitive to
outliers, we also removed RTs that were slower or faster than a given participant’s mean RT plus
or minus 2 × the standard deviation. For comparison, we report the results of fitting the raw
data with the individual BPA and the results of fitting the data without the outliers. Moreover,
we excluded four participants with erratic stop-signal performance, such as extremely long and
variable go RTs and a very large number of SSDs.

Individual BPA

The individual BPA was fit to the Bissett and Logan (2011) data set with WinBUGS. The estimated
µstop, σstop, and τstop parameters of each participant were constrained to be equal across the different
SSDs. We ran three MCMC chains and used overdispersed starting values. The analyses were based
on 3 × 5,000 recorded samples.

The parameters of the go RT distribution were estimated precisely for all of the 20 participants.
The remainder of this section focuses exclusively on the parameters of the SSRT distribution.
With the exception of four participants in the first session, the posterior distributions of the stop
parameters were estimated well. For the four exceptions, we obtained unrealistically large posterior
medians for τstop and/or very large posterior standard deviations for σstop and τstop.

4 In these cases,
the stop parameters were thus estimated with great uncertainty, resulting in uninformative SSRT
distributions and uninterpretable mean SSRT estimates.

The results from fitting the Bissett and Logan (2011) data set with the individual BPA are
shown in Figure 3.13 and Figure 3.14. Figure 3.13 compares the mean SSRT of each participant
computed with the mean method to the mean SSRT computed with the BPA posterior medians
of the stop parameters. The BPA produced mean SSRT estimates very similar to those obtained
by the mean method. The correspondence between the two methods further improved after the
outliers were removed; this is not surprising because the two methods are affected to different
degrees by the presence of outliers. Also, the agreement between the two sets of estimates is better
for the second session than for the first session. Again, this is to be expected because the second
session featured twice as many stop-signal trials than the first session, resulting in more accurate
estimates for both methods.

The circles in the left panels of Figure 3.13 mark the three data points with the largest discrep-
ancy between the two methods. The three estimates are clustered together at very high values of
BPA mean SSRT. Note that these mean SSRTs belonged to three of the participants with uninfor-
mative posterior distributions with high medians and very large standard deviations for τstop. The
high posterior median for τstop resulted in unusually high BPA mean SSRTs (see Equation 3.11).
However, due to the large posterior uncertainty of τstop, the resulting mean SSRT estimates are
uninterpretable. Lastly, consider the data point marked with “A” in the bottom right panel of
Figure 3.13. For this mean SSRT, the mean method resulted in an unrealistic estimate of 118 ms.
The BPA, however, yielded a more reasonable estimate of 209 ms.

The first published estimates of entire SSRT distributions are shown in Figure 3.14. The
gray SSRT distributions are based on the posterior medians of the individual stop parameters.
There is considerable between-participant variability in the shape of the SSRT distributions. Some
distributions are very peaked, whereas others are more spread out indicating substantial within-
participant variability in SSRT. Note the few extremely flat distributions with very large variance
and long tail in the left panels of Figure 3.14. These flat distributions belonged to the four

4For these four participants, we used a uniform prior distribution ranging from 1 to 450 for τstop to accommodate
the extreme parameter estimates. Note also that these participants are not the same as the four participants who
were previously excluded from the analyses.
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Figure 3.13 Comparison of mean stop-signal reaction times (SSRTs) computed using the mean
method and the individual Bayesian parametric approach (BPA) posterior medians in the Bissett
and Logan (2011) data set. The data points marked with circles represent mean SSRTs that
are based on the imprecise and therefore uninterpretable posterior distributions. The data point
marked with “A” in the bottom right panel represents a mean SSRT estimate for which the
individual BPA resulted in a more reasonable estimate than the mean method.

.
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Figure 3.14 Estimated stop-signal reaction times (SSRT) distributions for the Bissett and Logan
(2011) data set. The gray lines show the SSRT distributions based on the posterior medians of the
stop parameters of each individual participant. The black line shows the SSRT distribution based
on the mean of the posterior medians of the stop parameters across the 20 participants.

participants with the uninformative posterior distributions. The resulting SSRT distributions are
therefore also uninformative.

The solid black line in Figure 3.14 shows the average SSRT distribution created using the mean
of the posterior medians of the individual µstop, σstop and τstop parameters across participants.
There are substantial differences between the shape of the average SSRT distributions in the two
sessions of the experiment. The average SSRT distribution for the first session is spread out and
has a fast leading edge and a long tail. In contrast, the average SSRT distribution for the second
session is more peaked, with a slower leading edge and a shorter tail. Despite these differences,
consistent with the results of Bissett and Logan (2011), the means of the two distributions are
roughly equal. Similar to the example shown in Figure 3.1, ignoring the differences in the shape of
these SSRT distributions would lead to the incorrect conclusion that the two experimental sessions
do not differ with respect to SSRT.

In conclusion, the individual BPA provided well-behaved posterior distributions for most par-
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ticipants. Moreover, the mean SSRTs computed with the BPA posterior medians accurately ap-
proximated the mean SSRTs obtained by the traditional mean method. In the next section, we
formally investigate whether the individual BPA adequately described the observed data.

Assessing Model Fit Using Posterior Predictive Model Checks

We used posterior predictive model checks to determine whether the individual BPA produced
parameter estimates that adequately describe the Bissett and Logan (2011) data. Posterior pre-
dictive model checks are frequently used procedures in Bayesian inference to assess the absolute
goodness of fit of a proposed model (e.g., Gelman & Hill, 2007; Gelman, Meng, & Stern, 1996).
In posterior predictive checks, we assess the adequacy of the model by generating new data (i.e.,
predictions) using the posterior distributions of the parameters obtained from fitting the model.
If the model adequately describes the data, the predictions based on the model parameters should
closely approximate the observed data.

We formalized the model checks by computing posterior predictive p values (e.g., Gelman &
Hill, 2007; Gelman et al., 1996). We first defined a test statistic T , and computed its value for
the observed data: T (data). For each of the i = 1, ..., N draws from the posterior distribution
of the parameters, we sampled new stop-signal data, data∗ = (data∗1, data

∗
2, ..., data

∗
N ), using the

ex-Gaussian assumption. Lastly, we calculated the test statistic T for each data∗i : T (data∗i ). The
posterior predictive p value is given by the fraction of times that T (data∗) is greater than T (data).
The posterior predictive p value compares thus the observed value of the test statistic to its sampling
distribution under the assumptions of the BPA. Extreme p values close to 0 or 1 (e.g., lower than
0.05 or higher than 0.95) indicate that the BPA does not describe the observed data adequately.
For each participant we conducted two posterior predictive analyses using different test statistics.

In the first posterior predictive analysis, we compared the observed signal-respond RT distri-
bution to the signal-respond RTs predicted by the posterior distribution of the model parameters.
The model check was performed only for the SSD with the highest number of observed signal-
respond RTs in order to obtain stable observed and predicted signal-respond RT distributions. For
each participant, we randomly selected N = 1, 000 parameter vectors from the joint posterior of
µgo, σgo, τgo, µstop, σstop, and τstop. Then, we generated 1,000 stop-signal data sets using the 1,000
parameter vectors, the chosen SSD and the corresponding number of stop-signal trials. We used the
median of the signal-respond RTs of the observed and the predicted distributions as test statistic.
For each participant, the 1,000 predicted signal-respond RT distributions were compared to the
observed signal-respond RT distribution, using posterior predictive p values and visual inspection
of the distributions.

Figure 3.15 shows the observed go RT and signal-respond RT distributions, and 100 randomly
chosen predicted signal-respond RT distributions for six participants with satisfactory model fit.
The predicted signal-respond RT distributions (i.e., gray lines) adequately followed the shape of
the observed signal-respond RT distribution. Also, the predicted signal-respond RTs were gener-
ally faster than the observed go RTs (i.e., dashed line), a common finding that follows from the
architecture of the horse race model (Logan & Cowan, 1984). Lastly, the average of the medians
of the predicted signal-respond distributions closely matched the observed median. This result is
also evident from the posterior predictive p values listed in the second column of Table 3.1. The
posterior predictive p values for these six participants are well within the 0.05-0.95 range, indicating
that the BPA adequately accounted for the median of the observed signal-respond RTs.

Figure 3.16 shows the observed go RT and signal-respond RT distributions, and 100 randomly
chosen predicted signal-respond RT distributions for three participants with unsatisfactory model
fit. Note that Participant 16 and Participant 20 were among the few cases that produced un-
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Figure 3.15 Examples of satisfactory model fit with the individual Bayesian parametric approach
(BPA): Predicted and observed signal-respond response time (RT) distributions for the first session
of the Bissett and Logan (2011) experiment. See text for a detailed description of the posterior
predictive analyses. The histogram shows the observed signal-respond RT distribution. The gray
lines show 100 randomly chosen predicted signal-respond RT distributions. The solid black line
gives a predicted signal-respond RT distributions based on the mean of the posterior predictions.
The circle indicates the median of the observed signal-respond RTs. The triangle indicates the
median of the predicted signal-respond RTs. The median of the predicted signal-respond RTs is
computed as the mean of the medians of the predicted signal-respond RT distributions. The dashed
line shows the observed go RT distribution.

informative posterior distributions. The location and shape of the observed signal-respond RT
distributions were not well approximated by the predicted signal-respond RT distributions. For
Participant 8 and Participant 16, the predicted signal-respond RTs are shifted to the right. For
Participant 20, the predicted signal-respond RT distribution fails to capture the bimodality of the
observed signal-respond RTs. For Participant 16 and 20, the predicted signal-respond RTs are less
variable than the observed signal-respond RTs. Moreover, the predicted signal-respond RTs are not
substantially faster than the observed go RTs. For Participant 8 and Participant 16, the median
of the predicted signal-respond RTs overestimated the median of the observed signal-respond RTs.
In contrast, for Participant 20, the median of the predicted signal-respond RTs underestimated
the observed median. These latter results are also shown in Table 3.1. The posterior predictive p
values for these three participants are very close to or are equal to 0 or 1, indicating that the BPA
failed to account for the median of the observed signal-respond RTs.

In the second posterior predictive analysis, we compared the observed response rates to the
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Figure 3.16 Examples of unsatisfactory model fit with the individual Bayesian parametric approach
(BPA): Predicted and observed signal-respond response time (RT) distributions for the first session
of the Bissett and Logan (2011) experiment. See Figure 3.15 for details.

Table 3.1 Posterior Predictive p Values for the Median of the Signal-Respond Response Time Dis-
tribution and the Response Rate for the First Session of the Bissett and Logan (2011) Experiment
Computed From the Parameter Estimates From the Individual Bayesian Parametric Approach.

Participant p value median Minimum p value RR Maximum p value RR
1 0.64 0.11 0.91
3 0.44 0.10 0.79
7 0.77 0.13 0.70
8 0.98 0.03 0.95
10 0.41 0.28 0.86
13 0.69 0.08 0.92
16 1.00 0.30 0.96

18 0.11 0.25 0.61
20 0.00 0.33 0.96

Note. Posterior predictive p values that indicate unsatisfactory model fit are shown in bold. p value median =
posterior predictive p value for the median of the signal-respond response time distribution on the stop-signal delay
(SSD) with the highest number of observed signal-respond trials; minimum p value RR = the lowest posterior
predictive p value for the response rate (RR) computed for the SSDs that contained at least 10% of the trials;
maximum p value RR = the highest posterior predictive p value for the RR computed for the SSDs that contained
at least 10% of the trials.
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response rates predicted by the posterior distribution of the model parameters. The model check
was performed for the SSDs that featured at least 10% of the total number of stop-signal trials.
For each participant, we generated 1,000 stop-signal data sets using the 1,000 parameter vectors
selected for the first posterior predictive analysis, the chosen SSDs and the corresponding number
of stop-signal trials. We computed posterior predictive p values for each participant on each SSD
separately, where we used the observed and predicted response rates as test statistic.

Table 3.1 shows the minimum and the maximum of the posterior predictive p values for the
response rates across the various SSDs of nine participants. For Participant 1, 3, 7, 10, 13 and 18,
the minimum and maximum of the p values all lie between 0.05 and 0.95, corroborating our previous
conclusion of satisfactory model fit with the median of the signal-respond RTs. In contrast, for
Participant 8, 16, and 20, the minimum or maximum of the p values are very close to 0 or 1,
supporting our previous finding that the BPA failed to account for the data of these participants.

In sum, the results of the posterior predictive model checks indicated that for most participants
the BPA provided plausible parameter estimates that adequately describe the observed data. Ad-
ditionally, the posterior predictions supported our earlier conclusion that the BPA resulted in
uninterpretable parameter estimates for participants with imprecise posterior distributions. The
results of the posterior predictive model checks for the remaining participants in the first as well
as the second session of the Bissett and Logan (2011) experiment are available in the supplemental
materials at http://dora.erbe-matzke.com/publications.html.

Hierarchical BPA

The hierarchical approach has the potential to provide accurate parameter estimates with relatively
few observations per participant. We therefore did not analyze the complete Bissett and Logan
(2011) data set, but used only a subsample of the available go RTs and signal-respond RTs from
the second experimental session. Per participant, we fit a randomly selected 90 go RTs, 30 signal-
respond RTs, and 30 successful inhibitions after removing the outliers.

The hierarchical BPA was fit to the data with WinBUGS. The estimated individual µstop, σstop,
and τstop parameters were constrained to be equal across the different SSDs. We ran three MCMC
chains and used overdispersed starting values. The hierarchical analysis was based on 3 × 23,750
samples.

The hierarchical BPA resulted in informative posterior distributions for the group-level param-
eters of the go RT as well as the SSRT distribution. As before, this section focuses exclusively
on the parameters of the SSRT distribution. Figure 3.17 shows the prior and the posterior distri-
butions of the group-level stop parameters. As for the hierarchical recovery study, the µµstop and
σµstop parameters were estimated the most precisely as indicated by the small posterior standard
deviations. Also in line with the simulations, the σσstop parameter was estimated with the largest
posterior uncertainty. Nevertheless, the group-level stop parameters were estimated relatively well
given the scarce data and the small sample size.

For most participants, the individual µstop, σstop, and τstop parameters were estimated ade-
quately as evidenced by the well-behaved posterior distributions. For the same subsample of the
data, the posterior distributions estimated with the hierarchical BPA were less variable than the
posteriors estimated with the individual BPA. In fact, the 60 stop-signal trials were occasion-
ally insufficient to obtain informative posterior distributions with the individual BPA. Figure 3.18
illustrates the benefits of hierarchical modeling for a representative participant. For the same
subsample of the data, the 95% Bayesian confidence intervals are smaller for the posterior distri-
butions estimated with the hierarchical BPA (i.e., gray line) than for the posteriors estimated with
the individual BPA (i.e., black line). Also, the posterior medians from the hierarchical analysis
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Figure 3.17 Posterior distributions for the group-level stop parameters from a subsample of the
Bissett and Logan (2011) data set. The black lines show the posterior distributions and the gray
lines show the prior distributions of the group-level parameters. The dashed lines give the posterior
medians.
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Figure 3.18 Posterior distribution of the stop parameters for Participant 1 from the Bissett and
Logan (2011) data set estimated using the individual and the hierarchical Bayesian parametric ap-
proach (BPA). The solid black and gray lines show the posterior distribution of the stop parameters
and the corresponding 95% Bayesian confidence intervals obtained with the individual and the hi-
erarchical BPA, respectively. The dashed black and gray lines show the median of the posterior
distributions obtained with the individual and the hierarchical BPA, respectively.

are slightly pulled towards their corresponding group mean, a typical consequence of hierarchical
modeling.

As pointed out above, hierarchical Bayesian estimation has the potential to reduce the vari-
ability in the estimated parameters compared to individual-level estimation. Figure 3.19 compares
the mean SSRTs computed with the traditional mean method, the posterior medians from the
individual BPA, and the posterior medians from the hierarchical BPA with the same subsample of
the data. As shown in Figure 3.19a, the individual BPA provided mean SSRTs that are slightly less
variable than the mean SSRTs obtained using the mean method. More importantly, Figure 3.19b
and Figure 3.19c show that the hierarchical BPA resulted in mean SSRTs that are substantially
less variable than the mean SSRTs obtained with either the mean method or the individual BPA.

Assessing Model Fit Using Posterior Predictive Model Checks

We used posterior predictive model checks to determine whether the individual parameter estimates
from the hierarchical BPA adequately describe the Bissett and Logan (2011) data. As the data
of most participants featured fewer than 10 observed signal-respond RTs even on the SSD with
the highest number of observations, posterior predictive model checks using the signal-respond
RT distributions are not sensible for the present data set. For each participant, we compared the
observed response rates to the response rates predicted by the posterior distribution of the model
parameters. The posterior predictive analyses followed the procedure described for the individual
BPA, using N = 1, 000 parameter vectors from the joint posterior of the individual µgo, σgo, τgo,
µstop, σstop, and τstop parameters.

Table 3.2 shows the minimum and the maximum of the posterior predictive p values for the
response rates across the various SSDs. With the exception of Participant 12 and 19, the minimum
and maximum value of the posterior predictive p values all lie well within the 0.05 - 0.95 range,
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Figure 3.19 Comparison of mean stop-signal reaction times (SSRTs) obtained with the mean
method, with the posterior medians of the stop parameters from the individual Bayesian para-
metric approach (BPA), and with the posterior medians of the individual stop parameters from the
hierarchical BPA in the Bissett and Logan (2011) data set. The arrows indicate the range of the
estimates. Note that the range is smallest for the hierarchical BPA.

indicating that the BPA adequately accounted for the response rates of most participants.
The above section illustrated that the hierarchical BPA provided sensible group-level parameters

with relatively well-calibrated posterior distributions even with a small sample size and only 60 stop-
signal trials per participant. Posterior predictive model checks indicated that for most participants
the hierarchical BPA provided plausible individual parameter estimates that adequately describe
the observed data. Moreover, the individual parameter estimates yielded sound mean SSRTs and
demonstrated the characteristic benefits of hierarchical modeling.

3.6 Discussion

The stop-signal task is a frequently used experimental measure of response inhibition. Over the past
30 years, the horse race model (Logan, 1981; Logan & Cowan, 1984) has successfully accounted for
stop-signal data in different settings and has facilitated the interpretation of stopping experiments
with various age groups and clinical populations (e.g., Kramer et al., 1994; Oosterlaan et al., 1998;
Ridderinkhof et al., 1999; Schachar & Logan, 1990; Schachar et al., 2000; Williams et al., 1999).
The horse race model offers numerous methods to estimate the otherwise unobservable latency of
stopping.

The existing methods to estimate SSRT are unable to adequately estimate the shape of en-
tire SSRT distributions. Ignoring the shape of SSRT distributions, and focusing only on the mean
SSRT, may mask crucial features of the data and result in erroneous conclusions about the nature of
response inhibition. The goal of this paper was therefore to introduce a novel method —a Bayesian
parametric approach— that enables researchers to estimate the entire distribution of SSRTs. The
BPA is based on the assumptions of the horse race model and treats response inhibition as a
censoring mechanism. The method assumes that go RTs and SSRTs are ex-Gaussian distributed
and relies on MCMC sampling to obtain posterior distributions for the model parameters. Note
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Table 3.2 Posterior Predictive p Values for the Response Rate for the Second Session of the Bissett
and Logan (2011) Experiment Computed From the Individual Parameter Estimates From the
Hierarchical Bayesian Parametric Approach.

Participant Minimum p value RR Maximum p value RR
1 0.31 0.51
2 0.40 0.61
3 0.14 0.56
4 0.36 0.64
5 0.17 0.54
6 0.16 0.40
7 0.14 0.69
8 0.15 0.35
9 0.34 0.65
10 0.27 0.60
12 0.01 0.30
13 0.38 0.59
15 0.16 0.52
16 0.33 0.72
18 0.10 0.32
19 0.04 0.64
20 0.28 0.55
21 0.23 0.67
22 0.19 0.30
23 0.26 0.36

Note. Posterior predictive p values that indicate unsatisfactory model fit are shown in bold. Minimum p value RR
= the lowest posterior predictive p value for the response rate (RR) computed for the stop-signal delays (SSDs) that
contained at least 10% of the trials; maximum p value RR = the highest posterior predictive p value for the RR
computed for the SSDs that contained at least 10% of the trials.

that we could have carried out parameter estimation by means of standard maximum likelihood
estimation (Dolan et al., 2002; Myung, 2003). However, our goal was to develop a method for
estimating SSRT distributions that may be applied to individual as well as hierarchical data struc-
tures. As maximum likelihood estimation can become practically difficult for hierarchical models,
we chose to use Bayesian parameter estimation instead. This also brings along the typical benefits
of Bayesian estimation, such as easy-to-use estimation software (e.g., WinBUGS) and a coherent
inferential framework.

We demonstrated using simulations that the BPA adequately recovers the parameters of the
generating SSRT distributions in individual and hierarchical data structures. We showed that the
individual BPA can provide accurate estimates of SSRT distributions in experimental stop-signal
data featuring a realistic number of trials. Similarly, we demonstrated using real data that the
hierarchical BPA resulted in interpretable individual and group-level stop parameters with a small
sample size and as few as 60 stop-signal trials per participant.

The BPA enables researchers to evaluate differences in the shape of SSRT distributions be-
tween clinical or experimental groups. SSRT distributions obtained from the individual BPA can
be compared visually, as illustrated in the introduction and with the Bissett and Logan (2011) data
set. Similarly, the group-level go and stop parameters obtained from the hierarchical BPA may
be compared visually by inspecting the overlap —or the lack of overlap— between the posterior
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distribution of the parameters in the different groups. Alternatively, differences in the ex-Gaussian
individual go and stop parameters between clinical groups or experimental conditions may be eval-
uated formally using Bayesian hypothesis testing. Various user-friendly options are now available
to perform, for instance, Bayesian t tests (Rouder et al., 2009; Wetzels, Raaijmakers, Jakab, &
Wagenmakers, 2009) and analyses of variance (Masson, 2011; Wetzels et al., 2012) using Bayes fac-
tors (e.g., Berger & Pericchi, 1996; Dickey, 1971; Gamerman & Lopes, 2006; Kass & Raftery, 1995;
Klugkist, Laudy, & Hoijtink, 2005; O’Hagan & Forster, 2004). Moreover, easy-to-use Bayesian
hypothesis tests for correlations (Wetzels & Wagenmakers, 2012) and regression analyses (Liang,
Paulo, Molina, Clyde, & Berger, 2008)5 are also available.

Although the BPA offers the advantages of estimating entire SSRT distributions, it also comes
with a number costs. One drawback is related to the amount of data that is required to obtain
precise stop parameter estimates. The individual BPA may fail to provide precise estimates with
the very small amount of data that is sometimes collected in developmental and clinical stop-signal
studies. For a number of participants, the sampled 150 trials (i.e., 90 go and 60 stop-signal trials)
of the Bissett and Logan (2011) data set were in fact insufficient to obtain informative posterior
distributions for the stop parameters using the individual BPA. Nevertheless, we illustrated that
the hierarchical BPA may provide a solution in such situations.

Another drawback of the BPA is related to the present implementation in WinBUGS. First,
the BPA requires some basic programming skills to obtain the necessary data format for the
WinBUGS script. Second, the fitting algorithm is time-consuming. Running on a fast personal
computer, WinBUGS required an average of about 5 hr to reach convergence per participant in
the Bissett and Logan (2011) experiment. Likewise, it took several days to fit the hierarchical BPA
to the subsample of the Bissett and Logan data set. We are currently working on a user-friendly
implementation of the BPA that will increase the speed of the fitting routine.

Parametric Assumptions

In contrast to the Colonius method (1990, see also de Jong et al., 1990) for estimating SSRT
distributions, the BPA requires a parametric form to describe the go RTs and the SSRTs. In the
abstract sense, as the Colonius method does not require any assumptions about the distribution
of the go RTs and the SSRTs, it may be preferable to the BPA. In the practical sense, however,
the applicability of the Colonius method is limited by the amount of data that is available per
participant. In contrast to the BPA, the Colonius method requires an unrealistically large amount
of data to perform adequately. For the analysis of experimental stop-signal data, the BPA is
therefore preferable to the Colonius method. Of course, the practical advantage of the BPA comes
at a price: We need parametric assumptions to quantify the shape of the go RT and the SSRT
distributions.

Here we assumed that the go RTs and the SSRTs are ex-Gaussian distributed. Note, however,
that the BPA does not hinge on the particular parametric form used to summarize the distributions.
The ex-Gaussian distribution is used as a convenient choice to quantify the go RTs and the SSRTs.
The ex-Gaussian is a frequently used distributional model that can excellently accommodate the
shape of RT distributions and is easy to fit to data (Heathcote et al., 1991; Hockley, 1982, 1984;
Ratcliff, 1978, 1993; Ratcliff & Murdock, 1976). Moreover, sensitivity analyses indicated that the
BPA is robust to misspecification of the parametric form of the go RT and SSRT distributions.
Even when the go RTs and the SSRTs were drawn from shifted log-normal distributions, the
ex-Gaussian based BPA excellently approximated the shape of their distribution.

5For software implementation, see http://pcl.missouri.edu/bf-reg. Retrieved May 23, 2012.
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The above result is not surprising because the ex-Gaussian distribution is flexible enough to
accommodate a wide range of distributions observed in RT data. Unless the go RTs and SSRTs
are left skewed or bimodal —an unlikely scenario for RT distributions— the ex-Gaussian is likely
to provide adequate description of their distributions. The interested reader is referred to the
supplemental materials for the detailed results of the sensitivity analyses for the individual BPA.
Note also that the posterior predictive model checks indicated that the ex-Gaussian distribution
provided an excellent description of the go RTs and SSRTs in experimental stop-signal data.

Nevertheless, the ex-Gaussian distribution comes also with some disadvantages. Specifically,
the ex-Gaussian has a number of characteristics that are atypical of empirical RT data. First, the
ex-Gaussian has a monotonically increasing hazard function, while empirical hazard functions are
typically peaked (e.g., W. Schwarz, 2001; Van Zandt, 2002). Second, the ex-Gaussian distribution
assigns probability to unrealistically short and negative RTs. As an alternative, one may use
“shifted” RT distributions with a parameter-dependent lower bound. For example, the ex-Gaussian
distribution may be replaced by the shifted Wald, the shifted Weibull or the shifted log-normal
distributions (e.g., Heathcote, 2004; Heathcote, Brown, & Cousineau, 2004). However, shifted
distributions are notoriously difficult to fit. Moreover, in our implementation the shifted log-
normal distribution resulted in somewhat less accurate estimates than the ex-Gaussian. Another
alternative is to use the ex-Wald distribution (W. Schwarz, 2001) to describe the go RTs and the
SSRTs. Heathcote (2004) showed, however, that the ex-Wald requires at least 400 observations
to produce adequate parameter estimates, a requirement that is often not satisfied in stop-signal
experiments.

Process Models

Process models of response inhibition provide further possibilities to model performance in the
stop-signal paradigm. A prominent alternative to the BPA is the interactive race model (Boucher,
Palmeri, Logan, & Schall, 2007), a neurally plausible instantiation of the horse race model. The
interactive race model conceptualizes the go and the stop process as two noisy accumulators that
race towards a fixed response threshold and may interact via inhibitory links. The interactive race
model assumes constant rates of rise to the threshold and noise terms with standard deviations
σgo and σstop that reflect the amount of noise added in each step of the rise. Boucher et al. (2007)
showed that the go and the stop process are for the most part independent. The inhibitory effect
of the stop process on the go process is very brief and is much stronger than the inhibitory effect
of the go process on the stop process. Note that the interactive race model applies specifically to
saccadic inhibition (Verbruggen et al., 2008).

Another alternative is the Hanes-Carpenter model (Hanes & Carpenter, 1999; Hanes & Schall,
1995; Hanes, Patterson, & Schall, 1998) for saccade inhibition. The Hanes-Carpenter model is based
on the Linear Approach to Threshold with Ergodic Rate (LATER; Carpenter, 1981; Carpenter &
Williams, 1995). The model assumes that the competing go and the stop process rise in a linear
fashion to a fixed response threshold. If the stop process reaches the threshold before the go
process, the response is inhibited. If the go process reaches the threshold before the stop process,
the response is executed.

The Hanes-Carpenter model is equivalent to the horse race model with specific distributional
assumptions about the rate of information accumulation of the go and the stop process (Colonius,
Özyurt, & Arndt, 2001). Specifically, the Hanes-Carpenter model assumes that the rates of rise are
normally distributed, resulting in the following parameters: the means and the standard deviations
of the rates of rise of the go and the stop process, µgo, σgo, µstop, and σstop, respectively. The
model parameters can be estimated using Monte Carlo simulations (e.g., Asrress & Carpenter,
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2001; Colonius et al., 2001; Hanes & Carpenter, 1999) or maximum likelihood estimation (e.g.,
Corneil & Elsley, 2005; Kornylo, Dill, Saenz, & Krauzlis, 2003). Using the properties of the stop
process accumulator, one can obtain the distribution of the finishing times of the stop process
(SSRT distribution). Note, however, that in typical applications of LATER, the goal is to use the
estimated rate parameters to test and compare the predictions of competing models of response
inhibition and not to explicitly estimate SSRT distributions. For yet another alternative to model
inhibitory control in the stop-signal task, see Shenoy, Rao, and Yu (2010) and Shenoy and Yu
(2011).

LATER and the BPA constitute different perspectives on modeling response inhibition. LATER
is focused on the nature of the (neural) processes underlying response inhibition and thereby makes
particular assumptions of the shape for the finishing time distribution of the stop processes. In
contrast, the BPA constitutes a more statistical approach. The BPA is not concerned with the
nature of the underlying go and stop process; it rather focuses on how the SSRT distribution can
be estimated irrespective of the particular parametric choice —be it ex-Gaussian or shifted Wald
— used to quantify its shape.

Prior Distributions

The BPA uses Bayesian parameter estimation and therefore involves choosing prior distributions
for the ex-Gaussian go and stop parameters. With respect to the individual BPA, the priors
for the go and stop parameters are informative in the sense that they cover a wide but realistic
range of values informed by results from the stop-signal literature (Williams et al., 1999; Band
et al., 2003). We feel that using informative priors is justified since there is a large body of past
research that provides valuable information about the plausible range of parameter values. Also,
with increasing opportunity to apply the BPA to empirical data sets, we will be able to make even
better informed choices about the prior distribution of the parameters. Note also that as long as
sufficiently informative data are available, the data readily overwhelm the prior (e.g., M. D. Lee
& Wagenmakers, 2013). Whereas Bayesian parameter estimation can be robust to changes in
priors, Bayesian hypothesis testing using Bayes factors (e.g., Berger & Pericchi, 1996; Dickey,
1971; Gamerman & Lopes, 2006; Kass & Raftery, 1995; Klugkist et al., 2005; O’Hagan & Forster,
2004) can be relatively sensitive to prior inputs. The shape of the prior distribution can greatly
influence the Bayes factor and the resulting inferences (e.g., Bartlett, 1957; Liu & Aitkin, 2008;
but see Vanpaemel, 2010). Fortunately, various user-friendly approaches to Bayesian hypothesis
testing are now available that rely on principled choices of prior distributions (e.g., Rouder et al.,
2009; Wetzels et al., 2009).

With respect to the hierarchical approach, the BPA assumes that the individual go and stop
parameters come from truncated normal group-level distributions. The use of normal group-level
distributions is a common choice in Bayesian hierarchical modeling (e.g., Gelman & Hill, 2007;
M. D. Lee & Wagenmakers, 2013). Also, sensitivity analyses indicated that the hierarchical BPA is
relatively robust to misspecification of the group-level distribution of the individual go parameters.
Even when the true go parameters were drawn from uniform or bimodal group-level distributions,
the hierarchical BPA with truncated normal group-level distributions provided accurate individual
go parameter estimates. Unfortunately, the hierarchical BPA is less robust to misspecification of
the group-level distribution of the individual stop parameters. When the true stop parameters were
drawn from uniform or bimodal group-level distributions, the hierarchical BPA with truncated nor-
mal group-level distributions resulted in biased parameter estimates, particularly for the σstop and
τstop parameters. Fortunately, the bias decreased as the number of participants and especially as
the number of trials increased. The finding that the go parameters are more robust to misspeci-
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fication of the group-level distributions is not surprising. The go parameters are estimated based
on the go RTs as well as the signal-respond RTs. Also, the sensitivity analyses —similar to typical
stop-signal studies— featured three times as many go trials as stop-signal trials. As a result, the
go parameters are more strongly constrained by the data and are less strongly influenced by their
group-level distribution than the stop parameters.

Moreover, the sensitivity analyses indicated that misspecification of the group-level distribu-
tions often results in convergence problems. We therefore recommend researchers to carefully
monitor the convergence of the individual parameter estimates. If there are reasons to suspect
that the hierarchical assumptions are violated, we advise users to inspect the distribution of the
individual go and stop parameters obtained either from the individual BPA or from the hierarchical
BPA with very weak priors for the group-level parameters. If these preliminary analyses indicate
that the distribution of the individual parameters substantially deviates from normality, one may
use the unconstrained individual go and stop parameters. Alternatively, if substantive knowledge
of the form of the group-level distributions is available, the hierarchical BPA may be adapted
to accommodate the desired (mixture) distribution. The reader is referred to the supplemental
materials for the detailed results of the sensitivity analyses for the hierarchical BPA.

Conclusion

Here we introduced a novel Bayesian parametric method that provides for the estimation of entire
distribution of SSRTs. The new method enables researchers to evaluate differences in the shapes
of SSRT distributions between various clinical populations or experimental groups. In doing so,
our Bayesian parametric approach aids the interpretation of stop-signal data and may reveal some
hitherto unknown aspects of response inhibition.
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Abstract

The stop-signal paradigm is frequently used to study response inhibition. In this paradigm,
participants perform a two-choice response time task where the primary task is occasionally
interrupted by a stop-signal that prompts participants to withhold their response. The primary
goal is to estimate the latency of the unobservable stop response (stop signal reaction time or
SSRT). Recently, Matzke, Dolan, Logan, Brown, and Wagenmakers (2013) have developed a
Bayesian parametric approach that allows for the estimation of the entire distribution of SSRTs.
The Bayesian parametric approach assumes that SSRTs are ex-Gaussian distributed and uses
Markov chain Monte Carlo sampling to estimate the parameters of the SSRT distribution. Here
we present an efficient and user-friendly software implementation of the Bayesian parametric
approach —BEESTS— that can be applied to individual as well as hierarchical stop-signal
data. BEESTS comes with an easy-to-use graphical user interface and provides users with
summary statistics of the posterior distribution of the parameters as well various diagnostic
tools to assess the quality of the parameter estimates. The software is open source and runs
on Windows and OS X operating systems. In sum, BEESTS allows experimental and clinical
psychologists to estimate entire distributions of SSRTs and hence facilitates the more rigorous
analysis of stop-signal data.

Response inhibition —the ability to stop an ongoing response— is frequently studied using
the stop-signal paradigm. In the stop-signal paradigm (Lappin & Eriksen, 1966; Logan & Cowan,
1984), participants perform a two-choice visual response time (RT) task, such as responding to the
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color or the shape of the stimuli. This primary task is occasionally interrupted by a stop-signal
that instructs participants not to respond on that trial. The goal is to estimate the latency of the
unobservable stop response (stop-signal RT; SSRT).

Based on the independent horse-race model (Logan, 1981; Logan & Cowan, 1984), various meth-
ods are available to estimate SSRTs (e.g., Logan, 1994; Verbruggen & Logan, 2009; Verbruggen,
Chambers, & Logan, 2009). Over the past decades, the horse-race model has been extensively used
to estimate stopping latencies and compare the efficiency of response inhibition between different
age groups (e.g., Kramer et al., 1994; Ridderinkhof et al., 1999; Schachar & Logan, 1990; Williams
et al., 1999) and clinical populations (Oosterlaan et al., 1998; Schachar & Logan, 1990; Schachar
et al., 2000). Unfortunately, most standard methods to estimate SSRTs only provide a summary
measure of the latency of the stop process, such as the mean or the median SSRT.

Several researchers have argued, however, that the adequate analysis of RT data should not only
focus on mean RT, but should consider the shape of the entire RT distribution (e.g., Heathcote et
al., 1991; Matzke & Wagenmakers, 2009). The shape of SSRT distributions may, for example, differ
between different clinical populations, without necessary differences in mean SSRT. Ignoring the
shape of SSRT distributions may thus lead to incorrect conclusions about differences in response
inhibition between groups.

To allow for a more thorough analysis of stop-signal data, Matzke et al. (2013) have recently
developed a Bayesian parametric approach (BPA) that enables researchers to estimate the entire
distribution of SSRTs (see Logan, Van Zandt, Verbruggen, and Wagenmakers, 2014; for an al-
ternative approach). The BPA assumes that SSRTs follow an ex-Gaussian distribution and uses
Bayesian parameter estimation to obtain posterior distributions for the model parameters. The
BPA allows researchers to compare and evaluate differences in the ex-Gaussian stop parameters
between experimental and clinical groups. By doing so, the BPA has the potential to facilitate
the interpretation of stop-signal data and contribute to new insights on the nature of response
inhibition.

Parameter estimation in the BPA currently relies on the popular Bayesian statistical package
WinBUGS (Bayesian inference Using Gibbs Sampling for Windows; Lunn, Jackson, Best, Thomas,
& Spiegelhalter, 2012). The practical usefulness of the BPA is, however, severely limited by the
disadvantages of the present implementation. The WinBUGS routine is extremely time consuming
and rather user-unfriendly. For instance, WinBUGS requires several hours to produce reliable
parameter estimates for a single participant and it requires several days to fit a hierarchical data
set. It is therefore all but impossible for experimental and clinical psychologists to take advantage
of the theoretical progress offered by the BPA.

In order to overcome this obstacle and promote the broader application of the Bayesian analysis
of stop-signal data, we introduce a relatively fast, user-friendly software that allows for the estima-
tion of entire SSRT distributions. BEESTS (Bayesian Ex-Gaussian Estimation of STop-Signal
RT distributions) can be applied to individual and hierarchical stop-signal data and comes with
an easy-to-use graphical user interface. BEESTS provides users with summary statistics of the
posterior distribution of the parameters as well as various diagnostic tools to assess the quality of
the parameter estimates.

The outline of the paper is as follows. First, we describe the Bayesian parametric approach
in more detail. Second, we introduce BEESTS, present the installation instructions, and describe
the various analysis and output options provided by the software. Third, we illustrate the use of
BEESTS with experimental stop-signal data. The last section concludes.
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4.1. The Bayesian Parametric Approach

4.1 The Bayesian Parametric Approach

Rationale and Assumptions

According to the standard horse-race model (Logan, 1981; Logan & Cowan, 1984), performance in
the stop-signal paradigm can be conceptualized as a horse-race between two independent processes
that compete against each other: a go-process that is initiated by the primary task “go” stimulus
and a stop-process that is generated by the stop-signal. As shown in Figure 4.1, if the go-process
finishes before the stop-process, the primary response is executed; if the stop-process finishes before
the go-process, the primary response is inhibited. The shorter the time interval between the onset
of the go-stimulus and the onset of the stop-signal (i.e., stop-signal delay; SSD), the more likely
participants are to inhibit their response on the primary task (see also Matzke et al., 2013).

onset go stimulus onset stop signal

SSD

internal response to stop signal

SSRT time

go RT distribution

P(respond | stop signal) P(inhibit | stop signal)

Figure 4.1 Graphical representation of the independent horse-race model. The success of response
inhibition is determined by the relative finishing times of the go and the stop process. Primary
task “go” RTs that are longer than SSD + SSRT are successfully inhibited (i.e., white area); go
RTs that are shorter than SSD + SSRT escape inhibition and result in signal-respond RTs (i.e.,
gray area; see also Matzke et al., 2013). Constant SSRT is assumed.

The Bayesian parametric approach (BPA) is based on the rationale of the standard horse-race
model, but it assumes that primary task “go” RTs and SSRTs are both independent random
variables (i.e., complete horse-race model). As shown in Figure 4.2, the BPA assumes that the
distribution of RTs that escape inhibition (i.e., signal-respond RTs) can be viewed as a censored
go RT distribution. The censoring point is assumed to be drawn from the SSRT distribution
and can take on a different value on each stop-signal trial (e.g., SSD + SSRT1, SSD + SSRT2,
and SSD + SSRT3). The estimation of the SSRT distribution therefore involves simultaneously
estimating the parameters of the go RT distribution and its censoring distribution (see also Matzke
et al., 2013).

The BPA assumes that the go RTs and SSRTs are ex-Gaussian distributed (Heathcote et al.,
1991; Hockley, 1982, 1984; Matzke & Wagenmakers, 2009; Ratcliff, 1978, 1993; Ratcliff & Murdock,
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onset go stimulus onset stop signal

SSD SSRT1

SSRT2

SSRT3

time

go RT distribution

Stop−signal RT distribution

Signal−respond RT distribution

Figure 4.2 Assumptions of the Bayesian parametric approach. The BPA treats the distribution
of signal-respond RTs (i.e., gray area) as a go RT distribution that is censored by the SSRT
distribution. The censoring point can take on a different value on each stop-signal trial (e.g.,
SSD + SSRT1, SSD + SSRT2, and SSD + SSRT3). If the go RT on a given trial is longer than
SSD + SSRT , the go RT is successfully inhibited. In contrast, if the go RT on a given trial is
shorter than SSD+SSRT , the go RT cannot be inhibited and results in a signal-respond RT. See
Matzke et al. (2013) for details.

1976). The ex-Gaussian is a three-parameter distribution that is given by the convolution of a
Gaussian and an exponential distribution. The µ and σ parameters are the mean and the standard
deviation of the Gaussian component, respectively, and τ is the mean of the exponential component.
The µ and σ parameters reflect the leading edge and mode of the distribution, whereas τ reflects
the tail of the distribution. As shown in Figure 4.3, the ex-Gaussian is a positively skewed unimodal
distribution that can excellently accommodate the shape of empirical RT data.

The probability density function of the ex-Gaussian is

f(t;µ, σ, τ) =
1

τ
exp

(

µ− t

τ
+

σ2

2τ2

)

Φ

(

t− µ

σ
− σ

τ

)

for σ > 0, τ > 0, (4.1)

where Φ is the standard normal distribution function, given by
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∫
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−∞
exp

(−y2

2

)
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The mean and variance of the ex-Gaussian distribution equals

E(t) = µ+ τ (4.3)
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and

Var(t) = σ2 + τ2, (4.4)

respectively. Note that the BPA does not assume that the ex-Gaussian parameters correspond to
specific cognitive processes (Matzke & Wagenmakers, 2009); the ex-Gaussian distribution is used
as a convenient descriptive model to summarize the distribution of go RTs and SSRTs. As an
alternative, one may use, for instance, the ex-Wald distribution (W. Schwarz, 2001), or “shifted”
RT distributions with a parameter–dependent lower bound, such as the shifted Wald, the shifted
Weibull or the shifted log normal distribution (e.g., Heathcote, 2004; Heathcote et al., 2004; Rouder,
2005; Rouder et al., 2005; see also Luce, 1986 for alternatives.)
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Figure 4.3 The shape of the ex-Gaussian distribution as a function of the µ, σ, and τ parameters.
The distributions were generated with the following parameter sets: µ = 0.5, σ = 0.05, τ = 0.3
(Panel 1); µ = 1, σ = 0.05, τ = 0.3 (Panel 2); µ = 0.5, σ = 0.2, τ = 0.3 (Panel 3); and µ = 0.5,
σ = 0.05, τ = 0.8 (Panel 4).

Bayesian Parameter Estimation and Priors

As explained in Matzke et al. (2013), the BPA simultaneously estimates the µgo, σgo, and τgo param-
eters of the go RT distribution and the µstop, σstop, and τstop parameters of the SSRT distribution.
The BPA relies on Bayesian parameter estimation and therefore involves specifying the prior distri-
bution of the model parameters. BEESTS uses slightly different priors than the WinBUGS imple-
mentation of the BPA. Note however that Bayesian parameter estimation is insensitive to the choice
of the prior as long as sufficiently diagnostic data are available (e.g., Edwards et al., 1963; Gill,
2002; M. D. Lee & Wagenmakers, 2013). The prior distributions of the model parameters for the
BEESTS implementation are listed in the Appendix C.1. The ability of BEESTS to recover under-
lying true parameter values with the present prior setting has been validated in a series of simulation
studies. See the supplemental materials at http://dora.erbe-matzke.com/publications.html
for a summary of the results of the parameter recoveries.

The BPA relies on Markov chain Monte Carlo sampling (MCMC; Gamerman & Lopes, 2006;
Gilks et al., 1996) to obtain posterior distributions for the go and stop parameters. Figure 4.4
illustrates the basic concepts of Bayesian parameter estimation using MCMC sampling. The bot-
tom panel of Figure 4.4 shows sequences of values (i.e., MCMC chains) sampled from the posterior
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distribution of the τstop parameter. The accuracy of the sampling process can be increased by run-
ning multiple chains, discarding the beginning of each chain as burn-in, and by thinning the chains
to decrease autocorrelation. In the present illustration, we ran three chains, each with different
starting values and retained 2, 000 iterations per chain, resulting in a total of 6, 000 samples from
the posterior distribution (see also Matzke et al., 2013).

The top panel of Figure 4.4 shows the prior and posterior distribution of the τstop parameter.
The horizontal gray line at the bottom of the figure shows the prior distribution of τstop. The
prior is updated by the incoming data to yield the posterior distribution. The histogram and the
gray density plot show the distribution of the samples drawn from the posterior distribution of τstop
collapsed over the three MCMC chains. The posterior distribution quantifies the uncertainty about
the estimate of τstop. The central tendency of the posterior, such as the median, is often used as a
point estimate of the parameter. The dispersion of the posterior, such as the standard deviation
or the percentiles, quantifies the precision of the parameter estimate; the larger the dispersion, the
greater the uncertainty in the estimated parameter. For example, the horizontal line at the top
of Figure 4.4 ranges from the 2.5th to the 97.5th percentile of the posterior (i.e., 95% Bayesian
credible interval), indicating that we can be 95% confident that the true value of τstop lies within
this range (see also Matzke et al., 2013).

Before interpreting the parameter estimates, it is crucial to ensure that the chains have con-
verged from their starting values to their stationary distribution. First, we verify that the posterior
distributions of the model parameters are unimodal. Second, we run multiple MCMC chains and
ascertain that the chains have mixed well. At convergence, the individual MCMC chains should
look like “hairy caterpillars” and should be indistinguishable from one another. Lastly, we com-
pute the R̂ (Gelman & Rubin, 1992) convergence diagnostic measure for each model parameter.
R̂ compares the between-chain variability to the within-chain variability. As a rule of thumb, R̂
should be lower than 1.1 if the chains have properly converged. In case of convergence problems,
we recommend that users increase the number of samples, the length of the burn-in period, and
the degree of thinning.

The BPA can be applied to individual as well as hierarchical stop-signal data. See Matzke et al.
(2013) for the graphical representation of the individual and hierarchical BPA models. For the indi-
vidual analysis, the goal is to estimate the ex-Gaussian go and stop parameters for each participant
separately. In contrast, for the hierarchical analysis (e.g., Farrell & Ludwig, 2008; Gelman & Hill,
2007; M. D. Lee, 2011; Matzke & Wagenmakers, 2009; Rouder et al., 2005), the BPA assumes that
the participant-level go and stop parameters are drawn from group-level distributions. The group-
level distributions specify the between-subject variability of the participant-level parameters. The
group-level distributions are themselves characterized by a set of group-level parameters. The goal
is to simultaneously estimate the group-level parameters as well as the participant-level go and stop
parameters. As explained in Matzke et al. (2013), hierarchical modeling is particularly valuable in
situations with only a small number of observations per participant and moderate between-subject
variability in parameter values (Gelman & Hill, 2007). In such situations, Bayesian hierarchical
modeling typically yields less variable and more accurate estimates than single-level parameter es-
timation (Farrell & Ludwig, 2008; Rouder et al., 2005).The advantages of the hierarchical approach
are less pronounced in situations with a large number of observations per participant. Similarly,
in settings with only a few participants —a typical scenario in psychophysical experiments— the
group-level parameters cannot be estimated precisely, a problem that diminishes the benefits of
hierarchical modeling. In these cases, the individual approach may perform similarly well as the
hierarchical approach.
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Figure 4.4 Illustration of MCMC-based Bayesian estimation for the τstop parameter with the indi-
vidual BPA. The histogram in the top panel figure shows the posterior distribution of τstop. The
corresponding gray line indicates the fit of a nonparametric density estimator. The horizontal
black line at the top of the top panel shows the 95% Bayesian credible interval. The horizontal
gray line at the bottom of the top panel shows the prior distribution of τstop. The solid, dashed
and dotted lines in the bottom panel figure represent the different sequences of values (i.e., MCMC
chains) sampled from the posterior distribution of τstop. To create the histogram in the top panel,
the sampled values were first collected across the three chains and then projected onto the x–axis
of the top panel figure (see also Matzke et al., 2013).
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4.2 Releasing the BEESTS

BEESTS is a cross-platform open-source software for the estimation of SSRT distributions with
the Bayesian parametric approach (Matzke et al., 2013). BEESTS relies on Python for parameter
estimation and on R (R Core Team, 2012) for the post-processing of the posterior distribution
of the model parameters. Specifically, BEESTS uses the Python-based toolboxes kabuki (Wiecki,
Sofer, & Frank, 2013) and PyMC (Patil, Huard, & Fonnesbeck, 2010) to construct the model and
to generate samples from the posterior distribution of the model parameters using Metropolis-
within-Gibbs sampling (Tierney, 1994), respectively. For computational efficiency, the likelihood
functions are coded in Cython (Behnel et al., 2011). Once the model parameters are estimated,
BEESTS relies on R to compute summary statistics for the posterior distribution of the model
parameters and to assess the quality of the parameter estimates. As shown in Figure 4.5, BEESTS
is equipped with an easy-to-use graphical user interface (GUI).

4.3 Installation

BEESTS is a stand-alone and open source software released under the Affero General Public
License. BEESTS runs on Windows (Windows XP and Windows 7) and OS X (Mountain Lion)
operating systems. The software is freely available at http://dora.erbe-matzke.com/software
.html. To install BEESTS on Windows, download BEESTS-1.2.zip and unpack the zip file at any
desired location on your computer. Start the GUI by clicking on BEESTS.exe. To install BEESTS
on OS X, download BEESTS-1.2.dmg, double-click the file, and install it on your computer.

4.4 Loading Data

The top panels of Figure 4.6 show the required data format for the analysis. Data files should be
saved as csv (i.e., comma-separated values) files. For the individual analysis, the first row of the
data file must contain the column names "ss_presented","inhibited","ssd",and "rt". The
remaining rows contain the data for each go and stop-signal trial. For the hierarchical analysis, the
first row of the data file must additionally contain the column name "subj_idx". See Table 4.1
for instructions on response coding and the examples folder in BEESTS for examples of the data
format.

To load the data file, click on Open in the File menu and follow the instructions. Based on
the data format, BEESTS automatically infers whether an individual or hierarchical analysis is
appropriate: data files without the "subj_idx" column are analyzed with the individual BPA,
whereas data files with the "subj_idx" column are analyzed with the hierarchical BPA.

4.5 Analysis

Once the data are loaded, users can specify the details of the MCMC sampling, the required output,
and the preferred number of CPU cores used by BEESTS.

Sampling

BEESTS allows users to specify the following aspects of the sampling run. Typical values of the
input arguments are shown in Figure 4.5.
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Figure 4.5 Graphical user interface for BEESTS. See text for details.

81



4. Release the BEESTS: Bayesian Estimation of Ex-Gaussian Stop-Signal

Reaction Time Distributions

Table 4.1 Response Coding for the Hierarchical BEESTS Analysis

"subj_idx" "ss_presented" "inhibited" "ssd" "rt"

1 0 -999 -999 656
1 1 0 300 469
1 1 1 300 -999

Note. The "subj_idx" column contains the participant number. The "ss_presented" column contains the trial
type, where go trials are coded with 0 and stop-signal trials are coded with 1. The "inhibited" column contains
the inhibition data, where signal-respond trials are coded with 0 (i.e., unsuccessful inhibition), signal-inhibit trials
are coded with 1 (i.e., successful inhibition), and go trials are coded with -999. The "ssd" column contains the
stop-signal delay in ms., where go trials are coded with -999. The "rt" column contains the go RT for go trials and
the signal-respond RT for signal-respond trials in ms., where signal-inhibit trials are coded with -999.

Number of Chains

Use the Number of chains option to specify the number of MCMC chains, i.e., sequences of values
sampled from the posterior distribution of the parameters. The start values are automatically set
to the maximum a posteriori probability (MAP) estimates of the parameters.

Samples

Use the Samples option to specify the total number of MCMC samples per chain.

Burn-In

Use the Burn-in option to specify the number of burn-in samples to discard at the beginning of
each chain.

Thinning

Use the Thinning option to specify the degree of thinning within each chain. For instance, a
thinning factor of 12 means that only every 12th MCMC sample will be retained.

Output

All output will be saved in the directory where the data file is located. BEESTS automatically saves
the posterior samples from each chain to a separate csv file (e.g., name.datafile_parameters1.csv,
name.datafile_parameters2.csv,etc.). If multiple chains are run, BEESTS automatically dis-
plays the R̂ statistic for each model parameter (see Figure 4.5).

As shown in Figure 4.5, BEESTS allows users to request the following additional output. If
Estimates for is set to All in a hierarchical analysis, BEESTS will provide the selected output
options (i.e., summary statistics, density plots of the posterior distributions, and MCMC trace
plots) for the group-level parameters and for each participant separately. If Estimates for is
set to Only-group, BEESTS will provide the selected output options only for the group-level
parameters.

Summary Statistics

Use the Summary statistics option to obtain a csv file with the summary statistics (i.e., mean,
standard deviation, and quantiles) of the posterior distribution of the model parameters and of
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the corresponding mean and standard deviation of the go and SSRT distribution (see Equation 4.3
and Equation 4.4).

Posterior Distributions

Use the Posterior distributions option to obtain a pdf file with the density plots of the posterior
and the prior distribution of the model parameters.

MCMC Chains

Use the MCMC chains option to obtain a pdf file with trace plots for the MCMC chains of the
model parameters.

Deviance

Use the Deviance option to obtain the deviance values from each chain in a separate csv file (e.g.,
name.datafile_deviance1.csv,name.datafile_deviance2.csv,etc.). The deviance values may
be used to compute the Deviance Information Criterion (DIC, e.g., Spiegelhalter, Best, Carlin, &
van der Linde, 2002) measure of model selection.

Goodness-of-Fit

Use the Goodness-of-fit option to assess the absolute goodness-of-fit of the model using posterior
predictive model checks. As explained in Matzke et al. (2013), the adequacy of the model can be
assessed by generating predicted data using the posterior distributions of the parameters. If the
model adequately describes the data, the predictions based on the model parameters should closely
approximate the observed data. The model checks can be formalized by computing posterior
predictive p values (e.g., Gelman & Hill, 2007; Gelman et al., 1996, but see Bayarri & Berger,
1998). Extreme p values close to 0 or 1 indicate that the BPA does not describe the observed data
adequately.

For each individual participant, BEESTS uses the median of the observed and predicted signal-
respond RTs as test statistics. The Predictions option can be used to specify the number of
predicted data sets. BEESTS then randomly samples the specified number of parameter vectors
from the joint posterior of the individual go and stop parameters. Next, BEESTS generates the
specified number of predicted stop-signal data sets for each SSD using the corresponding number
of stop-signal trials and the chosen parameter vectors. For each predicted data set, BEESTS then
computes the median signal-respond RT. Lastly, for each SSD, BEESTS computes the one-sided
posterior predictive p value given by the fraction of times that the predicted median signal-respond
RT is greater than the observed median signal-respond RT. Corresponding two-sided p values can
be computed as 2 × min(p, 1 − p). Note however that two-sided p values are well defined only
when the test statistic has a symmetric distribution. Note also that BEESTS assesses model
fit on all SSDs that contain at least one observed signal–respond RT. In order to obtain stable
median signal-respond RTs, however, we advise users to interpret the results only on SSDs with a
reasonable number of observed signal-respond RTs.

The output of the posterior predictive model checks consists of (1) a csv file listing for each
SSD the number of observed signal-respond RTs, the observed median signal-respond RT, the
average of the predicted median signal-respond RTs, and the one-sided and two-sided posterior
predictive p value and (2) a pdf file with a graphical summary of the model checks using violin
plots. Violin plots (e.g., Hintze & Nelson, 1998) combine information available from density plots
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with information about summary statistics in the form of box plots. Note that irrespective of
the type of analysis (individual or hierarchical), the goodness-of-fit of the model is assessed on a
participant level using the parameter values of the individual participants (see Figure 4.8).

Options: Max CPU Cores to Use

Use the Max CPU cores to use option to specify the number of CPU cores to use during the
sampling process. If multiple MCMC chains are requested, BEESTS can run the chains in parallel
by allocating each chain to a different CPU core in order to increase speed. The default number
of CPU cores used by BEESTS is the number of cores available on the computer minus one.

Running the Analysis

Once the details of the sampling process and the required output are specified, start the analysis
by clicking on Run. As shown in Figure 4.5, BEESTS automatically displays the progress of the
sampling. If multiple MCMC chains are run in parallel, BEESTS displays the progress of only
one of the MCMC chains (i.e., the main process). The analysis can be stopped by “killing” the
(parallel) processes in the Task Manager. Use the Clear command to clear the working space.

4.6 Empirical Data Examples: Individual and Hierarchical
Analysis

In this section, we illustrate the use of BEESTS with the stop-signal data of 20 participants from
the 40% stop-signal condition of the first experiment reported in Bissett and Logan (2011). The
data set featured a relatively large number of 720 go trials and 480 stop-signal trials per participant.
See Matzke et al. (2013) for the details on the data pre-processing and the model fitting. For all of
the participants, the BEESTS implementation yielded parameter estimates that are highly similar
to the ones obtained from the WinBUGS routine. For a comparison of the parameter estimates
from the BEESTS and the WinBUGS implementation, the reader is referred to the supplemental
materials and to the empirical data examples in Matzke et al. (2013).

Due to relatively high autocorrelations between the parameters, we ran long chains, discarded
the beginning of the chains as burn-in and thinned each chain. The results reported below are
based on 6,000 retained samples, using Number of chains = 3, Samples = 36000, Burn-in =

12000, and Thinning = 12.

Individual Analysis

In this section, we present the results of fitting the data of Participant 1 with the individual BPA.
See the examples folder for the data set. Using three CPU cores, the sampling took approximately
23 minutes with BEESTS. The same analysis took about 15 hours with WinBUGS. The top left
panel of Figure 4.6 shows the required data format for the individual analysis. Figure 4.7 shows the
posterior and prior distributions (left panel; option Posterior distributions) and the MCMC
chains (right panel; option MCMC chains) for the six model parameters. The prior distributions
are adequately updated; the posteriors are substantially narrower than the priors. The posterior
distributions and the three MCMC chains do not show signs of convergence problems. All R̂
values were lower than 1.05. The middle left panel of Figure 4.6 shows the summary statistics of
the posterior distribution of the model parameters (option Summary statistic). The posterior
distributions are estimated well as evidenced by the relatively small posterior standard deviations.
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Figure 4.6 BEESTS input and output. The left panels show input and output for the individual
analysis. The right panels show input and output for the hierarchical analysis. The top panels show
the required data format. The middle panels show the output of the Summary statistic option.
For the hierarchical analysis, only the group-level mean and group-level variability (i.e., standard
deviation) parameters are shown. The bottom panels show partial output for the Goodness-of-fit
option for Participant 1 in the Bissett and Logan (2011) experiment. SRRT = signal-respond RT.

The go parameters are generally estimated more precisely than the stop parameters because the go
parameters are estimated based on the go RTs as well as the signal-respond RTs and are therefore
better constrained by the data.

The bottom left panel of Figure 4.6 shows the summary of the posterior predictive model checks
(option Goodness-of-fit) using 1,000 samples from the joint posterior of the model parameters
(Samples = 1000). As mentioned above, we advise users to assess model fit only on SSDs with
a reasonable number of observed signal-respond RTs. For instance, we assessed goodness-of-fit
only on SSDs with at least 10 observed signal-respond RTs. The one-sided p values on these five
SSDs (i.e., 200, 250, 300, 350, and 400 ms) are far from 0 or 1 and the two-sided p values are all
above 0.05. The left panel of Figure 4.8 shows the corresponding graphical summary for the model
checks. For the selected SSDs, the observed median signal-respond RTs (i.e., black triangles) are
well within the 2.5th and 97.5th percentile of the predicted median signal-respond RTs (see gray
violin plots), and are adequately approximated by the median of the predicted median signal-
respond RTs (i.e., white circles). The results of the posterior predictive model checks indicated
thus that the BEESTS analysis appropriately accounted for the observed data.
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Figure 4.7 Posterior (black solid lines) and prior distributions (black dotted lines; left panel) and
MCMC chains (right panel) of the model parameters for Participant 1 in the Bissett and Logan
(2011) data set obtained with the individual BPA.

Hierarchical Analysis

As explained above, the hierarchical approach has the potential to provide accurate parameter esti-
mates with relatively few observations per participant. To illustrate the benefits of the hierarchical
approach over the individual BPA with scarce data, this section presents the results of fitting a
subsample of the observations from the Bissett and Logan (2011) data set with the hierarchical as
well as the individual BPA. For each of the 20 participants, we fit a randomly selected 90 go RTs,
30 signal-respond RTs, and 30 successful inhibitions with the hierarchical BPA. We then compared
the results from the hierarchical analysis to the results from fitting the same subsample of data
with the individual BPA. Using three CPU cores, the hierarchical analysis took approximately 3.5
hours with BEESTS. The same analysis took about 100 hours with WinBUGS.

The top right panel of Figure 4.6 shows the required data format for the hierarchical analysis.
Figure 4.9 shows the posterior and prior distributions (top panel) and the MCMC chains (bottom
panel) for the group-level mean and standard deviation parameters. The prior distribution of the
group-level parameters are adequately updated; the posteriors are substantially narrower than the
priors and the chains have mixed well. The R̂ values for all group-level and individual parameters
were lower than 1.05. The middle right panel of Figure 4.6 shows the summary statistics of the
posterior distribution of the group-level mean and standard deviation parameters. The posterior
distributions are estimated relatively precisely. Note that if the Estimates for All option is
selected, BEESTS also produces output (i.e., density plots of the posteriors, MCMC trace plots,
and summary statistics) for the individual go and stop parameters for each participant separately.

The bottom right panel of Figure 4.6 shows the summary of the posterior predictive model
checks for Participant 1 using 1,000 samples from the joint posterior of the participant-level model
parameters obtained with the hierarchical BPA. All posterior predictive p values are well within an
acceptable range. Note, however, that the median signal-respond RTs —observed and predicted—
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(a) Individual BPA (b) Hierarchical BPA

Figure 4.8 Results of the posterior predictive model checks for Participant 1 in the Bissett and
Logan (2011) data set with the individual (panel a) and the hierarchical (panel b) BPA. See text
for a detailed description of the posterior predictive analyses. For each SSD, the figures show
the observed median signal-respond RT (black triangle), a density plot of the predicted median
signal-respond RTs (gray violin plot), a boxplot ranging from the 25th to the 75th percentile of the
predicted median signal-respond RTs, and the median of the predicted median signal-respond RTs
(white circle). SRRT = signal-respond RT.

are based on only a few observations. The right panel of Figure 4.8 shows the corresponding
graphical summary of the posterior predictive model checks. All observed median signal-respond
RTs are well within the range of the median signal-respond RTs predicted by the joint posterior
of the model parameters. Due to the scarcity of the data, however, there is large uncertainty in
the predicted median signal-respond RTs. Compare the results of the posterior predictive model
checks in the bottom two panels of Figure 4.8. The violin plots in the left panel show the predicted
median signal-respond RTs from the individual analysis of the data of Participant 1 based on the
full 1,200 trials. The violin plots in the right panel show the predicted median signal-respond RTs
from the hierarchical analysis of the data of Participant 1 based on a subsample of only 150 trials.
Because the hierarchical analysis is based on substantially fewer observations than the individual
analysis of the full data set presented in the previous section, the predicted median signal-respond
RTs in the right panel are more spread out than the predicted median signal-respond RTs in the left
panel. Posterior predictive p values resulting from such unstable observed and predicted median
signal-respond RTs should be interpreted with caution.

To illustrate the benefits of the hierarchical approach over the individual BPA with scarce data,
we compared the parameter estimates from the hierarchical analysis with estimates obtained from
the individual analysis of the same subsample of 150 trials. As mentioned above, hierarchical mod-
eling generally results in more accurate and less variable estimates than single-level estimation.
Figure 4.10 shows the posterior distribution of the stop parameters of Participant 1 obtained with
the hierarchical and the individual BPA using the same subsample of 150 observations. The gray
density plots show the posterior distribution of the stop parameters from the hierarchical BPA. The
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Figure 4.9 Posterior distributions and MCMC chains of the group-level model parameters in the
Bissett and Logan (2011) data set obtained with the hierarchical BPA. The first and third rows
show posterior (black solid line) and prior distributions (black dotted line) and MCMC trace plots
for the group-level mean parameters, respectively. The second and fourth rows show posterior
and prior distributions and trace plots for the group-level variability (i.e., group-level standard
deviation) parameters, respectively.

black density plots show the posterior distribution of the stop parameters from the individual anal-
ysis. The posterior distributions of the stop parameters estimated with the hierarchical approach
are less variable (i.e., smaller 95% Bayesian credible interval) than the posteriors estimated with
the individual BPA. Also, the posterior medians from the hierarchical analysis are —as expected—
shrunk towards their corresponding group mean (see also Matzke et al., 2013).

4.7 Discussion

The horse-race model presents various opportunities to estimate the latency of response inhibition
in the stop-signal paradigm. Most methods, however, only focus on deriving a summary measure
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Figure 4.10 Posterior distribution of the stop parameters estimated from a subsample of the data
of Participant 1 with the individual and the hierarchical BPA. The solid black and gray lines show
the posterior distribution of the stop parameters and the corresponding 95% Bayesian credible
intervals obtained with the individual and the hierarchical BPA, respectively. The dashed black
and gray lines show the median of the posterior distributions obtained with the individual and the
hierarchical BPA, respectively (see also Matzke et al., 2013).

of SSRT. Recently, Matzke et al. (2013) have developed a Bayesian parametric approach (BPA)
that allows for the estimation of the entire distribution of stopping latencies. The goal of the
present paper was to promote the widespread application of the Bayesian analysis of stop-signal
data by introducing BEESTS, a relatively fast and user-friendly software implementation of the
BPA. BEESTS provides users with a range of output options, such as summary statistics of the
posterior distribution of the parameters and various diagnostic tools to assess the quality of the
estimates. Importantly, BEESTS is equipped with an easy-to-use graphical user interface.

BEESTS can be applied to individual as well as hierarchical stop-signal data. The advantage of
the individual approach lies in its simplicity. The advantage of the hierarchical approach lies in its
potential to provide accurate parameter estimates with relatively few observations per participant.
The choice between the individual and the hierarchical approach in practical applications depends
on a delicate balance between the quality of the data, the number of participants, the number of
trials per participant, and whether users are interested in obtaining accurate parameter estimates
on the participant level in order to examine individual differences or focus on group comparisons
and are satisfied with interpreting only the group-level parameters. Prior to data collection, users
are encouraged to generate synthetic data with varying number of trials and participants, fit the
data in BEESTS, and inspect the parameter estimates in order to assess the expected uncertainty
of the model parameters under the different scenarios and modeling approaches.

BEESTS assumes that go RTs and SSRTs are ex-Gaussian distributed and relies on Bayesian
parameter estimation to obtain estimates for the go and stop parameters. Note, however, that
the BPA itself does not hinge on the particular parametric form used to summarize the distribu-

89



4. Release the BEESTS: Bayesian Estimation of Ex-Gaussian Stop-Signal

Reaction Time Distributions

tions, nor is it heavily influenced by the exact choice of the prior distributions. In our experience,
the ex-Gaussian assumption and the corresponding (group-level and hyper) prior distributions im-
plemented in BEESTS provide a reasonable default setting. Nevertheless, interested users may
adapt the source code (https://github.com/twiecki/stopsignal) to accommodate alternative
parametric assumptions or different prior settings. Also, the posterior predictive model check im-
plemented in BEESTS using the median signal-respond RT is only one of many possible approaches
to assess the goodness-of-fit of the model. Users may adapt the source code to implement posterior
predictive model checks using alternative test statistics (see Matzke et al., 2013).

Conclusion

Here we introduced a user-friendly software package —BEESTS— that allows for the efficient
estimation of entire SSRT distributions using MCMC sampling. BEESTS allows researchers to
rigorously address important questions about the variability of stopping latencies, such as the
relationship between mean SSRT and SSRT variance. Similarly, BEESTS enables investigators to
assess differences in the shape of go RT and SSRT distributions between clinical populations or
experimental groups. BEESTS therefore facilitates the interpretation of stop-signal data and may
open fruitful new avenues for response inhibition research.
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Chapter 5

Bayesian Estimation of Multinomial

Processing Tree Models with

Heterogeneity in Participants and Items

This chapter is currently in press as:
Dora Matzke, Conor V. Dolan, William H. Batchelder, and Eric-Jan Wagenmakers (in press).

Bayesian estimation of multinomial processing tree models with heterogeneity in participants and
items.

Psychometrika.1

Abstract

Multinomial processing tree (MPT) models are theoretically motivated stochastic models for the
analysis of categorical data. Here we focus on a crossed-random effects extension of the Bayesian
latent-trait pair-clustering MPT model. Our approach assumes that participant and item effects
combine additively on the probit scale and postulates (multivariate) normal distributions for
the random effects. We provide a WinBUGS implementation of the crossed-random effects
pair-clustering model and an application to novel experimental data. The present approach
may be adapted to handle other MPT models.

5.1 Introduction

Multinomial processing tree (MPT) models are theoretically motivated stochastic models for the
analysis of categorical data. MPT models can be used to measure the contribution of the different
cognitive processes that determine performance in various experimental paradigms. Due to their
simplicity, MPT models have become increasingly popular over the last decades and have been
applied to a variety of areas in cognitive psychology (for reviews, see Batchelder & Riefer, 1999;
Erdfelder et al., 2009).

1The final publication is available at http://link.springer.com/article/10.1007/s11336-013-9374-9.
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MPT models assume that the observed category responses follow a multinomial distribution.
MPT models reparametrize the category probabilities of the multinomial distribution in terms
of a number of model parameters that are assumed to represent underlying cognitive processes.
The category probabilities are generally expressed as nonlinear functions of the underlying model
parameters. Specifically, MPT models assume that the observed response categories result from
one or more hypothesized sequences of cognitive events, a structure that can be represented by a
rooted tree architecture such as the one depicted in Figure 5.1. The formal properties of MPT
models are described by Hu and Batchelder (1994), Purdy and Batchelder (2009), and Riefer and
Batchelder (1988). For computer software for fitting and testing MPT models, see for instance Hu
and Phillips (1999), Moshagen (2010), and Wickelmaier (2011).

Traditionally, statistical inference for MPT models is carried out on data that are aggre-
gated across participants and items using the classical maximum likelihood approach (e.g., Hu
& Batchelder, 1994). This approach relies on the assumption of homogeneity in participants and
items, that is, the assumption that participants and items do not differ substantively in terms
of the cognitive processes or characteristics represented by the model parameters. However, het-
erogeneity in participants and items is more likely to be the rule rather than the exception. For
example, participant variables such as age and IQ are likely to influence performance on many
cognitive tests, and the same holds for item variables such as word frequency and word length.
The cognitive processes represented by the model parameters may not only be variable, but may
also be highly correlated. For example, two cognitive abilities that both reflect, say, some aspect of
memory retrieval are likely to be related, resulting in correlations between the model parameters
representing these abilities. Most importantly, in the presence of parameter heterogeneity, the
analysis of aggregated data may bias parameter estimation and statistical inference (e.g., Ashby,
Maddox, & Lee, 1994; Clark, 1973; Curran & Hintzman, 1995; Estes, 1956; Hintzman, 1980, 1993;
Klauer, 2006; Rouder & Lu, 2005; J. B. Smith & Batchelder, 2008).

In recent years, researcher have become increasingly interested in developing approaches to
MPT modeling that incorporate parameter heterogeneity (e.g., Klauer, 2006, 2010; Rouder, Lu,
Morey, Sun, & Speckman, 2008; J. B. Smith & Batchelder, 2010). These attempts typically involve
Bayesian hierarchical or multilevel modeling that allows the model parameters to vary either over
participants or over items in a statistically specified way (e.g., Farrell & Ludwig, 2008; Gelman,
Carlin, Stern, & Rubin, 2003; Gelman & Hill, 2007; Gill, 2002; M. D. Lee, 2011; M. D. Lee &
Newell, 2011; M. D. Lee & Wagenmakers, 2013; Nilsson et al., 2011; Rouder & Lu, 2005; Shiffrin
et al., 2008).

A prominent approach to deal with parameter heterogeneity in MPT models is the recently
developed latent-trait method (Klauer, 2010). The latent-trait approach relies on Bayesian hi-
erarchical modeling and postulates a multivariate normal distribution for the probit transformed
parameters. The latent-trait approach deals with parameter heterogeneity as a result of differences
either between participants or between items, but not both. In many situations, however, it is
reasonable to assume that the model parameters differ both between the participants and between
the particular items used in an experiment. In this case, both sources of variability —participant
and item— should be modeled as random effects.

The goal of the present paper is therefore threefold. First, we extend Klauer’s (2010) latent-
trait approach to accommodate heterogeneity in participants as well as items. Second, we illustrate
the use of the resulting crossed-random effects approach with novel experimental data. Lastly, to
facilitate the use of Bayesian hierarchical methods in MPT modeling, we provide software imple-
mentations of the latent-trait and the crossed-random effects approach using WinBUGS (Bayesian
inference Using Gibbs Sampling for Windows; Lunn et al., 2012; Lunn, Spiegelhalter, Thomas, &
Best, 2009; Lunn et al., 2000). WinBUGS is a general purpose statistical software for Bayesian
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analysis that implements the Markov chain Monte Carlo (MCMC; Gamerman & Lopes, 2006;
Gilks et al., 1996) algorithm necessary for Bayesian parameter estimation (for an introduction for
psychologists, see Kruschke, 2010b; M. D. Lee & Wagenmakers, 2013; Sheu & O’Curry, 1998).
We will use the pair-clustering model —one of the most extensively studied MPT models— as
an example. However, the crossed-random effects approach presented here may in principle be
adapted to handle many other MPT models as well.

The paper is organized as follows. The first section introduces various methods to accommodate
parameter heterogeneity in MPT models. The second section introduces the pair-clustering MPT
model in more detail. The third section presents the WinBUGS implementation of the latent-trait
pair-clustering model. The fourth section presents the crossed-random effects pair-clustering model
with the corresponding WinBUGS implementation and describes the results of applying the model
to novel experimental data. The fifth section concludes the paper.

5.2 Parameter Heterogeneity in MPT Models

The data for an MPT model consist of category responses from several participants to each of a
set of items. MPT model parameters, θp, p = 1, ..., P , represent probabilities of latent cognitive
capacities, such as attending to an item, storing an item in memory, retrieving an item from
memory, detecting the source of an item, making an inference, or guessing a response. Such
parameters are functionally independent and each has parameter space [0, 1].

Parameter estimation and statistical inference for MPT models is traditionally carried out on
response category frequencies aggregated over participants and items using maximum likelihood
methods (e.g., Hu & Batchelder, 1994). This approach is based on the assumption of parameter
homogeneity. If this assumption is violated, the analysis of aggregated data may lead to erroneous
conclusions. The consequences of variability are especially troubling for nonlinear models, such as
MPT models. In particular, reliance on aggregated data in the presence of parameter heterogeneity
may lead to biased parameter estimates, the underestimation of confidence intervals, and the
inflation of Type I error rates (e.g., Batchelder, 1975; Batchelder & Riefer, 1999; Heathcote, Brown,
& Mewhort, 2000; Klauer, 2006; Riefer & Batchelder, 1991; Rouder & Lu, 2005). Moreover, the
specific pattern of the parameter correlations can greatly influence the magnitude of the deleterious
effects of unmodeled parameter heterogeneity (Klauer, 2006).

In recent years, a growing number of researchers has started to use cognitive models that accom-
modate heterogeneity in participants and/or items (e.g., DeCarlo, 2002; Karabatsos & Batchelder,
2003; M. D. Lee, 2011; M. D. Lee & Webb, 2005; Navarro, Griffiths, Steyvers, & Lee, 2006;
Rouder & Lu, 2005; Rouder et al., 2007, 2003). In the context of MPT models, Klauer (2006) and
J. B. Smith and Batchelder (2008) proposed statistical tests for detecting parameter heterogeneity.
Moreover, a number of approaches that deal with parameter heterogeneity are now available for
MPT models.

These approaches rely on hierarchical modeling and postulate population-level (hyper) dis-
tributions for the model parameters. The population-level distributions describe the variability
in parameters either across participants or across items (e.g., Gelman et al., 2003; Gelman &
Hill, 2007; Gill, 2002). For instance, Klauer (2006; see also Stahl & Klauer, 2007) proposed the
use of latent-class MPT models with discrete population-level distributions to model the between-
participant variability and the correlations between the model parameters. In contrast, J. B. Smith
and Batchelder (2010) proposed to capture the between-participant variability of the model pa-
rameters using independent beta distributions (see also Batchelder & Riefer, 2007; Karabatsos &
Batchelder, 2003; Riefer & Batchelder, 1991).
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Here we will focus on yet another alternative —the latent-trait approach— that assumes a mul-
tivariate normal distribution for the participant differences in the probit transformed parameters
and accounts for the correlations between the model parameters (Klauer, 2010). The latent-trait
approach relies on Bayesian parameter estimation, but the MCMC algorithm for estimating the
model parameters is currently not implemented in any off-the-shelf software package.

All the above described alternatives deal with parameter heterogeneity as a result of differences
either between participants or between items, but not both, and rely on data that are aggregated
either over items or over participants. It is, however, often reasonable to assume that the model
parameters vary between participants as well as between items. In such situations, participant and
item differences should be modeled as crossed-random effects (Clark, 1973) and inference should
be based on participant-by-item data.

In psychometrics, there is a long tradition of simultaneously modeling variability in participants
and items (e.g., De Boeck, 2008; Lord & Novick, 1986). In cognitive psychology, in contrast, such
modeling constitutes a relatively recent trend (e.g., Baayen, 2008). For instance, Rouder and Lu
(2005) and Rouder et al. (2007) have recently developed hierarchical signal detection models that
incorporate random participant and item effects. In MPT modeling, attempts to simultaneously
model heterogeneity in participants and items are scarce.

Augmenting MPT models with participant and item variability requires a separate parameter
for each participant-item combination, θijp, where i = 1, ..., I indexes the participants, j = 1, ..., J
indexes the items, and p = 1, ..., P indexes the model parameters in θ = (θijp). This requirement
leads to I × J × P parameters for only I × J data points, resulting in problems with model
identification. We can reduce the number of parameters by using, for example, a reparametrization
of the two-parameter Rasch model (e.g., Fischer & Molenaar, 1995). We can then model each
participant-item combination using

θijp =
αipβjp

αipβjp + (1− αip)(1− βjp)
, (5.1)

for αip, βjp ∈ (0, 1) (Batchelder, 1998, 2009). Here αip and βjp denote the ith participant effect and
the jth item effect relating to parameter p, respectively. Karabatsos and Batchelder (2003) devel-
oped this Rasch model approach for the General Condorcet MPT Model. Batchelder and Crowther
(1997) also used a Rasch model decomposition and modeled the logit transformed participant-item
parameters as additive functions of the participant and item effects. See De Boeck and Partchev
(2012) for an alternative approach to model heterogeneity in participants and items in MPT models
using item response theory.

In the present paper we will explore an alternative that extends Klauer’s (2010) latent-trait
approach to simultaneously deal with heterogeneity in participants and items. Specifically, we
will model the probit transformed θijp parameters as additive combinations of participant and
item effects. The participant and item effects are then assumed to come from (multivariate)
normal distributions. Rouder et al. (2008) used a similar approach for a simple hierarchical process
dissociation model, where they assumed the additivity of the probit transformed participant and
item effects and modeled these using multivariate normal priors (see also Rouder & Lu, 2005;
Rouder et al., 2007).

To summarize, a number of hierarchical approaches are now available for MPT models to deal
with heterogeneity introduced either by the participants or by the items. The latest among these
methods, Klauer’s (2010) latent-trait approach, assumes a multivariate normal distribution for the
probit transformed parameters and incorporates the possibility of parameter correlations. The
latent-trait approach deals with parameter heterogeneity as a result of differences either between
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Figure 5.1 Multinomial processing tree for the pair-clustering paradigm.

participants or between items, but not for both sources. The latent-trait approach may readily be
augmented to accommodate crossed-random effects by assuming additivity of participant and item
effects on the probit scale.

5.3 The Pair-Clustering MPT Model

The pair-clustering model —one of the most extensively studied MPT models— was developed
for the measurement of the storage and retrieval processes that underlie performance in the pair-
clustering paradigm (e.g., Batchelder & Riefer, 1980, 1986). The pair-clustering paradigm involves
a free recall memory experiment, where participants study a list of words that consists of two types
of items: semantically related word pairs (e.g., dog-cat, father-son) and singletons (i.e., unpaired
words, such as paper and train). Participants are presented with the study list in a word-by-word
fashion, such as dog - paper - father - train - cat - son - etc. After the presentation of the study list,
participants are required to recall, in any order, as many words as they can. The general finding
is that semantically related word pairs are recalled consecutively, as a ‘pair-cluster’.

Since its development, the pair-clustering model has facilitated the interpretation of numer-
ous free recall phenomena, such as retroactive inhibition and the effects of presentation rate and
stimulus spacing (see Batchelder & Riefer, 1999). Moreover, the pair-clustering model has been
used successfully to investigate memory deficits in various age groups and clinical populations (e.g.,
Bröder, Herwig, Teipel, & Fast, 2008; Golz & Erdfelder, 2004; Riefer & Batchelder, 1991; Riefer,
Knapp, Batchelder, Bamber, & Manifold, 2002; see Batchelder & Riefer, 2007 for a review).

The architecture of the pair-clustering model can be represented by a rooted tree structure
shown in Figure 5.1. The responses of each participant fall into two independent category systems,
namely responses to word pairs and responses to singletons. Each category system k = 1, 2 is
modeled by a separate subtree of the multinomial model, where each subtree consists of a finite
number of branches terminating in one of the response categories Ckl, l = 1, ..., Lk. The recall of
word pairs is scored into four response categories (L1 = 4): C11, both members of a word pair are
recalled consecutively; C12, both members of a word pair are recalled but not consecutively; C13,
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only one member of a word pair is recalled; and C14, neither member of a word pair is recalled.
The recall of singletons is scored in two response categories (L2 = 2): C21, singleton is recalled;
and C22, singleton is not recalled.

The pair-clustering model explains the observed data by reparametrizing the category proba-
bilities, Pr(Ckl), of the multinomial distribution in terms of p = 1, ..., 4 functionally independent
model parameters θ = (c, r, u, a), with θp ∈ (0, 1). Parameter c represents the probability that a
word pair is clustered and stored in memory. Parameter r is the conditional probability that a
word pair is retrieved from memory, given that it was clustered. Parameter u is the conditional
probability that a member of a word pair is stored and retrieved from memory, given that the
word pair was not stored as a cluster. As the u parameter taps both the storage and retrieval of
unclustered words, it is typically regarded as a nuisance parameter. Parameter a is the probability
that a singleton is stored and retrieved from memory. As illustrated later, it is frequently assumed
that a = u, i.e., the probability that a singleton is stored and retrieved (a) equals the probability
that a member of a word pair is stored and retrieved, given that it was not clustered (u). The pair-
clustering model has four free response categories and it features at most four model parameters.
The identification of the pair-clustering model has been established elsewhere (e.g., Batchelder &
Riefer, 1986).

According to the model, if a word pair is successfully clustered and retrieved with joint proba-
bility cr, the two members of the word pair are retrieved consecutively, resulting in recall category
C11. If a word pair is successfully clustered (c) but is not retrieved (1-r), neither member of the
word pair is retrieved, resulting in recall category C14. The model thus assumes that clustered
pairs are either retrieved as a pair or are not retrieved at all. In contrast, if word pairs are not
clustered (1-c), either member of the word pair can be stored and retrieved independently with
probability u, resulting in recall category C12 or C13. Retrieved items from unclustered word pairs
are thus not recalled consecutively.

The probabilities of the six response categories are expressed in terms of the model parameters
as follows:

Pr(C11|θ) = cr

Pr(C12|θ) = (1− c)u2

Pr(C13|θ) = (1− c)2u(1− u)

Pr(C14|θ) = c(1− r) + (1− c)(1− u)2

Pr(C21|θ) = a

Pr(C22|θ) = 1− a.

(5.2)

The raw data in category system k consist of the response of a given participant i = 1, ..., I to
a particular item j = 1, ..., Jk, represented by a vector of length Lk. For a given participant-word
pair combination, the raw data nij,1 thus consist of a vector of length L1 = 4, where the entry
nijl equals 1 if the response of participant i to word pair j falls into response category l, and zero
otherwise. For example, if participant i recalls both members of word pair j consecutively (i.e.,
response category C11), the raw data are given by the vector (1, 0, 0, 0). Similarly, for a given
participant-singleton combination, the raw data nij,2 consist of a vector of length L2 = 2, where
nijl equals 1 if the response of participant i to singleton j falls into response category l, and zero
otherwise. For example, if participant i does not recall singleton j (i.e., response category C22), the
raw data are given by the vector (0, 1). Traditional analysis of pair-clustering data assumes that
observations over participant and items are independent and identically distributed. Parameter
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estimation is generally carried out on category responses summed over participants and items (e.g.,
Batchelder & Riefer, 1986).

5.4 The Latent-Trait Pair-Clustering Model

The main goal of the present paper is to augment Klauer’s (2010) Bayesian latent-trait approach
to handle heterogeneity in both participants and items. To facilitate this, we first introduce the
latent-trait approach in more detail and provide a WinBUGS implementation of the latent-trait
pair-clustering model. We then report the results of a parameter recovery study. In what follows
we assume that the items are homogeneous and use the latent-trait approach to model individual
differences between participants. Note, however, that the latent-trait approach may just as well
be used to capture the variability between items instead of participants. In this case, we would
assume that participants are homogeneous and model the differences between the items.

Introduction to the Latent-Trait Approach

The symbols and notation used in the text, figures, and the WinBUGS scripts are summarized in
Table 5.1. As we focus on parameter heterogeneity as a result of individual differences between
participants, the raw data are aggregated over the J1 word pairs and the J2 singletons but not over
the i = 1, ..., I participants. The data of participant i consist thus of the frequency of responses,
nikl, falling into recall category Ckl, k = 1, 2, l = 1, ..., Lk.

For each participant i in each category system k, the observed category frequencies are assumed
to follow a multinomial distribution with category probabilities Pr(Ckl|θi). Formally, let Bklm be
the mth branch terminating in Ckl, m = 1, ...,Mkl. The probability that participant i follows
branch Bklm is given by

Pr(Bklm|θi) =

P
∏

p=1

θ
vklmp

ip (1− θ)
wklmp

ip , (5.3)

where vklmp ≥ 0 and wklmp ≥ 0 are the number of nodes on branch Bklm that is associated with
parameter θp, p = 1, ..., P , and 1 − θp, respectively. The probability of each response category is
given by adding the probabilities of all the branches that lead to that category:

Pr(Ckl|θi) =

Mkl
∑

m=1

P
∏

p=1

θ
vklmp

ip (1− θip)
wklmp . (5.4)

The data of participant i across the two category systems, ni = (ni1,ni2), are assumed to follow a
multinomial distribution:

Pr(Ni = ni|θi) =
K
∏

k=1

{

Jk!

nik1!× nik2!× ...× nikLk
!

Lk
∏

l=1

[Pr(Ckl|θi)]
nikl

}

. (5.5)

The latent-trait approach relies on Bayesian hierarchical modeling that allows the individual
model parameters θip to vary over participants in a statistically specified way. The method pos-
tulates a multivariate normal distribution to capture the between-participant variability and the
correlations between the model parameters. The latent-trait approach relies on MCMC sampling
to approximate the posterior distributions of the model parameters. In what follows, we present
an easy-to-use WinBUGS implementation of the latent-trait approach that enables researchers to
obtain samples from the posterior distribution of the model parameters.

99



5. Bayesian Estimation of Multinomial Processing Tree Models with

Heterogeneity in Participants and Items

Spart
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(
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)
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(
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)

µp ∼ Normal
(
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)

θ
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(

(µ1, . . . , µP ) ,S
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)

θip = φ
(
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)

Pr(C11)i = θi1 × θi2

Pr(C12)i = (1− θi1)× θ2i3

Pr(C13)i = (1− θi1)× 2× θi3 × (1− θi3)

Pr(C14)i = θi1 × (1− θi2) + (1− θi1)× (1 − θi3)
2

Pr(C21)i = θi3

Pr(C22)i = (1− θi3)

ni1 ∼ Multinomial (Pr(C1,)i, J1)

ni2 ∼ Multinomial (Pr(C2,)i, J2)

i = 1, . . . , I

p = 1, . . . , P = 3

Figure 5.2 Graphical model for the latent-trait pair-clustering model. θi1 = ci, θi2 = ri, and
θi3 = ui. Note. To maintain consistency with the WinBUGS syntax, the multivariate normal and
independent normal distributions are parametrized in terms of the precision (i.e., inverse variance).

WinBUGS Implementation of the Latent-Trait Pair-Clustering Model

The graphical model for the WinBUGS implementation of the latent-trait pair-clustering model is
shown in Figure 5.2. Observed variables are represented by shaded nodes and unobserved variables
are represented by unshaded nodes. Continuous variables are represented by circles and discrete
variables are represented by squares. The graph structure indicates dependencies between the
nodes and the plates represent independent replications (e.g., M. D. Lee, 2008). The graphical
model depicts the basic pair-clustering model for I participants responding to J1 word pairs and
J2 singletons, with the constraint that a = u. The corresponding WinBUGS script is available in
the supplemental materials at http://dora.erbe-matzke.com/publications.html.
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Table 5.1 Notation.

Notation Explanation
K Number of category systems
Lk Number of response categories in category system k
I Number of participants
Jk Number of items in category system k
Pk Number of parameters in category system k
Ckl Response category l in category system k
Mkl Number of branches terminating in Ckl

Bklm mth branch terminating in Ckl

nij,kl Response (i.e., 0 or 1) of participant-item combination ij in Ckl

θijpk Parameter p of participant-item combination ij in category system k (i.e., c, r, u for k = 1; a for k = 2)
vkl,mp Number of nodes on Bklm associated with θpk
wkl,mp Number of nodes on Bklm associated with 1− θpk
θprtijpk

Probit transformed parameter p of participant-item combination ij in category system k

µpk Group mean for parameter θprtpk
µµpk

Mean of normal prior for µpk

σµpk
Standard deviation of normal prior for µpk

δrawpartipk
ith unscaled participant effect relating to parameter pk

ξpartpk Scaling factor for the participant effects relating to parameter pk
δpartipk

ith scaled participant effect relating to parameter pk
Tpart Unscaled variance-covariance matrix of participant effects
Spart Scaled variance-covariance matrix of participant effects
σpartpk

Scaled standard deviation of participant effects relating to parameter pk
ρpart

pkp′
k

Correlation between participant effects relating to parameter pk and p′
k

δrawitemjpk
jth unscaled item effect relating parameter pk

ξitempk
Scaling factor for the item effects relating to parameter pk

δitemjpk
jth scaled item effect relating to parameter pk

Titem Unscaled variance-covariance matrix of item effects∗

Sitem Scaled variance-covariance matrix of item effects∗

λitempk
Unscaled standard deviation of item effects relating to parameter p∗∗k

σitempk
Scaled standard deviation of item effects relating to parameter pk

ρitempkp′k
Correlation between item effects relating to parameter pk and p′∗k

Note. For the latent-trait approach, the k subscript of the parameter index p is suppressed throughout the text
because ui = ai. The ∗ indicates item parameters that are used only for the real data example featuring correlated
item effects. The ∗∗ indicates item parameters that are used only for the parameter recovery study featuring
uncorrelated item effects.

Data

For each participant, the data for word pairs, ni1, follow a multinomial distribution, with category
probabilities Pr(C11|θi), Pr(C12|θi), Pr(C13|θi), Pr(C14|θi), and J1. For each participant, the
data for singletons, ni2, follow a multinomial distribution with Pr(C21|θi), Pr(C22|θi), and J2.

Prior Distributions

The basic model depicted in Figure 5.2 assumes three parameters per participant (P = 3): θi =
(ci, ri, ui). Thus, we assume that ai = ui. The individual model parameters θip are transformed
from the probability scale to the real line using a probit link so that the transformed parameters
θprtip are given by Φ−1(θip), where Φ is the standard normal cumulative distribution function. The
use of probit transformed probabilities has a long history in psychometrics, and is also common
practice in Bayesian cognitive modeling (e.g., Rouder & Lu, 2005; Rouder et al., 2008, 2007). To
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model participant heterogeneity and parameter correlations, we assume that the probit transformed
parameters θ

prt
i follow a multivariate normal distribution with mean µ and variance-covariance

matrix Spart. The θprtip parameters are reparametrized as follows:

θprtip = µp + δpartip , (5.6)

where µp is the group mean for parameter p and δpartip is the ith participant’s deviation from it.
The δparti parameters are then drawn from a zero-centered multivariate distribution with variance-
covariance matrix Spart.

Hyper-Prior Distributions

The population-level µ and Spart parameters are estimated from the data and therefore require
prior distributions. The priors for the µp parameters are independent normal distributions with
µµp = 0 and σ2

µp
= 1. Note that the original formulation of the latent-trait approach (Klauer,

2010) assumes independent normal distributions with µµp = 0 and σ2
µp

= 100. However, we prefer

to use σ2
µp

= 1 because it corresponds to a uniform distribution on the probability scale (Rouder
& Lu, 2005).

The prior for the variance-covariance matrix Spart is a scaled Inverse-Wishart distribution. The
Inverse-Wishart is a frequently used prior for variance-covariance matrices (Gelman & Hill, 2007).
The Inverse-Wishart prior has two parameters: the degrees of freedom that is set to one plus
the number of free participant parameters (1 + P ) and the scale matrix that is set to the P × P
identity matrix (W). The advantage of the Inverse-Wishart is that it results in an uninformative
uniform prior distribution between -1 and 1 for the ρpp′ correlation parameters. The disadvantage
is that the Inverse-Wishart with 1 + P degrees of freedom imposes a very restrictive prior on the
standard deviations. To be able to estimate the standard deviations more freely, we augment the
Inverse-Wishart with a set of scale parameters, ξpart = [ξpart1 , ..., ξpartP ] (Gelman & Hill, 2007).
The resulting scaled Inverse-Wishart distribution still implies a uniform prior distribution for the
correlation parameters, but it allows the standard deviations to be estimated more freely than does
the Inverse-Wishart. The variance-covariance matrix Spart is then modeled as

Spart = Diag(ξpart) Tpart Diag(ξpart), (5.7)

where Diag(ξ) is a diagonal matrix containing the scale parameters. Tpart follows an Inverse-
Wishart distribution with 1 + 3 degrees of freedom, with a scale matrix that is set to the 3 × 3
identity matrix. The standard deviations can be obtained by

σpartp = |ξpartp | ×
√

Tpartpp . (5.8)

The correlation parameters are given by

ρpartpp′ =
ξpartpξpartp′Tpartpp′

|ξpartp |
√

Tpartpp × |ξpartp′ |
√

Tpartp′p′

. (5.9)

The ξpartp parameters are given uniform distributions ranging from 0 to 100 (e.g., Gelman &
Hill, 2007). Klauer (2010) used normal distributions with a mean of one and a variance of 100
as prior for the scaling parameters. In our WinBUGS implementation, these priors occasionally
resulted in convergence problems for the variance and the correlation parameters. Note that the
use of redundant multiplicative parameters, such as ξpartp , has been reported to increase the rate of
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convergence in hierarchical models (Gelman & Hill, 2007). As a result of the new parametrization,
Equation 5.6 can be reformulated as follows:

θprtip = µp + ξpartp × δrawpartip , (5.10)

where µp is the group mean for parameter p, ξpartp is the scaling factor of the scaled Inverse-Wishart
distribution, and δrawpartip is the ith participant’s unscaled deviation from the group mean.

Parameter Recovery Study

We conducted a series of parameter recovery studies to assess whether the WinBUGS implemen-
tation of the latent-trait pair-clustering model adequately recovers true parameter values. Here
we report the results of a study where we generated free recall data for synthetic participants
responding to a set of word pairs and singletons in two sessions of the pair-clustering task. The
resulting datasets were fit with the latent-trait pair-clustering model using WinBUGS.

Methods

Each synthetic participant performed the pair-clustering task two consecutive times. For each
participant, the data from the two sessions were scored into four category systems: word pairs and
singletons for the first session and word pairs and singletons for the second session. We ran three
sets of simulations, each comprising 100 datasets. First, each data set contained observations from
63 (I = 63) synthetic participants, responding to 10 word pairs (J1 = 10) and 5 singletons (J2 = 5)
in each of the two sessions. Second, each data set contained observations from 63 participants,
responding to 20 word pairs and 10 singletons in each of the two sessions. Third, each data set
contained observations from 126 participants, responding to 10 word pairs and 5 singletons in each
of the two sessions.

Similar to Klauer’s (2010) recovery study, we used five parameters (P = 5) per participant across
the two sessions: θi = (c1i , ri, u1i , c2i , u2i). The following parameter constraints were imposed: r1i
= r2i , a1i = u1i , and a2i = u2i . The generating population-level parameter values are shown in
Figure 5.3. We conducted several recovery studies using alternative true parameter values. The
results were essentially the same as the ones reported here. Note that the details of the recovery
study, including the true parameter values and the number of participants and items, are identical
to those used in Klauer’s paper.

For each analysis reported in this article, we ran three MCMC chains and used randomly
generated overdispersed starting values to confirm that the chains have converged to the stationary
distribution. Convergence is confirmed if the individual chains are indistinguishable from each
other. Convergence was formally assessed with the R̂ statistic (Brooks & Gelman, 1998; Gelman
& Rubin, 1992), a quantitative measure of convergence that compares the within-chain variance
to the between-chain variance. The results reported in this article are based on analyses where
R̂ for all parameters of interest (i.e., group means, random effects, and the standard deviation
and the correlation of the random effects) is lower than 1.05. In light of the possibility of high
autocorrelations between successive MCMC samples, we ran relatively long MCMC chains and
thinned each chain by retaining samples from only every 3rd iteration.

The latent-trait pair-clustering model was fit to the synthetic datasets using WinBUGS. For
each data set, we discarded the first 2,000 samples of each chain as burn-in and based inference on
a total of 54,000 recorded samples.
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Results

The results of the recovery study for the group-level parameters are shown in Figure 5.3. We
follow Klauer’s (2010) practice and use the median and the standard deviation to summarize the
posterior distribution of the parameters. Also, the posterior median is often preferable over the
posterior mode or the posterior mean for non-symmetric or heavy tailed posterior distributions.
Note that the group c1, r, u1, c2, and u2 parameters are reported on the probability scale, while
their standard deviations and correlations are reported on the probit scale. The group parameters
and their standard deviations are recovered relatively well using the posterior median even for the
first set of simulations with relatively few participants and very few items. Naturally, as the number
of items or the number of participants increases, the bias, the posterior standard deviation, and the
standard error of the recovered parameters decrease. The storage-retrieval u1 and u2 parameters
and their standard deviations are estimated most precisely, as indicated by the small posterior
standard deviation of the estimates. The cluster-retrieval r parameter and its standard deviation
are estimated the least precisely as evidenced by the greater posterior uncertainty of the estimates,
especially for the first set of simulations.

With respect to the correlation parameters, the results are less clear-cut. Similar to Klauer’s
(2010) findings, the posterior median underestimates the parameter correlations especially in
datasets with few participants and items. The posterior standard deviations are rather large,
indicating large uncertainty in the estimates. Nevertheless, as the number of participants or the
number of items increases, the bias, the posterior standard deviations and the standard error of
the recovered correlations decrease. As for the standard deviations, correlations involving the
cluster-retrieval r parameter are the least well estimated, especially for the first set of simulations.

To sum up, the results of the simulation study indicated that the WinBUGS version of the
latent-trait pair-clustering model adequately recovered the true parameter values. In the next
section, we extend the latent-trait pair-clustering model and the corresponding WinBUGS script
to handle heterogeneity in both participants and items.

5.5 The Crossed-Random Effects Pair-Clustering Model

In many applications of MPT models, it is reasonable to assume that the model parameters do
not only differ between participants but also between the items used in a particular experiment.
We should then treat both participant and items effects as random, define parameters for each
participant-item combination and base statistical inference on the unaggregated data. This section
introduces a crossed-random effects pair-clustering model that is based on an extension of Klauer’s
(2010) latent-trait approach. Our crossed-random effects model assumes that the participant and
item effects combine additively on the probit scale. The participant and item effects are modeled
with multivariate normal and independent normal distributions, respectively, with means and
(co)variances estimated from the data.

Introduction to the Crossed-Random Effects Approach

In the crossed-random effects pair-clustering model, statistical inference is based on unaggregated
participant-by-item data. In a given category system k, k = 1, 2, the raw category responses of
each participant-item combination, i = 1, ..., I, j = 1, ..., Jk, are assumed to follow a multinomial
distribution with category probabilities Pr(Ckl|θijk), l = 1, ..., Lk, where θijk contains the p =
1, ..., Pk model parameters of participant-item combination ij in category system k.
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Figure 5.3 Posterior medians from the parameter recovery study for the latent-trait pair-clustering
model using WinBUGS. Each set of simulations consisted of 100 datasets. The black bullets indicate
the mean of the posterior median of the parameters across the 100 replications. The black vertical
lines are based on the mean of the posterior standard deviation across the 100 replications. The
gray vertical lines indicate the standard error of the posterior median across the 100 replications.
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The requirement of a separate parameter for each participant-item combination leads to a very
large number of parameters, resulting in problems of model identification. To reduce the number
of parameters, we assume that the probit transformed parameters are given by the additive com-
bination of participant and item effects (e.g., Rouder & Lu, 2005; Rouder et al., 2008, 2007). More
formally, the crossed-random effects pair-clustering model assumes that the probit transformed
participant-item parameters in category system k are given by

θprtijpk
= µpk + δpartipk

+ δitemjpk
, (5.11)

where µpk is the group mean for parameter p in category system k, and δpartipk
and δitemjpk

are

the ith participant effect and the jth item effect, respectively. We postulate a multivariate normal
distribution to describe variability between participants and independent normal distributions to
capture the variability between items. The participant effects are thus allowed to be correlated a
priori, whereas the item effect are not. Naturally, we may model the correlations between the item
effects —similar to the participant effects— using a multivariate normal distribution. The possibil-
ity to incorporate correlated participant and correlated item effects will be demonstrated shortly
using experimental data. The next section presents an easy-to-use WinBUGS implementation of
the crossed-random effects pair-clustering model.

WinBUGS Implementation of the Crossed-Random Effects Pair-Clustering
Model

The graphical model for the WinBUGS implementation of the crossed-random effect pair-clustering
model is shown in Figure 5.4. The graphical model depicts the basic pair-clustering model for I
participants responding to J1 word pairs and J2 singletons. The corresponding WinBUGS script
is available in the supplemental materials.

Data

The raw data of each participant-word pair combination, nij,1, follow a multinomial distribution,
with category probabilities Pr(C11|θij1), Pr(C12|θij1), Pr(C13|θij1), Pr(C14|θij1). Similarly, the
raw data for each participant-singleton combination, nij,2, follow a multinomial distribution, with
category probabilities Pr(C21|θij2), Pr(C22|θij2).

Prior Distributions

The crossed-random effects pair-clustering model posits a separate parameter for each participant-
item combination in each category system k. These θijpk parameters are transformed from the
probability scale to the real line using the probit link. As given in Equation 5.11, the probit
transformed parameters θprtijpk

are given by the additive combination of participant and item effects.
In the category system for word pairs, the model assumes three participant effects for each

participant (i.e., δpartic , δpartir , and δpartiu) and three item effects for each word pair (i.e., δitemjc
,

δitemjr
, and δitemju

). The model postulates thus three parameters for each participant-word pair
combination (P1 = 3): θij1 = (cij , rij , uij). For singletons, the model assumes one participant
effect per participant (δpartia) and one item effect per singleton (δitemja

). The model postulates
thus one parameter for each participant-singleton combination (P2 = 1) : θij2 = aij .

In the basic pair-clustering model depicted in Figure 5.4, the constraint that a = u may be
implemented as follows. First, the group mean of the singleton storage-retrieval a parameter is
constrained to be equal to the group mean of the storage-retrieval u parameter: µa = µu. Second,
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Figure 5.4 Graphical model for the crossed-random effects pair-clustering model. θij1 = cij , θij2 =
rij , θij3 = uij . Note. To maintain consistency with the WinBUGS syntax, the multivariate normal
and independent normal distributions are parametrized in terms of the precision (i.e., inverse
variance). 107
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note that the basic model assumes that each participant is presented with J1 word pairs and J2
singletons. We are thus able to place across-category system constraints on the participant effects,
because responses from a given participant are available in both category systems: δpartia = δpartiu .
Third, we are unable to place across-category system constraints on the items effects because a
given item appears in only one of the category systems: responses to each of the J1 word pairs are
only available in the first category system, while responses to each of the J2 singletons are only
available in the second category system. Nevertheless, we may assume that the standard deviation
of the item effects relating to a and u are equal: σitema = σitemu . A possibility for across-category
system constraints on the item effects will be illustrated shortly using experimental data.

The δparti parameters are assumed to come from a zero-centered multivariate normal distribu-
tion, with variance-covariance matrix Spart estimated from the data. The δitemjpk

parameters are
drawn from zero-centered independent normal distributions, with the standards deviations σitempk

estimated from the data.

Hyper-Prior Distributions

The priors for the grand mean µpk parameters are weakly informative independent normal distri-
butions with µµpk

= 0 and σ2
µpk

= 1. The prior for Spart is a scaled Inverse-Wishart distribution.
The degrees of freedom of the scaled Inverse-Wishart equals one plus the number of free participant
effects. In the model shown in Figure 5.4, we postulate three participant effects across the two
category systems, resulting in four degrees of freedom. The scale matrix is set to the 3× 3 identity
matrix (W). The scaling factor ξpart parameters of the Inverse-Wishart are given uniform distri-
butions ranging from 0 to 100. The standard deviations and the correlations of the participant
effects can be obtained using Equation 5.8 and 5.9, respectively.

The priors for the σ2
itempk

variance parameters are independent scaled inverse gamma distribu-

tions with α = 1 and β = 1. The inverse gamma distribution with α and β set to low values, such
as 1, 0.01, or 0.001 is a frequently used prior for variance parameters (e.g., Spiegelhalter, Thomas,
Best, Gilks, & Lunn, 2003). In order to increase the rate of convergence, we augment each variance
parameter with a redundant multiplicative scaling parameter ξitem, a technique called parameter
expansion (Gelman & Hill, 2007). In the expanded model, the item standard deviations are given
by

σitempk
= |ξitempk

| × λitempk
, (5.12)

where ξitempk
is the scaling factor and λitempk

is the unscaled item standard deviation for parameter
p in category system k. The ξitem parameters are given uniform distributions ranging from 0 to
100. As a result of expanding the model with the ξpart and ξitem parameters, Equation 5.11, can
be reformulated as follows:

θprtijpk
= µpk + ξpartpk

× δrawpartipk
+ ξitempk

× δrawitemjpk
, (5.13)

where δrawpartipk
and δrawitemjpk

are the unscaled effects for participant i and item j relating to parameter

p in category system k, respectively.

Parameter Recovery Study

We conducted a series of parameter recovery studies to examine whether the crossed-random effects
pair-clustering model adequately recovers true parameter values. Here we report the results of a
study where we generated free recall data for synthetic participants responding to the same set of
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word pairs and the same set of singletons in two sessions of the pair-clustering task. We analyzed
the resulting datasets with the crossed-random effects pair-clustering model using WinBUGS.

Methods

Each synthetic participant performed the pair-clustering task two consecutive times using the same
set of word pairs and the same set of singletons. For each participant-word pair combination, the
data from the two sessions were scored into two separate category systems. Similarly, for each
participant-singleton combination, the data from the two sessions were scored into two separate
category systems. We conducted three sets of simulations, each comprising 100 synthetic datasets.
First, each data set contained observations from 63 (I = 63) synthetic participants, responding
to the same set of 10 word pairs (J1 = 10) and the same set of 5 singletons (J2 = 5) in each of
the two sessions. Second, each data set contained observations from 63 participants, responding
to 20 word pairs and 10 singletons in each of the two sessions. Third, each data set contained
observations from 126 participants, responding to 10 word pairs and 5 singletons in each of the
two sessions. We used five (P1 = 5) parameters for each participant-word pair combination:
θij1 = (c1,ij , rij , u1,ij , c2,ij , u2,ij). The cluster-retrieval r parameter was thus constrained to be
equal across the two sessions, r1,ij = r2,ij = rij . We used two (P2 = 2) parameters for each
participant-singleton combination: θij2 = (a1,ij , a2,ij).

As the same set of word pairs and singletons were used across the two sessions, the J1 items
effects relating to c, r, and u, and the J2 item effects relating to a were assumed to be equal
across the two sessions. We followed the approach described earlier to implement the constraint
that a = u. The generating parameter values for the population-level parameters are shown in
Figure 5.5.

The crossed-random effects pair-clustering model was fit to the synthetic datasets using Win-
BUGS. As before, we monitored samples from every 3rd iteration, we discarded the first 2,000
samples of each chain as burn-in, and based inference on a total of 54,000 recorded samples.

Results

The results of the recovery study for the group-level model parameters are shown in Figure 5.5. As
before, the group c1, r, u1, c2, and u2 parameters are reported on the probability scale, while the
standard deviations and the correlations are reported on the probit scale. The group parameters
and the participant and item effect standard deviations are approximated well using the posterior
median even for the first set of simulations with relatively few participants and very few items.
Again, the storage-retrieval u1 and u2 parameters and the corresponding standard deviations are
estimated most precisely and the cluster-retrieval r parameter and the corresponding standard
deviations are estimated least precisely. As the number of items or the number of participants
increases, the bias, the posterior standard deviation, and the standard error of the recovered
parameters decrease.

With respect to the participant effect correlations, the results are again less straightforward.
The posterior median underestimates the parameter correlations, especially in the first set of sim-
ulations with relatively few participants and very few items. The posterior standard deviations
are quite large, suggesting large uncertainty in the estimates. Naturally, increasing the number of
participants or the number of items decreases the bias, the posterior standard deviation, and the
standard error of the recovered correlations. Again, correlations involving the cluster-retrieval r
parameter are the least well estimated.
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Figure 5.5 Posterior medians from the parameter recovery study for the crossed-random effects pair-
clustering model using WinBUGS. Each set of simulations consisted of 100 datasets. The black
bullets indicate the mean of the posterior median of the parameters across the 100 replications.
The black vertical lines are based on the mean of the posterior standard deviation across the 100
replications. The gray vertical lines indicate standard error of the posterior median across the 100
replications.
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To sum up, the results of the simulation study indicated that the WinBUGS implementation of
the crossed-random effects pair-clustering model adequately recovered the true parameter values.
In the next section, we apply the model to novel experimental data and illustrate the possibility
to incorporate correlated participant as well as correlated item effects.

Fitting Real Data: A Pair-Clustering Experiment on Word Frequency

In order to illustrate the use of the crossed-random effects pair-clustering model and the possibility
to incorporate correlated participant as well as correlated item effects, we applied the model to
novel experimental data that featured orthographically related word pairs and the manipulation of
word frequency. A common finding in memory research is that free recall performance is better for
pure lists of high frequency (HF) words than for pure lists of low frequency (LF) words (e.g., Deese,
1960; Hall, 1954; Postman, 1970; Sumby, 1963). For mixed lists of both HF and LF words, however,
the HF advantage is often eliminated (e.g., DeLosh & McDaniel, 1996; C. P. Duncan, 1974; Gregg,
1976). Models of free recall performance typically explain this pure list-mixed list word frequency
paradox in terms of differences in the relative contribution of order/relational processing and
item specific processing (e.g., DeLosh & McDaniel, 1996; Merritt, DeLosh, & McDaniel, 2006).
The word frequency effect has never been investigated using the pair-clustering paradigm. The
goal of the present experiment was therefore to demonstrate the word frequency effect in pair-
clustering and to use the cross-random effects approach to explore the changes in cognitive processes
that underlie the pure list-mixed list paradox. Moreover, contrary to previous applications of the
pair-clustering paradigm, we employed orthographically related word pairs in order to examine
orthographic clustering effects in free recall.

Methods

All 70 participants were undergraduate psychology students from the University of Amsterdam.
Five participants did not comply with the instructions and the requirements of the experiment
(e.g., making notes of the presented words, not being native speaker of Dutch, answering a mobile
phone during the experimental session) and were excluded from all subsequent analyses. The
remaining 65 participants (44 females) were native Dutch speakers, with a mean age of 22 years.
Participation was rewarded either with course credits or with 7 euro.

The experimental stimulus pool consisted of 45 HF and 45 LF word pairs. The stimuli are
available in the supplemental materials. The HF words had a mean occurrence of 185.03 per
million and the LF words had a mean occurrence of 2.51 per million. Word length varied between
3 and 7 letters, with a mean length of 4.27 and 4.36 for HF and LF words, respectively. The word
pairs were orthographically related Dutch nouns, where the two members of each word pair differed
only in terms of one consonant (e.g., book-cook and house-mouse). Each word was orthographically
similar only to its pair and orthographically dissimilar to all other words in the stimulus pool.

Each participant was presented with six experimental lists: two lists consisting of 10 HF word
pairs and 5 HF singletons (i.e., pure HF lists), two lists consisting of 10 LF word pairs and 5 LF
singletons (i.e., pure LF lists), one list consisting of 5 HF and 5 LF word pairs and 3 HF and 2 LF
singletons, and one list consisting of 5 HF and 5 LF word pairs and 2 HF and 3 LF singletons (i.e.,
mixed lists). The study words were randomized across participants. For each participant, 30 HF
and 30 LF word pairs were randomly assigned to the different experimental lists. The remaining 15
HF and 15 LF pairs were used to create singletons by randomly selecting one of the two members
of each word pair. The 15 HF and 15 LF singletons were then randomly assigned to the different
experimental lists. Word pairs and singletons were randomly intermixed within each list, with the
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constraint that the lag between the presentation of the two members of a given word pair was at
least two and at most five words. The order of list presentation was randomized across participants.

Apart from the experimental stimulus items, each list contained 6 primacy buffer items at the
beginning and 6 recency buffer items at the end of the list. The buffer items were orthographically
dissimilar to each other and to the experimental stimuli. The pure HF lists contained only HF
buffers, the pure LF lists contained only LF buffers, and the mixed lists contained six HF and six
LF buffers that were randomly assigned to the 12 buffer positions. In total, each experimental list
consisted of 37 words: 12 buffer items, 10 word pairs and 5 singletons.

The presentation of the six experimental lists was preceded by a practice test session. The
mixed frequency practice list consisted of 10 orthographically related word pairs, 5 singletons,
and 12 buffer items. Words in the practice list were orthographically dissimilar to words in the
experimental lists.

Testing took place in small groups of maximum eight participants using personal computers.
At the beginning of the testing session, participants read the instructions and signed the informed
consent. The instructions emphasized the orthographic similarity of the words to encourage par-
ticipants to cluster related word pairs. After the practice session, participants were presented with
the six experimental lists. Words were presented one at a time on the computer screen at a rate of
4 sec/word. After the presentation of each list, participants were instructed to recall and type in
the words without paying attention the their presentation order. After each 3 minute recall period,
participants were given a 1 minute break during which they played the popular computer game
Tetris.

Behavioral Results

Buffer items were excluded from all subsequent analyses. Data were collapsed per list type (pure
vs. mixed) and word frequency (HF vs. LF), resulting in the following four conditions: (1) one
pure HF condition consisting of 20 HF word pairs and 10 HF singletons originally presented in the
two pure HF lists, (2) one pure LF condition consisting of 20 LF word pairs and 10 LF singletons
originally presented in the two pure LF lists, (3) one mixed HF condition consisting of 10 HF
word pairs and 5 HF singletons originally presented in the two mixed lists, and (4) one mixed LF
condition consisting of 10 LF word pairs and 5 LF singletons originally presented in the two mixed
lists. The data are available in the supplemental materials.

As shown in the upper left panel of Figure 5.6, the free recall data demonstrated the typical pure
list-mixed list word frequency paradox. Recall performance was better for the pure HF condition
than for the pure LF condition; however, in the mixed condition the HF advantage was largely
eliminated. We formally assessed the word frequency × list type interaction using Bayesian null
hypothesis testing (see, e.g., Masson, 2011; Raftery, 1995; Wagenmakers, 2007). Specifically, we
used the Bayesian information criterion (BIC) approximation to the Bayes factor (e.g., Raftery,
1999) to compute the posterior probabilities of the null and the alternative hypotheses. We assumed
that the H0 and the HA are equally likely a priori, i.e., P (H0)/P (HA) = 1. The resulting posterior
probability of 0.89 for the alternative hypothesis, PBIC(HA|Data), provides positive evidence for
the presence of the word frequency × list type interaction (e.g., Raftery, 1995).

Model Fitting

Each participant i = 1, ..., 65 was presented with each HF stimulus pair j = 1, ..., JHF = 45 either
in the HF pure or in the HF mixed condition. A given participant therefore observed a specific HF
stimulus pair either as a word pair or as a singleton, and either in the pure or in the mixed condition.
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Figure 5.6 Mean proportion of correct recall across participants and posterior medians for the
group-level c, r, and u parameters for each condition of the word frequency experiment. CR =
crossed-random effects. For the recall proportions, the vertical lines show the standard errors. For
the model parameters, the black circles and triangles show the posterior median of the group-level
parameters from the crossed-random effects analysis of the pure and the mixed list, respectively.
The black vertical lines indicate the size of the posterior standard deviation of the group-level
parameters. The gray circles and triangles show parameter estimates from the aggregate analysis
of the pure and the mixed list, respectively.
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Similarly, each participant was presented with each LF stimulus pair j = 1, ..., JLF = 45 either
in the LF pure or the LF mixed condition. A given participant therefore observed a specific LF
stimulus pair either as a word pair or as a singleton, and either in the pure or in the mixed condition.
However, the additive structure of the model parameters enables us to estimate parameters for each
participant-stimulus pair combination cij , rij , uij , aij for each of the four conditions.

The key group-level c, r and u parameters were free to vary across the four conditions. We
imposed the following parameter constraints. Note that the constraints were chosen purely on the
basis of inspection of the unconstrained parameter estimates. Formal model selection for MPT
models using Bayes factors (e.g., Kass & Raftery, 1995) is beyond the scope of this article. The
present analysis merely serves as an illustration of parameter estimation in the crossed-random
effects pair-clustering model. First, as information on each participant and each stimulus pair
was available in both category systems, we were able to place across-category system constraints
on the participant as well as the item effects, resulting in aij = uij for each participant-stimulus
pair combination in each condition. Second, we constrained the participant effects relating to the
cluster-retrieval r parameter δpartir to be equal across the four conditions. Lastly, we assumed that
the item effects δitemj for c, r, and u are the same regardless whether the stimulus pair is shown in
the pure condition or in the mixed condition. To illustrate the possibility to incorporate correlated
participant as well as correlated item effects, we modeled both types of random effects —δparti ,
and δitemHF j

and δitemLF j
— using multivariate normal distributions, with variance-covariance

matrices estimated from the data.
The crossed-random effects model was fit to the data set using WinBUGS. We monitored

samples from every 3rd iteration, we discarded the first 8,000 samples of each chain as burn-in,
and based inference on a total of 72,000 recorded samples. Examples of thinned and un-thinned
MCMC chains are available in the supplemental materials.

The posterior medians and the posterior standard deviations of the estimated group param-
eters c, r, and u for each condition are shown in Figure 5.6. Both the cluster-storage c and the
cluster-retrieval r parameters indicate that participants indeed stored and retrieved orthographi-
cally similar words in clusters. The value of the cluster-retrieval r parameter is within the range
of values typically encountered in the pair-clustering paradigm. The cluster-storage c parameter
is somewhat lower than in typical applications using semantically related word pairs (e.g., Riefer
et al., 2002). Nevertheless, these results indicate that, in the present experiment, orthographic
relatedness fostered clustered storage and clustered retrieval.

Figure 5.6 also shows that the group parameters are estimated relatively well as indicated by
the reasonable posterior standard deviations. Because the pure conditions featured twice as many
items as each of the two mixed conditions, the group parameters are estimated slightly better in
the HF and LF pure conditions than in the HF and LF mixed conditions. Note also that the
cluster-retrieval r parameter is estimated less precisely than the cluster-storage c and storage-
retrieval u parameters. This result is not surprising because the response categories involving the
cluster-retrieval r parameter (i.e., C11) are reached infrequently due to the relatively low value of
the cluster-storage c parameter. The cluster-retrieval r parameter is therefore less well constrained
by the data than the other group parameters.

To explore the effects of the experimental manipulations on the model parameters, we computed
Bayesian p values for the c, r, and u parameters in the HF pure vs. LF pure and the HF mixed
vs. LF mixed comparisons. Specifically, for each parameter, we computed the proportion of
posterior samples where µHF is smaller (or larger) than µLF (see also Klauer, 2010). The storage-
retrieval u parameter mirrors the behavioral results and demonstrates the typical word frequency
paradox (p < 0.01 for µuHFP

< µuLFP
and p = 0.04 for µuHFM

< µuLFM
). This result is to be

expected because the u parameter quantifies the joint probability of the storage and retrieval of
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unclustered words. In contrast, the posterior medians of the c and r parameters show an entirely
different pattern for the word frequency × list type interaction. With respect to the cluster-storage
parameter, c is lower in the pure HF condition than in the pure LF conditions and does not differ
between the mixed HF and mixed LF conditions (p = 0.04 for µcLFP

< µcHFP
and p = 0.39 for

µcLFM
< µcHFM

). Lastly, with respect to the cluster-retrieval parameter, r does not seem to differ
between the pure LF and pure HF conditions, but it appears to be lower in the mixed HF condition
than in the mixed LF condition (p = 0.68 for µrLFP

< µrHFP
and p = 0.36 for µrLFM

< µrHFM
).

Note, however, that the Bayesian p value for the HF mixed vs. LF mixed comparison is not
convincing; the posterior distribution of the µrHFM

and µrLFM
parameters overlap considerably as

a result of the larger posterior uncertainty in estimating the r parameter (see bottom left panel in
Figure 5.6).

We also assessed the effects of the experimental manipulations on the model parameters without
taking into account the uncertainty of the parameter estimates. For each parameter, we computed
the PBIC(HA|Data) for the word frequency × list type interactions shown in Figure 5.6 using the
posterior median of the participant parameters (i.e., µ+ δparti). For all three parameters c, r, and
u, we obtained PBIC(HA|Data) > 0.99, a result that provides very strong evidence for the presence
of the word frequency × list type interaction.

The model-based analysis uncovered a number of interesting phenomena that were not apparent
in the behavioral results. First, in the pure condition, participants are slightly more likely to
cluster LF than HF word pairs, suggesting that orthographic similarity is more readily apparent
for LF words than for HF words. Alternatively, participants may strategically compensate for the
difficulty of encoding LF words in the pure condition by paying more attention to their orthographic
similarity. Second, in the mixed condition, participants are more likely to recall clustered LF word
pairs than clustered HF word pairs. This result suggests that once intra-word associations are
created, LF word pairs in the mixed condition are easier to recall, possibly as a result of their
distinctiveness in a mixed list environment.

For comparison, we aggregated the word frequency data across participants and items and
computed maximum likelihood parameter estimates using the closed form expressions presented
in Batchelder and Riefer (1986). The aggregate results are presented in Figure 5.6 using the
solid and dashed gray lines. Similar to the crossed-random effects analysis, the u parameter from
the aggregate analysis mirrored the word frequency paradox apparent in the behavioral data. In
contrast, the c and r parameters from the aggregate analysis did not reproduce the pattern of the
word frequency × list type interaction from the crossed-random effects analysis.

The posterior distributions of the participant and item standard deviations are shown in Fig-
ure 5.7. The standard deviations are estimated most precisely for the participant and item effects
involving the storage-retrieval u parameter. Standard deviations involving the cluster-retrieval r
parameters are estimated with the largest posterior uncertainty due to the relatively low value of
the cluster-storage c parameter across all conditions. Evidence for heterogeneity in participants is
convincing for all participant standard deviations, with the exception of σpartcLFmixed

, a parameter
for which the lower bound of the 95% Bayesian credible interval approaches zero (i.e., 0.02). Het-
erogeneity in items is evident for all item standard deviations, with the exception of σitemcHF

and
σitemrHF

, with a lower bound of 0.04 and 0.01, respectively.
The posterior medians and standard deviations for the participant and item effect correlations

are shown in Table 5.2. Correlations between the participant effects relating to the storage-retrieval
u parameter (i.e., upartHFP

, upartHFM
, upartLFP

, upartLFM
) are estimated most precisely as indicated

by the small posterior standard deviations. In contrast, correlations involving the participant ef-
fect cpartLFM

are generally the least well constrained by the data. Participant effects relating to
the cluster-storage c parameter are relatively strongly correlated across the different conditions,
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Figure 5.7 Posterior distributions for the participant and item effect standard deviations for the
word frequency experiment. The black triangles show the median of the posterior distributions.
The horizontal lines indicate the size of the 95% Bayesian credible intervals.
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Table 5.2 Posterior Medians of the Correlation Parameters in the Word Frequency Experiment.

cpartHFP
cpartHFM

cpartLFP
cpartLFM

rpart upartHFP
upartHFM

upartLFP
upartLFM

citemHF
ritemHF

uitemHF citemLF
ritemLF

uitemLF

cpartHFP
1.00

cpartHFM
0.63
(0.19)

1.00

cpartLFP
0.55
(0.22)

0.58
(0.24)

1.00

cpartLFM
0.22
(0.33)

0.24
(0.34)

0.23
(0.32)

1.00

rpart -0.03
(0.23)

-0.03
(0.28)

0.12
(0.30)

0.00
(0.31)

1.00

upartHFP
-0.56
(0.17)

-0.52
(0.24)

-0.41
(0.26)

0.02
(0.34)

0.24
(0.19)

1.00

upartHFM
-0.47
(0.20)

-0.47
(0.27)

-0.30
(0.30)

-0.07
(0.36)

0.42
(0.18)

0.74
(0.10)

1.00

upartLFP
-0.51
(0.19)

-0.47
(0.26)

-0.28
(0.31)

-0.03
(0.36)

0.40
(0.18)

0.74
(0.10)

0.79
(0.09)

1.00

upartLFM
-0.56
(0.18)

-0.51
(0.26)

-0.32
(0.29)

-0.11
(0.36)

0.39
(0.19)

0.73
(0.11)

0.81
(0.09)

0.78
(0.10)

1.00

citemHF
1.00

ritemHF
-0.22
(0.42)

1.00

uitemHF 0.34
(0.30)

-0.10
(0.41)

1.00

citemLF
1.00

ritemLF
0.29
(0.32)

1.00

uitemLF
0.32
(0.23)

0.27
(0.34)

1.00

Note. HFP = high frequency pure condition; HFM = high frequency mixed condition; LFP = low frequency pure condition; LFM = low frequency mixed
condition; part = participant effect; item = item effect. The standard deviation of the posterior distributions is shown in brackets.
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Table 5.3 Results of the Posterior Predictive Model Checks: Aggregate and Covariance Structure
Analysis.

Analysis HF pure HF mixed LF pure LF mixed

Aggregate 0.56 0.19 0.45 0.59
Participant covariances 0.61 0.40 0.27 0.51
Item covariances 0.65 0.49 0.67 0.86

Note. For the aggregate analysis, the data that are summed over items and averaged over participants. For the
analysis of participant covariances, the data are summed only across the items. For the analysis of item covariances,
the data are summed only across the participants. HF = high frequency; LF = low frequency.

suggesting that participants who tend to cluster orthographically related word pairs in one con-
dition are likely to cluster also in the other conditions. Similarly, participant effects relating to
the storage-retrieval u parameter are highly correlated across the different conditions, indicating
that participants who are good at recalling unclustered words in one condition are also expected to
perform well in the other conditions. The participant effects cpartHFP

, cpartHFM
and cpartLFP

show
relatively strong negative correlations with the storage-retrieval u parameter across all conditions.
The cpartLFM

effect, however, seems to be uncorrelated with u. Participant effects relating to the
cluster-storage c parameter are uncorrelated with participant effects for cluster-retrieval r. In con-
trast, participant effects relating to the storage-retrieval u parameter seem to correlate positively
with r.

For HF items, the citemHF
effect is negatively correlated with the cluster-retrieval r parameter

and is positively correlated with the storage-retrieval u parameter. The item effects ritemHF
and

uitemHF
seem to be uncorrelated. For LF items, the items effects relating to the three parameters

(i.e., citemLF
, ritemLF

, and uitemLF
) are positively correlated. Note, however, that the correlations

between the item effects —especially for HF items— are estimated rather imprecisely, as evidenced
by the large posterior standard deviation of the estimates.

Assessing model fit

We used posterior predictive model checks (e.g., Gelman & Hill, 2007; Gelman et al., 1996) to ex-
amine whether the WinBUGS implementation of the crossed-random effects pair-clustering model
with the chosen parameter constraints adequately describes the observed data. In posterior predic-
tive model checks, we assess the adequacy of the model by generating new data (i.e., predictions)
using samples from the joint posterior distribution of the estimated parameters. If our implemen-
tation of the crossed-random effects pair-clustering model adequately describes the modeled data,
the predictions based on the model parameters should closely approximate the observed data.

We formalized the model checks with posterior predictive p values (e.g., Gelman & Hill, 2007;
Gelman et al., 1996; Klauer, 2010). We first defined a test statistic T and for each of d = 1, ..., 1, 200
draws from the posterior distribution of the parameters, we computed its value for the observed
data using the participant-item parameters, T (data,θd

ij). We then generated new pair-clustering
data for each draw d from the joint posterior and computed the value of T for each predicted
data set, T (data∗,d,θd

ij). The posterior predictive p value is given by the fraction of times that

T (data∗,d,θd
ij) is larger than T (data,θd

ij). Extreme p values close to 0 (e.g., lower than 0.05)
indicate that the model does not describe the observed data adequately.
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Table 5.4 Results of the Posterior Predictive Model Checks: Participant and Item-Wise Analysis.

Analysis HF pure HF mixed LF pure LF mixed

Participant-wise 3% 2% 3% 0%
Item-wise 7% 2% 1% 4%

Note. HF = high frequency; LF = low frequency.

For each condition of the experiment, we conducted three sets of posterior predictive checks
using Klauer’s (2010) test statistics T1(data,θ) and T2(data,θ), which Klauer proposed to assess
the recovery of the mean and the covariance of the observed category frequencies, respectively.
First, we examined the recovery of the observed data that are summed over items and averaged
over participants using T1. Second, we examined the recovery of the covariance structure of the
observed data that (1) are summed only across the items and (2) are summed only across the
participants using T2. Lastly, we examined the recovery of the participant-wise and item-wise
frequency counts using T1.

Table 5.3 shows the posterior predictive p values for the recovery of the aggregated category
frequencies and the participant and item covariances. Table 5.4 shows the percentage of participants
and items with posterior predictive p values lower than 0.05 for the participant and item-wise
analysis. The results indicate that the crossed-random effects pair-clustering model adequately
describes the aggregated data and the covariance structure of the observed category frequencies.
Although the model fares somewhat better in predicting the observed participant-wise category
frequencies, it also provides adequate predictions for the majority of the items.

Figure 5.8 shows examples of model fit for the participant and item-wise posterior predictive
model checks. Each panel depicts a discrete violin plot (e.g., Hintze & Nelson, 1998) for each
response category in each category system. Discrete violin plots conveniently combine information
available from histograms with information about summary statistics in the form of box plots. The
top panels of Figure 5.8 show examples of satisfactory model fit; the observed category frequencies
(i.e., gray triangles) all fall well within the 2.5th and 97.5th percentiles of the posterior predictions.
The bottom panels show examples of poor model fit; for most response categories, the observed
category frequencies are severely over or underestimated by the posterior predictions.

In summary, our crossed-random effects pair-clustering model provided reasonable population-
level parameter estimates in the word frequency experiment. Posterior predictive model checks
indicated that the model resulted in participant-stimulus pair parameter estimates that adequately
described the observed data. The storage-retrieval u parameter mimicked the pattern of the be-
havioral results and demonstrated the typical pure list-mixed list word frequency paradox. The
cluster-storage c parameter showed a small clustering advantage for LF word pairs over HF word
pairs in the pure condition, possibly as a result of strategy use or the enhanced accessibility of or-
thographic information for LF words. The cluster-retrieval r parameter showed a recall advantage
for clustered LF word pairs over clustered HF word pairs in the mixed condition, possibly as a
result of the distinctiveness of LF words in a mixed list environment.
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(b) Satisfactory fit LF mixed condition
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(c) Poor fit HF pure condition
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(d) Poor fit HF mixed condition

Figure 5.8 Examples of satisfactory (panel a and b) and poor (panel c and d) model fit in the word
frequency orthographic clustering experiment The gray triangles indicate the observed data that
are summed over the items (panel a and d) or over the participants (panel b and c). The circles
indicate the median of the predicted category frequencies over the 1,200 posterior simulations. The
black area in each violin plot is a box plot, with the box ranging from the 25th to the 75th percentile
of the posterior predictive samples.
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5.6 Discussion

MPT models are theoretically motivated stochastic models for the analysis of categorical data.
Traditionally, statistical analysis for MPT models is carried out on aggregated data, assuming ho-
mogeneity in participants and items. If this assumption is violated, the analysis of aggregated data
may lead to erroneous conclusions. Fortunately, various methods are now available to incorporate
heterogeneity either in participants or in items within MPT models.

Here we focused on Klauer’s (2010) latent-trait approach that postulates a multivariate normal
distribution to model individual differences between the probit transformed model parameters. We
provided a WinBUGS implementation of the latent-trait pair-clustering model and demonstrated
that it provides well calibrated parameter estimates in synthetic data. We then expanded the latent-
trait pair-clustering model to incorporate item variability. The resulting crossed-random effects
approach assumes that participant and item effects combine additively on the probit scale. The
random effects are modeled using (multivariate) normal distributions. First, we used simulations
to show that the WinBUGS implementation of the crossed-random effects approach adequately
recovers the true parameter values. The group parameters and their standard deviations were
recovered with little bias even in datasets with very few items per participant. Precise estimation
of the corresponding correlation parameters required a larger sample size and/or a greater number
of items. Second, we applied the crossed-random effects model to novel experimental data and
examined the changes in cognitive processes that underlie the pure list-mixed list word frequency
paradox.

Approaches that are based on the additivity of probit transformed participant and item effects
have been recently proposed in other research contexts as well (e.g., Pratte & Rouder, 2011; Rouder
& Lu, 2005; Rouder et al., 2008, 2007). Here we demonstrated that this type of crossed-random
effects modeling can be extended to the pair-clustering MPT model. We chose the pair-clustering
model as our running example because is it one of the most extensively studied MPT models and it
has been widely used to investigate memory deficits in various age groups and clinical populations
(e.g., Batchelder & Riefer, 2007). It is well-known that using items with varying difficulties aids
the estimation of individual differences. The crossed-random effects extension therefore makes the
pair-clustering paradigm better equipped for assessing individuals with memory deficits.

Although we focused exclusively on pair-clustering, the crossed-random effects approach may
be extended to many other MPT models. The issue of model identification must, however, be
carefully considered. Specifically, problems may arise in models, such as the source monitoring
model (Batchelder & Riefer, 1990; Schmittmann, Dolan, Raijmakers, & Batchelder, 2010), where
one or more subtrees are unidentified so that a given subtree has more parameters than free response
categories. In such situations, parameter constraints are required between the category systems
to reduce the number of parameters and identify the model. In many applications, however, each
item features in only one of the category systems of the model. As a result, we cannot use across-
subtree constraints for the item effects, resulting in parameters that are not identified at the level
of the individual items. In these models, we can obtain information on each item in each category
system by —as in the present experiment— randomizing the items across the participants and
the experimental conditions or trial types. In this way, we can place across-subtree constraints
on the item effects and, due to the additive structure of the model, we can estimate parameters
for each participant-item combination. Note, however, that the present approach deals only with
models that are identified for each participant after collapsing across items and for each item after
collapsing across the participants. In paradigms where items are restricted to certain category
systems, model identification remains an issue that requires further development.

A related issue concerns the storage-retrieval u parameter. We indexed the u parameter by
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word pairs rather than by individual items, assuming that the two members of a word pair are
homogeneous. To the best of our knowledge, all previous applications of the pair-clustering model
have used this homogeneity assumption. Nevertheless, in certain situations —as with asymmetric
stimuli, such as category-exemplar word pairs— the homogeneity assumption will most likely be
violated. In such situations, we may want to index the u parameter by individual items rather than
by word pairs. To be able to estimate a separate u parameter for each item and, at the same time,
maintain model identifiability, we may split up C13 in two response categories and record whether
the first or the second member of the word pair has been recalled. In our experience, however, the
extra degree of freedom resulting from recording the order of the recall of word pairs does not offer
enough benefits to offset the sparseness resulting from splitting the response categories.

Throughout the article, we used WinBUGS to sample from the posterior distribution of the
model parameters. WinBUGS is a user-friendly standard MCMC software that does not require
substantial knowledge of the underlying sampling algorithm. The basic WinBUGS scripts can
be easily extended to multiple testing conditions with various parameter constraints or can be
adopted to accommodate other MPT models. Due to its generality, however, WinBUGS is not
tailored to the particular model at hand. For models with zero-centered random effects, WinBUGS
might be slow to converge as a result of the high autocorrelation between successive MCMC draws.
WinBUGS then requires more samples from the posterior distribution of the parameters than
a tailor-made Gibbs sampler that uses block-wise sampling for groups of correlated parameters
(e.g., Klauer, 2010; Rouder et al., 2007). Nevertheless, WinBUGS is a helpful tool for fitting
Bayesian hierarchical MPT models in general and the pair-clustering model in particular, as long
as the convergence of the MCMC chains is carefully monitored. Of course, several alternatives to
WinBUGS are now available. The OpenBUGS (Lunn et al., 2009) and JAGS (Plummer, 2003)
projects, for instance, provide more options for block-wise sampling than does WinBUGS, but to
the best of our knowledge, the development of blocked updating is still work in progress. For yet
another —recently developed— alternative, see the Stan project (Stan Development Team, 2012).

Prior Distributions

The latent-trait approach and its crossed-random effects extension rely on Bayesian parameter
estimation and as such require the specification of prior distributions. As uninformative priors
might lead to unrealistic and poorly calibrated estimates, we followed Klauer’s (2010) work and
used weakly informative hyper-priors. Our priors for the group means are more informative and
the priors for the standard deviations are more diffuse than the priors used in Klauer’s original for-
mulation of the latent-trait approach. Bayesian parameter estimation is, however, not sensitive to
the choice of the prior distributions as long as sufficiently informative data are available. Consider,
for example, uniform prior distributions with different ranges (i.e., 0-5, 0-10, and 0-100) for the
scaling factor ξ parameters of the participant and item standard deviations. Although the priors
for ξ influence the shape of the priors for σpart and σitem, the results of additional simulations
suggest that the recovered parameter estimates are not sensitive to these choices.

In our crossed-random effects approach, we modeled the synthetic data using uncorrelated
item effects, whereas we modeled the experimental data using correlated item effects. The two
approaches thus differed in terms of prior assumptions; the first model assumed that the item effects
are independent a priori, whereas the latter model allowed them to be correlated. With sufficiently
informative data, however, the data quickly overwhelm the prior. The correlations between the
a priori independent random effects may therefore also be examined using the posterior of the
individual item parameters. Nevertheless, in small datasets, the assumption of a priori uncorrelated
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item effects may induce bias in the estimated correlations between the item parameters (e.g.,
Rouder et al., 2007).

If the item effects are likely to be correlated, one may capture these —similar to the partici-
pant effects— using a multivariate normal distribution. Modeling the item correlations, however,
increases the amount of data that is necessary to obtain stable parameter estimates. For our ex-
perimental data, we were unable to derive sufficiently precise estimates for the item correlations
despite the relatively large item pool. Similarly, additional simulations indicated that precise esti-
mates of item correlations in the pair-clustering paradigm require a rather large number of items,
a requirement that is often difficult to satisfy in clinical applications. Nevertheless, explicitly mod-
eling the item correlations, even if they cannot be estimated precisely, has the potential to correct
for bias that might result from fitting a simpler, but unrealistic model.

Conclusion

Here we introduced WinBUGS implementations of the latent-trait pair-clustering model and its
crossed-random effects extension. The models allow researchers to analyze pair-clustering data
without relying on aggregation and the underlying unrealistic assumption of parameter homogene-
ity. The WinBUGS implementation can in principle be adopted to accommodate other multinomial
models and therefore provides a useful contribution to the growing arsenal of analysis techniques
that address the issue of parameter heterogeneity in MPT models.
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Chapter 6

Model Comparison and the Principle of

Parsimony

This chapter is a modified version of:
Joachim Vandekerckhove, Dora Matzke, and Eric-Jan Wagenmakers (in press).

Model comparison and the principle of parsimony.
In J. Busemeyer, J. Townsend, Z. J. Wang, & A. Eidels (Eds.), Oxford handbook of computational

and mathematical psychology. Oxford, UK: Oxford University Press.

6.1 Introduction

At its core, the study of psychology is concerned with the discovery of plausible explanations for
human behavior. For instance, one may observe that “practice makes perfect”: as people become
more familiar with a task, they tend to execute it more quickly and with fewer errors. More
interesting is the observation that practice tends to improve performance such that most of the
benefit is accrued early on, a pattern of diminishing returns that is well described by a power law
(Logan, 1988; but see Heathcote et al., 2000). This pattern occurs across so many different tasks
(e.g., cigar rolling, maze solving, fact retrieval, and a variety of standard psychological tasks) that
it is known as the “power law of practice”. Consider, for instance, the lexical decision task, a
task in which participants have to decide quickly whether a letter string is an existing word (e.g.,
sunscreen) or not (e.g., tolphin). When repeatedly presented with the same stimuli, participants
show a power law decrease in their mean response latencies; in fact, they show a power law decrease
in the entire response time distribution, that is, both the fast responses and the slow responses
speed up with practice according to a power law (Logan, 1992).

The observation that practice makes perfect is trivial, but the finding that practice-induced
improvement follows a general law is not. Nevertheless, the power law of practice only provides a
descriptive summary of the data and does not explain the reasons why practice should result in a
power law improvement in performance. In order to go beyond direct observation and statistical
summary, it is necessary to bridge the divide between observed performance on the one hand and
the pertinent psychological processes on the other. Such bridges are built from a coherent set of
assumptions about the underlying cognitive processes—a theory. Ideally, substantive psychological
theories are formalized as quantitative models (Busemeyer & Diederich, 2010; Lewandowsky &
Farrell, 2010). For example, the power law of practice has been explained by instance theory
(Logan, 1992, 2002). Instance theory stipulates that earlier experiences are stored in memory as
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individual traces or instances; upon presentation of a stimulus, these instances race to be retrieved,
and the winner of the race initiates a response. Mathematical analysis shows that, as instances are
added to memory, the finishing time of the winning instance decreases as a power function. Hence,
instance theory provides a simple and general explanation of the power law of practice.

For all its elegance and generality, instance theory has not been the last word on the power law
of practice. The main reason is that single phenomena often afford different competing explana-
tions. For example, the effects of practice can also be accounted for by Rickard’s component power
laws model (Rickard, 1997), Anderson’s ACT-R model (Anderson et al., 2004), Cohen et al.’s PDP
model (J. D. Cohen, Dunbar, & McClelland, 1990), Ratcliff’s diffusion model (Dutilh, Vandekerck-
hove, Tuerlinckx, & Wagenmakers, 2009; Ratcliff, 1978), or Brown and Heathcote’s linear ballistic
accumulator model (Brown & Heathcote, 2005, 2008; Heathcote & Hayes, 2012). When various
models provide competing accounts of the same data set, it can be difficult to choose between
them. The process of choosing between models is called model comparison, model selection, or
hypothesis testing, and it is the focus of this chapter.

A careful model comparison procedure includes both qualitative and quantitative elements.
Important qualitative elements include the plausibility, parsimony, and coherence of the underlying
assumptions, the consistency with known behavioral phenomena, the ability to explain rather than
describe data, and the extent to which model predictions can be falsified through experiments. Here
we ignore these important aspects and focus solely on the quantitative elements. The single most
important quantitative element of model comparison relates to the ubiquitous tradeoff between
parsimony and goodness-of-fit (Pitt & Myung, 2002). The motivating insight is that the appeal
of an excellent fit to the data (i.e., high descriptive adequacy) needs to be tempered to the extent
that the fit was achieved with a highly complex and powerful model (i.e., low parsimony).

The topic of quantitative model comparison is as important as it is challenging; fortunately,
the topic has received—and continues to receive—considerable attention in the field of statistics,
and the results of those efforts have been made accessible to psychologists through a series of
recent special issues, books, and articles (e.g., Grünwald, 2007; Myung, Forster, & Browne, 2000;
Pitt & Myung, 2002; Wagenmakers & Waldorp, 2006). Here we discuss several procedures for
model comparison, with an emphasis on minimum description length and the Bayes factor. Both
procedures entail principled and general solutions to the tradeoff between parsimony and goodness-
of-fit.

The outline of this chapter is as follows. The first section describes the principle of parsimony
and the unavoidable tradeoff with goodness-of-fit. The second section summarizes the research of
Wagenaar and Boer (1987) who carried out an experiment to compare three competing multinomial
processing tree models (MPTs; Batchelder & Riefer, 1980); this model comparison exercise is used
as a running example throughout the chapter. The third section outlines different methods for
model comparison and applies them to Wagenaar and Boer’s MPT models. We focus on two
popular information criteria, the AIC and the BIC, on the Fisher information approximation of
the minimum description length principle, and on Bayes factors as obtained from importance
sampling. The fourth section contains conclusions and take-home messages.

6.2 The Principle of Parsimony

Throughout history, prominent philosophers and scientists have stressed the importance of parsi-
mony. For instance, in the Almagest—a famous 2nd-century book on astronomy—Ptolemy writes:
“We consider it a good principle to explain the phenomena by the simplest hypotheses that can be
established, provided this does not contradict the data in an important way.” Ptolemy’s principle
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Occam’s razor (sometimes Ockham’s) is named after the English philosopher and Franciscan friar
Father William of Occam (c.1288-c.1348), who wrote “Numquam ponenda est pluralitas sine
necessitate” (plurality must never be posited without necessity), and “Frustra fit per plura quod
potest fieri per pauciora” (it is futile to do with more what can be done with less). Occam’s
metaphorical razor symbolizes the principle of parsimony: by cutting away needless complexity,
the razor leaves only theories, models, and hypotheses that are as simple as possible without being
false. Throughout the centuries, many other scholars have espoused the principle of parsimony;
the list predating Occam includes Aristotle, Ptolemy, and Thomas Aquinas (“it is superfluous to
suppose that what can be accounted for by a few principles has been produced by many”), and the
list following Occam includes Isaac Newton (“We are to admit no more causes of natural things
than such as are both true and sufficient to explain their appearances. Therefore, to the same
natural effects we must, so far as possible, assign the same causes.”), Bertrand Russell, Albert
Einstein (“Everything should be made as simple as possible, but no simpler”), and many others.

In the field of statistical reasoning and inference, Occam’s razor forms the foundation for
the principle of minimum description length (Grünwald, 2000, 2007). In addition, Occam’s
razor is automatically accommodated through Bayes factor model comparisons (e.g., Jeffreys,
1961; Jefferys & Berger, 1992; MacKay, 2003). Both minimum description length and Bayes
factors feature prominently in this chapter as principled methods to quantify the tradeoff between
parsimony and goodness-of-fit.

Box 6.1 Occam’s razor.

of parsimony is widely known as Occam’s razor (see Box 6.1); the principle is intuitive as it puts
a premium on elegance. In addition, most people feel naturally attracted to models and expla-
nations that are easy to understand and communicate. Moreover, the principle also gives ground
to reject propositions that are without empirical support, including extrasensory perception, alien
abductions, or mysticism. In an apocryphal interaction, Napoleon Bonaparte asked Pierre-Simon
Laplace why the latter’s book on the universe did not mention its creator, only to receive the curt
reply “I had no need of that hypothesis”.

However, the principle of parsimony finds its main motivation in the benefits that it bestows
those who use models for prediction. To see this, note that empirical data are composed of a
structural, replicable part and an idiosyncratic, non-replicable part. The former is known as the
signal, and the latter is known as the noise (Silver, 2012). Models that capture all of the signal and
none of the noise provide the best possible predictions to unseen data from the same source. Overly
simplistic models, however, fail to capture part of the signal; these models underfit the data and
provide poor predictions. Overly complex models, on the other hand, mistake some of the noise for
actual signal; these models overfit the data and again provide poor predictions. Thus, parsimony
is essential because it helps discriminate the signal from the noise, allowing better prediction and
generalization to new data.

Goodness-of-Fit

“From the earliest days of statistics, statisticians have begun their analysis by proposing a dis-
tribution for their observations and then, perhaps with somewhat less enthusiasm, have checked
on whether this distribution is true. Thus over the years a vast number of test procedures have
appeared, and the study of these procedures has come to be known as goodness-of-fit” (D’Agostino
& Stephens, 1986, p. v).
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The goodness-of-fit of a model is a quantity that expresses how well the model is able to account
for a given set of observations. It addresses the following question: Under the assumption that a
certain model is a true characterization of the population from which we have obtained a sample,
and given the best fitting parameter estimates for that model, how well does our sample of data
agree with that model?

Various ways of quantifying goodness-of-fit exist. One common expression involves a Euclidean
distance metric between the data and the model’s best prediction (the least squared error or LSE
metric is the most well-known of these). Another measure involves the likelihood function, which
expresses the likelihood of observing the data under the model, and is maximized by the best fitting
parameter estimates (Myung, 2000).

Parsimony

Goodness-of-fit must be balanced against model complexity in order to avoid overfitting—that is,
to avoid building models that well explain the data at hand, but fail in out-of-sample predictions.
The principle of parsimony forces researchers to abandon complex models that are tweaked to the
observed data in favor of simpler models that can generalize to new data sets.

A common example is that of polynomial regression. Figure 6.1 gives a typical example. The
observed data are the circles in both the left and right panels. Crosses indicate unobserved, out-
of-sample data points to which the model should generalize. In the left panel, a quadratic function
is fit to the 8 observed data points, whereas the right panel shows a 7th order polynomial function
fitted to the same data. Since a polynomial of degree 7 can be made to contain any 8 points in the
plane, the observed data are perfectly captured by the best fitting polynomial. However, it is clear
that this function generalizes poorly to the unobserved samples, and it shows undesirable behavior
for larger values of x.
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Figure 6.1 A polynomial regression of degree d is characterized by ŷ =
∑d

i=0 aix
i. This model has

d+ 1 free parameters ai; hence, in the right panel, a polynomial of degree 7 perfectly accounts for
the 8 visible data points. This 7th order polynomial, however, accounts poorly for the out-of-sample
data points.
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In sum, an adequate model comparison method needs to discount goodness-of-fit with model
complexity. But how exactly can this be accomplished? As we will describe shortly, several model
comparison methods are currently in vogue; all resulting from principled ideas on how to obtain
measures of generalizability1, meaning that these methods attempt to quantify the extent to which
a model predicts unseen data from the same source (cf. Figure 6.1). Before outlining the details of
various model comparison methods, we now introduce a data set that serves as a working example
throughout the remainder of the chapter.

6.3 Example: Competing Models of Interference in Memory

For an example model comparison scenario, we revisit a study by Wagenaar and Boer (1987) on
the effect of misleading information on the recollection of an earlier event. The effect of misleading
postevent information was first studied systematically by E. F. Loftus, Miller, and Burns (1978);
for a review of relevant literature, see Wagenaar and Boer (1987) and references therein.

Wagenaar and Boer (1987) proposed three competing theoretical accounts of the effect of mis-
leading postevent information. To evaluate the three accounts, Wagenaar and Boer set up an
experiment and introduced three quantitative models that translate each of the theoretical ac-
counts into a set of parametric assumptions that together give rise to a probability density over
the data, given the parameters.

Abstract Accounts

Wagenaar and Boer (1987) outlined three competing theoretical accounts of the effect of misleading
postevent information on memory. Loftus’ destructive updating model (DUM) posits that the
conflicting information replaces and destroys the original memory. A coexistence model (CXM)
asserts that an inhibition mechanism suppresses the original memory, which nonetheless remains
viable though temporarily inaccessible. Finally, a no-conflict model (NCM) simply states that
misleading postevent information is ignored, except when the original information was not encoded
or already forgotten.

Experimental Design

The experiment by Wagenaar and Boer (1987) proceeded as follows. In Phase I, a total of 562
participants were shown a sequence of events in the form of a pictorial story involving a pedestrian-
car collision. One picture in the story would show a car at an intersection, and a traffic light that
was either red, yellow, or green. In Phase II, participants were asked a set of test questions with
(potentially) conflicting information: Participants might be asked whether they remembered a
pedestrian crossing the road when the car approached the “traffic light” (in the consistent group),
the “stop sign” (in the inconsistent group) or the “intersection” (the neutral group). Then, in Phase
III, participants were given a recognition test about elements of the story using picture pairs. Each
pair would contain one picture from Phase I and one slightly altered version of the original picture.
Participants were then asked to identify which of the pair had featured in the original story. A
picture pair is shown in Figure 6.2, where the intersection is depicted with either a traffic light or
a stop sign. Finally, in Phase IV, participants were informed that the correct choice in Phase III
was the picture with the traffic light, and were then asked to recall the color of the traffic light.

1This terminology is due to Pitt and Myung (2002), who point out that measures often referred to as “model fit
indices” are in fact more than mere measures of fit to the data—they combine fit to the data with parsimony and
hence measure generalizability. We adopt their more accurate terminology here.
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Figure 6.2 A pair of pictures from the third phase (i.e., the recognition test) of (Wagenaar & Boer,
1987, reprinted with permission), containing the critical episode at the intersection.

By design, this experiment should yield different response patterns depending on whether the
conflicting postevent information destroys the original information (destructive updating model),
only suppresses it temporarily (coexistence model), or does not affect the original information
unless it is unavailable (no-conflict model).

Concrete Models

Wagenaar and Boer (1987) developed a series of MPT models (see Box 6.2) to quantify the predic-
tions of the three competing theoretical accounts. Figure 6.3 depicts the no-conflict MPT model
in the inconsistent condition. The figure is essentially a decision tree that is navigated from left to
right. In Phase I of the collision narrative, the traffic light is encoded with probability p, and if so,
the color is encoded with probability c. In Phase II, the stop sign is encoded with probability q. In
Phase III, the answer may be known, or may be guessed correctly with probability 1/2, and in Phase
IV the answer may be known or may be guessed correctly with probability 1/3. The probability
of each path is given by the product of all the encountered probabilities, and the total probability
of a response pattern is the summed probability of all branches that lead to it. For example, the
total probability of getting both questions wrong is (1−p)× q×2/3+(1−p)× (1− q)×1/2×2/3.
We would then, under the no-conflict model, expect that proportion of participants to fall in the
response pattern with two errors.

The destructive updating model (Figure 2 in Wagenaar & Boer, 1987) extends the three-
parameter no-conflict model by adding a fourth parameter d: the probability of destroying the
traffic light information, which may occur whenever the stop sign was encoded. The coexistence
model (Figure 3 in Wagenaar & Boer, 1987), on the other hand, posits an extra probability s
that the traffic light is suppressed (but not destroyed) when the stop sign is encoded. A critical
difference between the latter two is that a destruction step will lead to chance accuracy in Phase IV
if every piece of information was encoded, whereas a suppression step will not affect the underlying
memory and lead to accurate responding. Note here that if s = 0, the coexistence model reduces to
the no-conflict model, as does the destructive updating model with d = 0. The models only make
different predictions in the inconsistent condition, so that for the consistent and neutral conditions
the trees are identical.
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Figure 6.3 Multinomial processing tree representation of the inconsistent condition according to
the no-conflict model (adapted from Wagenaar & Boer, 1987).

Previous Conclusions

After fitting the three competing MPT models, Wagenaar and Boer (1987) obtained the parameter
point estimates in Table 6.1. Using a χ2 model fit index, they concluded that “a distinction among
the three model families appeared to be impossible in actual practice” (p. 304), after noting that
the no-conflict model provides “an almost perfect fit” to the data. They propose, then, “to accept
the most parsimonious model, which is the no-conflict model.” In the remainder of this chapter,
we re-examine this conclusion using various model comparison methods.

6.4 Three Methods for Model Comparison

Many model comparison methods have been developed, all of them attempts to address the ubiq-
uitous tradeoff between parsimony and goodness-of-fit. Here we focus on three main classes of
interrelated methods: (1) AIC and BIC, the most popular information criteria; (2) minimum de-
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Table 6.1 Parameter Point Estimates From Wagenaar and Boer (1987).

p c q d s

No-conflict model (NCM) 0.50 0.57 0.50 n/a n/a

Destructive updating model (DUM) 0.50 0.57 0.50 0.00 n/a

Coexistence model (CXM) 0.55 0.55 0.43 n/a 0.20

Multinomial processing tree models (Batchelder & Riefer, 1980; Chechile, 1973; Chechile & Meyer,
1976; Riefer & Batchelder, 1988) are psychological process models for categorical data. MPT mod-
els are used in two ways: as a psychometric tool to measure unobserved cognitive processes, and as
a convenient formalization of competing psychological theories. Over time, MPTs have been ap-
plied to a wide range of psychological tasks and processes. For instance, MPT models are available
for recognition, recall, source monitoring, perception, priming, reasoning, consensus analysis, the
process dissociation procedure, implicit attitude measurement, and many other phenomena. For
more information about MPTs, we recommend the review articles by Batchelder and Riefer (1999),
Batchelder and Riefer (2007, pp. 24–32), and Erdfelder et al. (2009). The latter review article also
discusses different software packages that can be used to fit MPT models. Necessarily missing from
that list is the recently developed R package MPTinR (Singmann & Kellen, 2013) with which we
have good experiences. As will become apparent throughout this chapter, however, our preferred
method for fitting MPT models is Bayesian (Chechile & Meyer, 1976; Klauer, 2010; M. D. Lee &
Wagenmakers, 2013; Matzke, Dolan, Batchelder, & Wagenmakers, in press; Rouder et al., 2008;
J. B. Smith & Batchelder, 2010).

Box 6.2 Popularity of multinomial processing tree models.

scription length; (3) Bayes factors. Below we provide a brief description of each method and then
apply it to the model comparison problem that confronted Wagenaar and Boer (1987).

Information Criteria

Information criteria are among the most popular methods for model comparison. Their popularity
is explained by the simple and transparent manner in which they quantify the tradeoff between
parsimony and goodness-of-fit. Consider for instance the oldest information criterion, AIC (“an
information criterion”), proposed by Akaike (1973, 1974a):

AIC = −2 ln p
(

y | θ̂
)

+ 2k. (6.1)

The first term ln p
(

y | θ̂
)

is the log maximum likelihood that quantifies goodness-of-fit, where y is

the data set and θ̂ the maximum-likelihood parameter estimate; the second term 2k is a penalty for
model complexity, measured by the number of adjustable model parameters k. The AIC estimates
the expected information loss incurred when a probability distribution f (associated with the
true data-generating process) is approximated by a probability distribution g (associated with the
model under evaluation). Hence, the model with the lowest AIC is the model with the smallest
expected information loss between reality f and model g, where the discrepancy is quantified by
the Kullback-Leibler divergence I(f, g) (for full details, see Burnham & Anderson, 2002). The
AIC is unfortunately not consistent : as the number of observations grows infinitely large, AIC is
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not guaranteed to choose the true data generating model. Many researchers believe that the AIC
tends to select complex models that overfit the data (O’Hagan & Forster, 2004; for a discussion
see Vrieze, 2012).

Another information criterion, the BIC (“Bayesian information criterion”) was proposed by
G. Schwarz (1978):

BIC = −2 ln p
(

y | θ̂
)

+ k lnn. (6.2)

Here, the penalty term is k lnn, where n is the number of observations. Hence, the BIC penalty
for complexity increases with sample size, outweighing that of AIC as soon as n ≥ 8. The BIC
was derived as an approximation of a Bayesian hypothesis test using default parameter priors
(the “unit information prior”; see below for more information on Bayesian hypothesis testing, and
see Raftery, 1995, for more information on the BIC). The BIC is consistent: as the number of
observations grows infinitely large, BIC is guaranteed to choose the true data generating model.
Nevertheless, some researchers believe that in practical applications the BIC tends to select simple
models that underfit the data (Burnham & Anderson, 2002).

Now consider a set of candidate models, Mi, i = 1, ...,m, each with a specific IC (AIC or BIC)
value. The model with the smallest IC value should be preferred, but the extent of this preference
is not immediately apparent. For better interpretation we can calculate IC model weights (Akaike,
1974b; Burnham & Anderson, 2002; Wagenmakers & Farrell, 2004); First, we compute, for each
model i, the difference in IC with respect to the IC of the best candidate model:

∆i = ICi −min IC. (6.3)

This step is taken to increase numerical stability, but it also serves to emphasize the point that
only differences in IC values are relevant. Next, we obtain the model weights by transforming back
to the likelihood scale and normalizing:

wi =
exp (−∆i/2)

∑M
m=1 exp (−∆m/2)

. (6.4)

The resulting AIC and BIC weights are called Akaike weights and Schwarz weights, respectively.
These weights not only convey the relative preference among a set of candidate models, but also
provide a method to combine predictions across multiple models using model averaging (Hoeting,
Madigan, Raftery, & Volinsky, 1999). Both AIC and BIC rely on an assessment of model complexity
that is relatively crude, as it is determined entirely by the number of free parameters but not by
their functional form.

Application to Multinomial Processing Tree Models

In order to apply AIC and BIC to the three competing MPTs proposed by Wagenaar and Boer
(1987), we first need to compute the maximum log likelihood. Note that the MPT model pa-
rameters determine the predicted probabilities for the different response outcome categories (cf.
Figure 6.3 and Box 6.2); these predicted probabilities are deterministic parameters from a multino-
mial probability density function. Hence, the maximum log likelihood parameter estimates for an
MPT model produce multinomial parameters that maximize the probability of the observed data
(i.e., the occurrence of the various outcome categories).

Several software packages exist that can help find the maximum log likelihood parameter esti-
mates for MPTs (e.g. Singmann & Kellen, 2013). With these estimates in hand, we can compute
the information criteria described in the previous section. Table 6.2 shows the maximum log
likelihood as well as AIC, BIC, and their associated weights (wAIC and wBIC; from Equation 6.4).
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Table 6.2 AIC and BIC for the Wagenaar and Boer (1987) MPT Models.

Log likelihood k AIC wAIC BIC wBIC

No-conflict model (NCM) -24.41 3 54.82 0.41 67.82 0.86
Destructive updating model (DUM) -24.41 4 56.82 0.15 74.15 0.04

Coexistence model (CXM) -23.35 4 54.70 0.44 72.03 0.10

Note. k is the number of free parameters.

Interpreting wAIC and wBIC as measures of relative preference, we see that the results in
Table 6.2 are mostly inconclusive. According to wAIC, the no-conflict model and coexistence
model are virtually indistinguishable, though both are preferable to the destructive updating model.
According to wBIC, however, the no-conflict model should be preferred over both the destructive
updating model and the coexistence model. The extent of this preference is noticeable but not
decisive.

Minimum Description Length

The minimum description length principle is based on the idea that statistical inference centers
around capturing regularity in data; regularity, in turn, can be exploited to compress the data.
Hence, the goal is to find the model that compresses the data the most (Grünwald, 2007). This is
related to the concept of Kolmogorov complexity—for a sequence of numbers, Kolmogorov com-
plexity is the length of the shortest program that prints that sequence and then halts (Grünwald,
2007). Although Kolmogorov complexity cannot be calculated, a suite of concrete methods are
available based on the idea of model selection through data compression. These methods, most of
them developed by Jorma Rissanen, fall under the general heading of minimum description length
(MDL; Rissanen, 1978, 1987, 1996, 2001). In psychology, the MDL principle has been applied and
promoted primarily by Grünwald (2000), Grünwald (2007), Grünwald, Myung, and Pitt (2005), as
well as Myung, Navarro, and Pitt (2006), Pitt and Myung (2002), and Pitt, Myung, and Zhang
(2002).

Here we mention three versions of the MDL principle. First, there is the so-called crude two-part
code (Grünwald, 2007); here, one sums the description of the model (in bits) and the description
of the data encoded with the help of that model (in bits). The penalty for complex models is that
they take many bits to describe, increasing the summed code length. Unfortunately, it can be
difficult to define the number of bits required to describe a model.

Second, there is the Fisher information approximation (FIA; Pitt et al., 2002; Rissanen, 1996):

FIA = − ln p
(

y | θ̂
)

+
k

2
ln
( n

2π

)

+ ln

∫

Θ

√

det [I(θ)] dθ, (6.5)

where I(θ) is the Fisher information matrix of sample size 1. Note that FIA is similar to AIC
and BIC in that it includes a first term that represents goodness-of-fit, and additional terms that
represent a penalty for complexity. The second term resembles that of BIC, and the third term
reflects a more sophisticated penalty that represents the number of distinguishable probability
distributions that a model can generate (Pitt et al., 2002). Hence, FIA differs from AIC and BIC
in that it also accounts for functional form complexity, not just complexity due to the number of
free parameters. Note that FIA weights (or Rissanen weights) can be obtained by multiplying FIA
by 2 and then applying Equations 6.3 and 6.4.
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Table 6.3 Minimum Description Length Values for the Wagenaar and Boer (1987) MPT Models.

Complexity FIA wFIA

No-conflict model (NCM) 6.44 30.86 0.44
Destructive updating model (DUM) 7.39 31.80 0.17

Coexistence model (CXM) 7.61 30.96 0.39

The third version of the MDL principle discussed here is normalized maximum likelihood (NML;
Myung et al., 2006; Rissanen, 2001):

NML =
p
(

y | θ̂y
)

∫

x p
(

x | θ̂x
) . (6.6)

This equation shows that NML tempers the enthusiasm about a good fit to the observed data y
(i.e., the numerator) to the extent that the model could also have provided a good fit to random
data x (i.e., the denominator). NML is simple to state but can be difficult to compute; for instance,
the denominator may be infinite and this requires additional measures to be taken (for details, see
Grünwald, 2007).

Application to Multinomial Processing Tree Models

Using the parameter estimates from Table 6.1 and the code provided byWu, Myung, and Batchelder
(2010), we can compute the FIA for the three competing MPT models considered by Wagenaar
and Boer (1987).2 Table 6.3 displays, for each model, the FIA along with its associated complexity
measure (the other one of its two constituent components, the maximum log likelihood, can be
found in Table 6.2). The conclusions from the MDL analysis mirror those from the AIC measure,
expressing a slight disfavor for the destructive updating model, and approximately equal preference
for the no-conflict model versus the coexistence model.

Bayes Factors

In Bayesian model comparison, the posterior odds for modelsM1 andM2 are obtained by updating
the prior odds with the diagnostic information from the data:

p(M1 | y)
p(M2 | y)

=
p(M1)

p(M2)
× m(y | M1)

m(y | M2)
. (6.7)

Equation 6.7 shows that the change from prior odds p(M1)/p(M2) to posterior odds p(M1 |
y)/p(M2 | y) is given by the ratio of marginal likelihoods m(y | M1)/m(y | M2), a quantity
known as the Bayes factor (Jeffreys, 1961; Kass & Raftery, 1995). The log of the Bayes factor
is often interpreted as the weight of evidence provided by the data (Good, 1985; for details, see
Berger & Pericchi, 1996; Bernardo & Smith, 1994; Gill, 2002; O’Hagan, 1995).

Thus, when the Bayes factor BF12 = m(y | M1)/m(y | M2) equals 5, the observed data y
are 5 times more likely to occur under M1 than under M2; when BF12 equals 0.1, the observed
data are 10 times more likely under M2 than under M1. Even though the Bayes factor has an

2Analysis using the MPTinR package from Singmann and Kellen (2013) gave virtually identical results.
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unambiguous and continuous scale, it is sometimes useful to summarize the Bayes factor in terms of
discrete categories of evidential strength. Jeffreys (1961, Appendix B) proposed the classification
scheme shown in Table 6.4. We replaced the labels “not worth more than a bare mention” with
“anecdotal”, “decisive” with “extreme”, and “substantial” with “moderate”. These labels facilitate
scientific communication but should be considered only as an approximate descriptive articulation
of different standards of evidence.

Table 6.4 Evidence Categories for the Bayes Factor BF12 (Based on Jeffreys, 1961).

Bayes factor BF12 Interpretation

> 100 Extreme evidence for M1

30 — 100 Very strong evidence for M1

10 — 30 Strong evidence for M1

3 — 10 Moderate evidence for M1

1 — 3 Anecdotal evidence for M1

1 No evidence
1/3 — 1 Anecdotal evidence for M2

1/10 — 1/3 Moderate evidence for M2

1/30 — 1/10 Strong evidence for M2

1/100 — 1/30 Very strong evidence for M2

< 1/100 Extreme evidence for M2

Bayes factors negotiate the tradeoff between parsimony and goodness-of-fit and implement an
automatic Occam’s razor (Jefferys & Berger, 1992; MacKay, 2003; Myung & Pitt, 1997). To see
this, consider that the marginal likelihood m(y) can be expressed as

∫

Θ p(y | θ)p(θ) dθ: an average
across the entire parameter space, with the prior providing the averaging weights. It follows
that complex models with high-dimensional parameter spaces are not necessarily desirable—large
regions of the parameter space may yield a very poor fit to the data, dragging down the average.
The marginal likelihood will be highest for parsimonious models that use only those parts of the
parameter space that are required to provide an adequate account of the data (M. D. Lee &
Wagenmakers, 2013). By using marginal likelihood, the Bayes factor punishes models that hedge
their bets and make vague predictions. Models can hedge their bets in different ways: by including
extra parameters, by assigning very wide prior distributions to the model parameters, or by using
parameters that have a complicated functional form. By computing a weighted average likelihood
across the entire parameter space, the marginal likelihood (and, consequently, the Bayes factor)
automatically takes all these aspects into account.

Bayes factors represent “the standard Bayesian solution to the hypothesis testing and model
selection problems” (Lewis & Raftery, 1997, p. 648) and “the primary tool used in Bayesian
inference for hypothesis testing and model selection” (Berger, 2006, p. 378), but their application
is not without challenges (Box 6.3). Below we show how these challenges can be overcome for
the general class of MPT models. Next we compare the results of our Bayes factor analysis with
those of the other model comparison methods using Jeffreys weights (i.e., normalized marginal
likelihoods).

Application to Multinomial Processing Tree Models

In order to compute the Bayes factor, we seek to determine each model’s marginal likelihood
m(y | M(·)). In the following, we omit the conditioning on a particular model. As indicated above,
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Bayes factors (Jeffreys, 1961; Kass & Raftery, 1995) come with two main challenges, one practical
and one conceptual. The practical challenge arises because Bayes factors are defined as the ratio
of two marginal likelihoods, each of which requires integration across the entire parameter space.
This integration process can be cumbersome and hence the Bayes factor can be difficult to obtain.
Fortunately, there are many approximate and exact methods to facilitate the computation of the
Bayes factor (e.g., Ardia, Baştürk, Hoogerheide, & van Dijk, 2012; Chen, Shao, & Ibrahim, 2002;
Gamerman & Lopes, 2006); in this chapter we focus on BIC (a crude approximation), the Savage-
Dickey density ratio (applies only to nested models) and importance sampling. The conceptual
challenge that Bayes factors bring is that the prior on the model parameters has a pronounced
and lasting influence on the result. This should not come as a surprise: the Bayes factor punishes
models for needless complexity, and the complexity of a model is determined in part by the prior
distributions that are assigned to the parameters. The difficulty arises because researchers are often
not very confident about the prior distributions that they specify. To overcome this challenge, one
can either spend more time and effort on the specification of realistic priors, or else one can choose
default priors that fulfill general desiderata (e.g., Jeffreys, 1961; Liang et al., 2008). Finally, the
robustness of the conclusions can be verified by conducting a sensitivity analysis in which one
examines the effect of changing the prior specification (e.g., Wagenmakers, Wetzels, Borsboom, &
van der Maas, 2011).

Box 6.3 Two challenges for Bayes factors.

the marginal likelihood m(y) is given by integrating the likelihood over the prior:

m(y) =

∫

p (y | θ) p (θ) dθ. (6.8)

The most straightforward manner to obtain m(y) is to draw samples from the prior p(θ) and
average the corresponding values for p(y | θ):

m(y) ≈ 1

N

N
∑

i=1

p (y | θi) , θi ∼ p(θ). (6.9)

For MPT models, this brute force integration approach may often be adequate. An MPT model
usually has few parameters, and each is conveniently bounded from 0 to 1. However, brute force
integration is inefficient, particularly when the posterior is highly peaked relative to the prior: in
this case, draws from p(θ) tend to result in low likelihoods and only few chance draws may have
high likelihood. This problem can be overcome by a numerical technique known as importance
sampling (Hammersley & Handscomb, 1964).

In importance sampling, efficiency is increased by drawing samples from an importance density
g(θ) instead of from the prior p(θ). Consider an importance density g(θ). Then,

m(y) =

∫

p (y | θ) p (θ) g(θ)
g(θ)

dθ

=

∫

p (y | θ) p (θ)
g(θ)

g(θ) dθ

≈ 1

N

N
∑

i=1

p (y | θi) p (θi)
g(θi)

, θi ∼ g(θ).

(6.10)

Note that if g(θ) = p(θ), the importance sampler reduces to the brute force integration shown in
Equation 6.9. Also note that if g(θ) = p(θ | y), a single draw suffices to determine p(y) exactly.
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Importance sampling was invented by Stan Ulam and John von Neumann. Here we use it to
estimate the marginal likelihood by repeatedly drawing samples and averaging—the samples are,
however, not drawn from the prior (as per Equation 6.9, the brute force method), but instead they
are drawn from some convenient density g(θ) (as per Equation 6.10; Andrieu, De Freitas, Doucet, &
Jordan, 2003; Hammersley & Handscomb, 1964). The parameters in MPT models are constrained
to the unit interval, and therefore the family of Beta distributions is a natural candidate for g(θ).
The middle panel of Figure 6.4 shows an importance density (dashed line) for MPT parameter c
in the no-conflict model for the data from Wagenaar and Boer (1987). This importance density is
a Beta distribution that was fit to the posterior distribution for c using the method of moments.
The importance density provides a good description of the posterior (the dashed line tracks the
posterior almost perfectly) and therefore is more efficient than the brute force method illustrated
in the left panel of Figure 6.4, which uses the prior as the importance density. Unfortunately, Beta
distributions do not always fit MPT parameters so well; specifically, the Beta importance density
may sometimes have tails that are thinner than the posterior, and this increases the variability of
the marginal likelihood estimate. To increase robustness and ensure that the importance density
has relatively fat tails, we can use a Beta mixture, shown in the right panel of Figure 6.4. The Beta
mixture consists of a uniform prior component (i.e., the Beta(1, 1) prior as in the left panel) and
a Beta posterior component (i.e., a Beta distribution fit to the posterior, as in the middle panel).
In this example, the mixture weight for the uniform component is w = 0.2. Small mixture weights
retain the efficiency of the Beta posterior approach but avoid the extra variability due to thin
tails. It is possible to increase efficiency further by specifying a multivariate importance density,
but the present univariate approach is intuitive, easy to implement, and appears to work well in
practice. The accuracy of the estimate can be confirmed by increasing the number of draws from
the importance density, and by varying the w parameter.

Box 6.4 Importance sampling for MPT models using the Beta mixture method.

In sum, when the importance density equals the prior we have brute force integration, and when
it equals the posterior we have a zero-variance estimator. However, knowledge of the posterior
implies knowledge of its normalizing constant (i.e., the marginal likelihood), and this is exactly
the quantity we wish to determine. In practice then, we want to use an importance density that
is similar to the posterior, is easy to evaluate, and is easy to draw samples from. In addition,
we want to use an importance density with tails that are not thinner than those of the posterior;
thin tails cause the estimate to have high variance. These desiderata are met by the Beta mixture
importance density described in Box 6.4: a mixture between a Beta(1, 1) density and a Beta
density that provides a close fit to the posterior distribution. Here we use a series of univariate
Beta mixtures, one for each separate parameter, but acknowledge that a multivariate importance
density is potentially even more efficient as it accommodates correlations between the parameters.

In our application to MPTmodels, we assume that all model parameters have uniform Beta(1, 1)
priors. For most MPT models, this assumption is fairly uncontroversial. The uniform priors can
be thought of as a default choice; in the presence of strong prior knowledge one can substitute
more informative priors. The uniform priors yield a default Bayes factor that can be a reference
point for an analysis with more informative priors, if such an analysis is desired.

Before turning to the results of the Bayes factor model comparison, we first inspect the posterior
distributions. The posterior distributions were approximated using Markov chain Monte Carlo
sampling implemented in JAGS (Plummer, 2003) and WinBUGS (Lunn et al., 2012).3 All code

3The second author used WinBUGS, the first and third authors used JAGS.
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Figure 6.4 Three different importance sampling densities (dashed lines) for the posterior distribu-
tion (solid lines) of the c parameter in the no-conflict model as applied to the data from Wagenaar
and Boer (1987). Left panel: a uniform Beta importance density (i.e., the brute force method);
middle panel: a Beta posterior importance density (i.e., a Beta distribution that provides the best
fit to the posterior); right panel: a Beta mixture importance density (i.e., a mixture of the uni-
form Beta density and the Beta posterior density, with a mixture weight w = 0.2 on the uniform
component).

is available at http://www.ejwagenmakers.com/papers.html. Convergence was confirmed by
visual inspection and the R̂ statistic (Gelman & Rubin, 1992). The top panel of Figure 6.5 shows
the posterior distributions for the no-conflict model. Although there is slightly more certainty
about parameter p than there is about parameters q and c, the posterior distributions for all
three parameters are relatively wide considering that they are based on data from as many as 562
participants.

The middle panel of Figure 6.5 shows the posterior distributions for the destructive-updating
model. It is important to realize that when d = 0 (i.e., no destruction of the earlier memory), the
destructive-updating model reduces to the no-conflict model. Compared to the no-conflict model,
parameters p, q, and c show relatively little change. The posterior distribution for d is very wide,
indicating considerable uncertainty about its true value. A frequentist point-estimate yields d̂ = 0
(Wagenaar & Boer, 1987; see also Table 6.1), but this does not convey the fact that this estimate
is highly uncertain.

The lower panel of Figure 6.5 shows the posterior distributions for the coexistence model. When
s = 0 (i.e., no suppression of the earlier memory), the coexistence model reduces to the no-conflict
model. Compared to the no-conflict model and the destructive-updating model, parameters p, q,
and c again show relatively little change. The posterior distribution for s is very wide, indicating
considerable uncertainty about its true value.

The fact that the no-conflict model is nested under both the destructive-updating model and
the no-conflict model allows us to inspect the extra parameters d and s and conclude that we
have not learned very much about their true values. This suggests that, despite having tested 562
participants, the data do not firmly support one model over the other. We will now see how Bayes
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Figure 6.5 Posterior distributions for the parameters of the no-conflict MPT model, the destructive
updating MPT model, and the coexistence MPT model, as applied to the data from Wagenaar
and Boer (1987).

factors can make this intuitive judgment more precise.
We applied the Beta mixture importance sampling method to estimate marginal likelihoods for

the three models under consideration. The results were confirmed by varying the mixture weight w,
by independent implementations by the authors, and by comparison to the Savage-Dickey density
ratio test presented later. Table 6.5 shows the results.

From the marginal likelihoods and the Jeffreys weights, we can derive the Bayes factors for
the pair-wise comparisons; the Bayes factor is 2.77 in favor of the no-conflict model over the
destructive updating model, the Bayes factor is 1.39 in favor of the coexistence model over the no-
conflict model, and the Bayes factor is 3.86 in favor of the coexistence model over the destructive
updating model. The first two of these Bayes factors are anecdotal or “not worth more than a
bare mention” (Jeffreys, 1961), and the third one just makes the criterion for “moderate” evidence,
although any enthusiasm about this level of evidence should be tempered by the realization that
Jeffreys himself described a Bayes factor as high as 5.33 as “odds that would interest a gambler,
but would be hardly worth more than a passing mention in a scientific paper” (Jeffreys, 1961, pp.
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Table 6.5 Bayesian Evidence, Jeffreys Weights, and Pairwise Bayes Factors Computed From the
Jeffreys Weights or Through the Savage-Dickey Density Ratio for the Wagenaar and Boer (1987)
MPT Models.

Bayesian Jeffreys Bayes factor (Savage-Dickey)
evidence weight over NCM over DUM over CXM

No-conflict model (NCM) -30.55 0.36 1 2.77 (2.81) 0.72 (0.80)
Destructive updating model (DUM) -31.57 0.13 0.36 (0.36) 1 0.26 (0.28∗)

Coexistence model (CXM) -30.22 0.51 1.39 (1.25) 3.86 (3.51∗) 1

Note. ∗ Derived through transitivity: 2.81× 1/0.80 = 3.51.

256-257). In other words, the Bayes factors are consistent with the intuitive visual assessment of
the posterior distributions: the data do not allow us to draw strong conclusions.

We should stress that Bayes factors apply to a comparison of any two models, regardless of
whether or not they are structurally related or nested, so that one model is a special, simplified
version of a larger, encompassing model. As is true for the information criteria and minimum de-
scription length methods, Bayes factors can be used to compare structurally very different models,
such as for example REM (Shiffrin & Steyvers, 1997) versus ACT-R (Anderson et al., 2004), or the
diffusion model (Ratcliff, 1978) versus the linear ballistic accumulator model (Brown & Heathcote,
2008). In other words, Bayes factors can be applied to nested and non-nested models alike. For
the models under consideration, however, there exists a nested structure that allows one to obtain
the Bayes factor through a computational shortcut.

Specifically, consider first the comparison between the no-conflict model MNCM and the de-
structive updating model MDUM. As shown above, we can obtain the Bayes factor for MNCM

versus MDUM by computing the marginal likelihoods using importance sampling. However, be-
cause the models are nested we can also obtain the Bayes factor by considering only MDUM, and
dividing the posterior ordinate at d = 0 by the prior ordinate at d = 0. This surprising result was
first published by Dickey and Lientz (1970), who attributed it to Leonard J. “Jimmie” Savage.
The result is now generally known as the Savage-Dickey density ratio (e.g., Dickey, 1971; for ex-
tensions and generalizations, see Chen, 2005; Verdinelli & Wasserman, 1995; Wetzels, Grasman, &
Wagenmakers, 2010; for an introduction for psychologists, see Wagenmakers et al., 2010; a short
mathematical proof is presented in O’Hagan & Forster, 2004, pp. 174-177). Thus, we can exploit
the fact that MNCM is nested in MDUM and use the Savage-Dickey density ratio to obtain the
Bayes factor:

BFNCM,DUM =
m(y | MNCM)

m(y | MDUM)
=

p(d = 0 | y,MDUM)

p(d = 0 | MDUM)
. (6.11)

The Savage-Dickey density ratio test is visualized in Figure 6.6; the posterior ordinate at d = 0
is higher than the prior ordinate at d = 0, indicating that the data have increased the plausibility
that d equals 0. This means that the data support MNCM over MDUM. The prior ordinate
equals 1, and hence BFNCM,DUM simply equals the posterior ordinate at d = 0. A nonparametric
density estimator (Stone, Hansen, Kooperberg, & Truong, 1997) that respects the bound at 0 yields
an estimate of 2.81. This estimate is close to 2.77, the estimate from the importance sampling
approach.

The Savage-Dickey density ratio test can be applied similarly to the comparison between the
no-conflict model MNCM versus the coexistence model MCXM, where the critical test is at s = 0.
Here the posterior ordinate is estimated to be 0.80, and hence the Bayes factor for MCXM over
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Figure 6.6 Illustration of the Savage-Dickey density ration test. The dashed and solid lines show
the prior and the posterior distribution for parameter d in the destructive updating model. The
black dots indicate the height of the prior and the posterior distributions at d = 0.

MNCM equals 1/0.80 = 1.25, close to the Bayes factor obtained through importance sampling,
BFCXM,NCM = 1.39.

With these two Bayes factors in hand, we can immediately derive the Bayes factor for the
comparison between the destructive updating model MDUM versus the coexistence model MCXM

through transitivity, that is, BFCXM,DUM = BFNCM,DUM × BFCXM,NCM. Alternatively, we can also
obtain BFCXM,DUM by directly comparing the posterior density for d = 0 against that for s = 0:

BFCXM,DUM = BFNCM,DUM ×BFCXM,NCM

=
p(d = 0 | y,MDUM)

p(d = 0 | MDUM)
× p(s = 0 | MCXM)

p(s = 0 | y,MCXM)

=
p(d = 0 | y,MDUM)

p(s = 0 | y,MCXM)
,

(6.12)

where the second step is allowed because we have assigned uniform priors to both d and s, so that
p(d = 0 | MDUM) = p(s = 0 | MCXM). Hence, the Savage-Dickey estimate for the Bayes factor
between the two non-nested models MDUM and MCXM equals the ratio of the posterior ordinates
at d = 0 and s = 0, resulting in the estimate BFCXM,DUM = 3.51, close to the importance sampling
result of 3.86.

Comparison of Model Comparisons

We have now implemented and performed a variety of model comparison methods for the three
competing MPT models introduced by Wagenaar and Boer (1987): we computed and interpreted
the Akaike information criteria (AIC), Bayesian information criteria (BIC), the Fisher informa-
tion approximation of the minimum description length principle (FIA), and two computational
implementations of the Bayes factor (BF).
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The general tenor across most of the model comparison exercises has been that the data do not
convincingly support one particular model. However, the destructive updating model is consistently
ranked the worst of the set. Looking at the parameter estimates, it is not difficult to see why this is
so: the d parameter of the destructive updating model (i.e., the probability of destroying memory
through updating) is estimated at 0, thereby reducing the destructive updating model to the no-
conflict model, and yielding an identical fit to the data (as can be seen in the likelihood column
of Table 6.2). Since the no-conflict model counts as a special case of the destructive updating
model, it is by necessity less complex from a model selection point of view—the d parameter is an
unnecessary entity, the inclusion of which is not warranted by the data. This is reflected in the
inferior performance of the destructive updating model according to all measures of generalizability.

The difference between the no-conflict model and the coexistence model is less clear-cut. Fol-
lowing AIC, the two models are virtually indistinguishable—compared to the coexistence model,
the no-conflict model sacrifices one unit of log-likelihood for two units of complexity (one param-
eter). As a result, both models perform equally well under the AIC measure. Under the BIC
measure, however, the penalty for the number of free parameters is more substantial, and here the
no-conflict model trades a unit of log likelihood for log(N) = 6.33 units of complexity, outdistanc-
ing both the destructive updating model and the coexistence model. The BIC is the exception in
clearly preferring the no-conflict model over the coexistence model. The MDL, like the AIC, would
have us hedge on the discriminability of the no-conflict model and the coexistence model.

The BF, finally, allows us to express evidence for the models using standard probability theory.
Between any two models, the BF tells us how much the balance of evidence has shifted due to the
data. Using two methods of computing the BF, we determined that the odds of the coexistence
model over the destructive updating model almost quadrupled (BFCXM,DUM ≈ 3.86), but the odds
of the coexistence model over the no-conflict model barely shifted at all (BFCXM,NCM ≈ 1.39).
Finally, we can use the same principles of probability to compute Jeffreys weights, which express,
for each model under consideration, the probability that it is true, assuming prior indifference.
Furthermore, we can easily recompute the probabilities in case we wish to express a prior preference
between the candidate models (for example, we might use the prior to express a preference for
sparsity, as was originally proposed by Jeffreys, 1961).

6.5 Concluding Comments

Model comparison methods need to implement the principle of parsimony: goodness-of-fit has to
be discounted to the extent that it was accomplished by a model that is overly complex. Many
methods of model comparison exist (Myung et al., 2000; Wagenmakers & Waldorp, 2006), and our
selective review focused on methods that are popular, easy-to-compute approximations (i.e., AIC
and BIC) and methods that are difficult-to-compute “ideal” solutions (i.e., minimum description
length and Bayes factors). We applied these model comparison methods to the scenario of three
competing MPT models introduced by Wagenaar and Boer (1987). Despite collecting data from
562 participants, the model comparison methods indicate that the data are somewhat ambiguous;
at any rate, the data do not support the destructive updating model. This echoes the conclusions
drawn by Wagenaar and Boer (1987).

It is important to note that the model comparison methods discusses in this chapter can be
applied regardless of whether the models are nested. This is not just a practical nicety; it also
means that the methods are based on principles that transcend the details of a specific model
implementation. In our opinion, a method of inference that is necessarily limited to the comparison
of nested models is incomplete at best and misleading at worst. It is also important to realize that

143



6. Model Comparison and the Principle of Parsimony

model comparison methods are relative indices of model adequacy; when, say, the Bayes factor
expresses an extreme preference for model A over model B, this does not mean that model A fits
the data at all well. Because it is a mistake to base inference on a model that fails to describe
the data, a complete inference methodology features both relative and absolute indices of model
adequacy. For the MPT models under consideration here, Wagenaar and Boer (1987) reported
that the no-conflict model provided “an almost perfect fit” to the data.4

The example MPT scenario considered here was relatively straightforward. More complicated
MPT models contain order-restrictions, feature individual differences embedded in a hierarchical
framework (Klauer, 2010; Matzke et al., in press), or contain a mixture-model representation with
different latent classes of participants (for application to other models, see Frühwirth-Schnatter,
2006; Scheibehenne, Rieskamp, & Wagenmakers, 2013). In theory, it is relatively easy to derive
Bayes factors for these more complicated models. In practice, however, Bayes factors for compli-
cated models may require the use of numerical techniques more involved than importance sampling.
Nevertheless, for standard MPT models, the Beta mixture importance sampler appears to be a
convenient and reliable tool to obtain Bayes factors. We hope that this methodology will facilitate
the principled comparison of MPT models in future applications.

4We confirmed the high quality of fit in a Bayesian framework using posterior predictives (Gelman & Hill, 2007),
results not reported here.
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Chapter 7

The Issue of Power in the Identification

of “g” with Lower-Order Factors

This chapter has been published as:
Dora Matzke, Conor V. Dolan, and Dylan Molenaar (2010).

The issue of power in the identification of “g” with lower-order factors.
Intelligence, 38, 336-344.1

Abstract

In higher-order factor models, general intelligence (g) is often found to correlate perfectly with
lower-order common factors, suggesting that g and some well-defined cognitive ability, such
as working memory, may be identical. However, the results of studies that addressed the
equivalence of g and lower-order factors are inconsistent. We suggest that this inconsistency
may partly be attributable to the lack of statistical power to detect the distinctiveness of the two
factors. The present study therefore investigated the power to reject the hypothesis that g and a
lower-order factor are perfectly correlated using artificial datasets, based on realistic parameter
values and on the results of selected publications. The results of the power analyses indicated
that power was substantially influenced by the effect size and the number and the reliability
of the indicators. The examination of published studies revealed that most case studies that
reported a perfect correlation between g and a lower-order factor were underpowered, with
power coefficients rarely exceeding 0.30. We conclude the paper by emphasizing the importance
of considering power in the context of identifying g with lower-order factors.

7.1 Introduction

The positive intercorrelation among scores on cognitive ability tests is a well-established phe-
nomenon, which is often explained by positing a general intelligence factor (g). The g-factor and
the positive manifold of correlations may be viewed as synonymous, i.e., the positive manifold
guarantees a dominant factor in principal component analyses (Basilevsky, 1983). However, we

1The final publication is available at http://dx.doi.org/10.1016/j.intell.2010.02.001.
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view the g-factor as a strong hypothesis, as the positive manifold may be attributable to causes
other than a general factor (Bartholomew, Deary, & Lawn, 2009; van der Maas et al., 2006).

The g-factor is supposed to reflect the operation of a process that is common to all cognitive
tasks (Jensen, 1998). There is, however, considerable disagreement as to what the nature of this
general process might be. For instance, some researchers argued that g is in large part a reflection of
frontal lobe functions such as inhibitory and control processes (e.g., J. Duncan, Burgess, & Emslie,
1995; Embretson, 1995; Dempster, 1991), whereas others stressed the importance of the speed of
information processing (e.g., Demetriou et al., 2005; Kail & Salthouse, 1994; Jensen, 1998), or the
efficiency of working memory (e.g., Conway, Cowan, Bunting, Therriault, & Minkoff, 2002; Süß,
Oberauer, Wittmann, Wilhelm, & Schulze, 2002).

One source of information concerning the nature of g is higher-order factor modeling, in which
g features as the highest order factor (Jensen, 1998). In these models, g is often found to correlate
perfectly with a lower-order common factor, suggesting that g and some well-defined broad cognitive
ability (represented by the lower-order factor) may be identical. However, the results of such studies
are inconsistent. First, g has been found to be perfectly correlated with a wide variety of cognitive
abilities, such as fluid reasoning (Gustafsson, 1984; Undheim & Gustafsson, 1987; W. Johnson &
Bouchard, 2005), nonverbal reasoning (Dunham, McIntosh, & Gridley, 2002), perceptual reasoning
(W. Johnson & Bouchard, 2005), verbal/mathematical ability (Stauffer, Ree, & Carretta, 1996),
and working memory (Colom, Rebollo, Palacios, Juan-Espinosa, & Kyllonen, 2004; Stauffer et al.,
1996; Kyllonen & Christal, 1990; Kyllonen, 1993; Colom, Escorial, Shih, & Privado, 2007). The
interpretation of such a perfect correlation varies from study to study: some discuss the theoretical
implications (e.g., Gustafsson, 1984; Undheim & Gustafsson, 1987), whereas others merely note
the results, but do not interpret them theoretically (e.g., W. Johnson & Bouchard, 2005). Second,
several studies have failed to support the equivalence of general intelligence and the proposed
cognitive abilities. For example, there is considerable evidence that g is highly correlated with
both fluid reasoning and working memory, but cannot be considered identical with either of these
constructs (e.g., Bickley, Keith, & Wolfle, 1995; Ackerman, Beier, & Boyle, 2002, 2005; Kane,
Hambrick, & Conway, 2005).

We suggest that the inconsistency in the results of studies that have addressed the equivalence
of g and lower-order factors may in part be attributable to a lack of statistical power. In an
underpowered study, the probability of rejecting the hypothesis that two highly correlated (e.g.,
0.8 or 0.9) factors are in fact perfectly correlated is low. In such studies, one should be reticent
to attach too great a meaning to the supposedly perfect correlation between g and the lower-order
common factor. Despite the theoretical importance of the issue of the exact nature of g, we are
unaware of any study that has addressed the question of power in the context of identifying g with
abilities represented by lower-order factors.

The goal of the present paper is therefore to study the power to correctly reject the hypothesis
of perfectly correlated factors in situations where g and the lower-order factor of interest are
strongly, but not perfectly, correlated. To this end, we investigated the power to detect a less
than perfect correlation using exact population (summary) statistics, which we constructed on the
basis of realistic parameter values and the results of selected publications that reported a perfect
correlation between g and a lower-order common factor. We focused exclusively on hierarchical
factor models, with g as the single highest order factor, i.e., with g at the apex of the hierarchy
(see Jensen, 1998).

The outline of this article is as follows. In the first section, we introduce the concept of statistical
power and present a brief overview of power calculations in the context of maximum likelihood
estimation. In the second section, we describe the study in which we established the power to
correctly reject the equivalence of two related factors under a variety of circumstances using realistic
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parameter values based on the literature. In the third section, we investigate the power of five
published studies by reconstructing the original factor models using reported parameter values.
We conclude the paper with a discussion.

7.2 Statistical Power and the Log-Likelihood Difference Test

The concept of statistical power plays an important role in formal statistical testing. Statistical
power represents the probability of rejecting a hypothesis, given that it is false (e.g., J. Cohen,
1988, 1992; Kraemer & Thiemann, 1989). We show how power calculations are carried out within
the common factor model. In this presentation, it may be useful to note that this approach to
power calculation within models for covariance structures is conceptually the same as that to power
calculation within a more basic statistical test like the independent samples t test. In case of a t
test, power represents the probability of correctly rejecting the null hypothesis (H0; no difference
between the two samples) in favor of an alternative hypothesis (HA; a difference between the two
samples) using the t statistic. Here, we are concerned with the power to reject a parsimonious
model (MA) in favor of a more complex model (MB) using the Tdiff statistic (see below). We now
present the details of this approach.

In covariance structure modeling, which includes higher-order factor modeling, MB concerns
the true model and MA concerns the false model (Satorra & Saris, 1985; Saris & Satorra, 1993).
Here MA is a special case of MB, in that MA can be derived from MB by the imposition of
constraints on the parameters (e.g., by fixing a given parameter in MB to zero): MA is thus nested
under MB. In the present situation, MB is the model which includes a less than perfect correlation
between g and a first-order factor and MA is the model in which the correlation is fixed to equal
one, by the imposition of an appropriate constraint.2 As shown in Table 7.1, the present article
is thus concerned with the power to correctly reject MA with perfectly correlated factors in favor
of MB with correlated, but distinct, factors. For any given statistical test, power is a function of
the sample size, the Type I error probability (α), and the effect size, i.e., the discrepancy between
the value of the parameter(s) of interest under MB (correlation of say 0.8) and MA (correlation
of 1.00). A power of 0.80 is generally considered adequate: i.e., by consensus, a value lower than
0.80 implies an unacceptable risk of a Type II error. Power higher than 0.80 may, ceteris paribus,
require unrealistically large sample size (J. Cohen, 1992).

Table 7.1 Probabilities of Correct and Incorrect Decisions in Hypothesis Testing in the Context of
Covariance Structure Modeling

Statistical decision
Reject MA Accept MA

True state of the world
MA is true (r = 1) Type I error (α) 1-α
MB is true (r < 1) Power (1-β) Type II error (β)

Note. r = correlation between g and the lower-order factor of interest; MB = model where r < 1; MA = model
where r = 1.

2Given the positive manifold, and its implication that the common factors are positively correlated (Krijnen,
2004), we do not consider the possibility of a perfect negative correlation.
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In the setting of maximum likelihood estimation, the tenability of the parameter constraints
associated with theMA (i.e., the constraints that renders the correlation perfect) can be determined
using a number of asymptotically equivalent statistical tests (Azzelini, 1996). Here we focus on the
log-likelihood difference test, which can be calculated as

Tdiff = TA − TB, (7.1)

where TA and TB are the likelihood ratios of the MA and MB models, respectively.
To determine the power of the test, one has to consider the distribution of the test statistic

Tdiff . If the two factors of interest were truly perfectly correlated (i.e., if the MA model was true),
Tdiff would asymptotically follow a central χ2 distribution,

Tdiff ∼ χ2(dfdiff , λ = 0), (7.2)

where dfdiff is the difference in the number of estimated parameters under the MB and the MA

models and λ is the non-centrality parameter, which equals zero here.
If the correlation between the two factors of interest was truly less than one (i.e., if the MB

model was true), Tdiff would follow the non-central χ2 distribution (Satorra & Saris, 1985; Saris
& Satorra, 1993),

Tdiff ∼ χ2(dfdiff , λ > 0). (7.3)

To put the non-central χ2 distribution at use, one has to determine its shape. The shape of the
non-central χ2 distribution depends on dfdiff and the non-centrality parameter λ. To obtain a
numerical estimate of λ, one first assigns plausible values to the parameters of MB and calculates
the associated population covariance matrix. The parameters of MB are chosen such that (inter
alia) the correlation between g and the lower-order factor of interest is less than one (say 0.8 or 0.9).
As the population covariance matrix is generated according to MB (i.e., true model), it obtained
features as the true population covariance matrix. Second, one expresses MA by assigning plausible
values to its parameters. The parameters of MA are chosen such that the correlation between g
and the lower-order factor of interest equals one. Note that both MB and MA must be fully
specified; all model parameters must be assigned plausible values.3 Third, one chooses a realistic,
but arbitrary, sample size N , fits the MB and the MA models to the population covariance matrix
and establishes the values of Tdiff and dfdiff . Note that the likelihood ratio associated with
MB (TB) is zero, because MB is the true model, i.e., the model used to obtain the population
covariance matrix. The likelihood ratio associated with MA (TA) is greater than zero, as MA is
false and does not fit the population covariance matrix. The value of Tdiff (Equation 7.1) equals
the non-centrality parameter λ (Satorra & Saris, 1985; Saris & Satorra, 1993).

Once the value of λ is obtained, one can calculate the power of the test as follows. Choose the
Type I error rate (α) and the associated critical value (C) based on the central χ2 distribution.
Next, determine the Type II error rate (β) by calculating the probability of observing a value of
the test statistic Tdiff that is smaller than the chosen critical value C, given the non-central χ2

distribution,

β = P [χ2(dfdiff , λ) < C]. (7.4)

3See Hancock (2006) for a simplified approach to power calculation that does not require the specification of all
parameter values.
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The power of the test is then given by 1 − β (see Table 7.1). Note that this approach to power
calculation does not rely on Monte Carlo simulations, rather it uses analytic methods to determine
the probability to correctly reject MA.

Thus the steps towards analytical power calculation are 1) choose the parameter values of MB

(i.e., the true model in which the correlation between g and the first-order factor is less than
perfect) and calculate the associated population covariance matrix; 2) choose an arbitrary sample
size N ; 3) fit MB to obtain TB, which should equal zero (a useful check); 4) fit MA model (i.e.,
the false model in which the correlation between g and the first-order factor equals one) to obtain
TA, which will assume a value greater than zero; 5) calculate λ and dfdiff ; 6) choose the Type I
error rate (α) and calculate the associated critical value C; 7) calculate the power given, λ, N and
α. As noted below, the power for other values of N can be calculated easily, i.e., does not require
refitting the model.

7.3 Power Analysis

The objective of the power study was to establish the power to correctly reject the MA of perfectly
correlated factors under a variety of circumstances using realistic parameter values. The power
to detect the distinctiveness of g and a lower-order factor depends on a number of aspects of the
factor model, including the number and the reliability (i.e., explained variance in the factor model)
of the indicators, and the effect size (i.e., the discrepancy between the correlations of g and the
lower-order factor under MB and MA). Therefore, we systematically manipulated these features
of the factor models to study their influence on power.

Design

We focused exclusively on hierarchical factor models with five first-order factors and with g as
a single second-order factor. First, we specified MB in which the correlations between g and all
first-order factors were less than one. The parameter values of the models were chosen to span the
range of values reported in published studies. In each model, the correlations (i.e., standardized
second-order factor loadings) between g and the first-order factors were set to 0.95, 0.90, 0.85,
0.80, and 0.75, with corresponding explained variances of 0.90, 0.81, 0.72, 0.64, and 0.56.4 To
study the effects of the number and the reliability of the indicators, the MB models were created
by systematically manipulating these aspects of the models. The MB models featured either two,
three, or four indicators per first-order factor, where the reliabilities of the indicators were either
relatively high (ranging from 0.55 to 0.80) or relatively low (ranging from 0.20 to 0.45). This design
resulted in 3× 2 = 6 different MB models. Figure 7.1 presents an example of a hierarchical factor
model used in the study. Note that each first-order factor had the same number of indicators
and that the residuals of the indicators as well as the residuals of the first-order factors were
uncorrelated.

Second, we specified the MA models that implied perfect correlations between g and a given
first-order factor. Each MB model had five corresponding MA models, where each MA model was
created by constraining the correlation between g and one of the five first-order factors to one.
This design resulted in 6× 5 = 30 different MA models. Because each first-order factor correlated
differently with g, this approach allowed us to investigate the influence of various effect sizes,
ranging from 0.05 to 0.25.

4The explained variances of the first-order factors are given by the squares of the standardized second-order
factor loadings. For example, the explained variance of η1 in Figure 7.1 is given by 0.952 = 0.9.
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Figure 7.1 Example of a MB model used in the study. The model features three relatively reliable
indicators per first-order factor η. The values corresponding to the arrows beneath the indicators
and the values corresponding to the arrows left above the first-order factors represent residual
variances. Standardized parameters are shown.

Third, we obtained the non-centrality parameter λ for each MA. To this end, we first calculated
the population covariance matrices associated with the six MB models. Next, we fitted each MA to
the data generated according to its corresponding MB, using an arbitrary sample size of N = 200.
To obtain perfectly correlated factors, each MA was fitted by constraining the residual variance
(i.e., unexplained variance) of the first-order factor of interest to equal zero (van der Sluis, Dolan,
& Stoel, 2005). Discarding subject indices, let

ηi = γig + ζi (7.5)

denote the regression of the ith first-order factor (η) on g, with ζi representing the residual. Scaling
the variance of g to equal one, the correlation between ηi and g equals

ρηig =
γi

√

γ2i + σ2
ζi

. (7.6)

If σ2
ζi

is constrained to equal zero, then clearly the correlation equals

ρηig =
γi
√

γ2i

= 1. (7.7)

The goodness-of-fit statistics of the MA models (TA) were used as approximations for the non-
centrality parameters.

Finally, we calculated the power to reject each MA using the obtained non-centrality parameter
and dfdiff = 1. Note that because the MA models were obtained by constraints on the variance
components, the Type I error probability (α) was doubled to correct for the violation of the
admissible parameter space (e.g, Dominicus, Skrondal, Gjessing, Pedersen, & Palmgren, 2006;
Stoel, Garre, Dolan, & van den Wittenboer, 2006). The power was therefore computed given
α = 0.05 × 2 = 0.1. Note also that the results reported in the following section are based on
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non-centrality parameters computed with N = 200. However, the non-centrality parameters and
the power can easily be computed for any other sample size using:

λnew =

(

λoriginal

200

)

×Nnew, (7.8)

where λoriginal is the value of the non-centrality parameter reported in the present article (based
on N = 200) and Nnew is the new sample size of interest. The models were fitted using LISREL
(Jöreskog & Sörbom, 2001). The data generation and the power calculations were carried out
using the R package (R Development Core Team, 2006). The R code for the power calculation is
presented in Appendix D.1.

Results

Table 7.2 summarizes the results of the power calculations. Over theMA models that we considered,
power varied from 0.17 to 1. In general, the three manipulations (i.e., the number and the reliability
of the indicators and the effect size) all influenced the power to detect the distinctiveness of g and
the lower-order factors.

We first consider the effects of the reliability of the indicators. The results indicated that
power increased as the reliability of the indicators increased. The increase in power was, however,
more pronounced when the number of indicators and the effect sizes were relatively low. For
low effect sizes, power coefficients varied by as much as 0.6 across the two reliability conditions.
This difference was reduced for higher effect sizes, especially when the number of indicators was
relatively high. With respect to the sample size, the results followed the same pattern. The sample
size required to reach sufficient power (i.e., 0.80) was substantially lower for reliable indicators
than for unreliable indicators; increases in the reliability of the indicators resulted in an average
decrease of 90% in the necessary sample size.

Turning to the effects of the number of indicators, the results indicated that for reliable in-
dicators power was high regardless of the number of indicators. For unreliable indicators, power
increased as the number of indicators increased, with power coefficients varying by about 0.15 over
the levels of this factor. Similarly, for reliable indicators, the necessary sample size was relatively
low regardless of the number of indicators. For unreliable indicators, an increase in the number of
indicators was accompanied with an average decrease of 45% in the required sample size.

Lastly, with respect to the influence of the effect size, the results indicated that for reliable
indicators power was high regardless of the value of the effect size. For unreliable indicators, power
increased as the effect size increased. Note, however, that the increase in power was generally more
pronounced —reaching nearly 0.40— for lower effect sizes, especially when the number of indicators
was high. Similarly, for reliable indicators, the necessary sample size was relatively low regardless
of the value of the effect size. For unreliable indicators, the necessary sample size decreased as the
effect size increased. This decrease varied between 70% and 30% over the levels of this factor.

To summarize, the results of the analyses indicated that power was substantially influenced by
the effect size and the number and the reliability of the indicators. For reliable indicators (i.e.,
from 0.55 to 0.80), power was high regardless of the effect size and the number of indicators. For
less reliable indicators (i.e., from 0.20 to 0.45), power increased as the effect size and the number of
indicators increased, with a corresponding decrease in the sample size required to reach sufficient
power.
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Table 7.2 Power to Detect the Distinctiveness of g and the Lower-Order Factors.

2 indicators 3 indicators 4 indicators
Effect size Reliable

(0.75)
Unreliable
(0.38)

Reliable
(0.68)

Unreliable
(0.32)

Reliable
(0.70)

Unreliable
(0.33)

0.05 Power at N=200 0.77 0.17 0.87 0.21 0.96 0.31
N at power=0.8 221 3016 160 1846 106 974
λ 5.60 0.41 7.76 0.67 11.72 1.27

0.10 Power at N=200 1.00 0.33 1.00 0.47 1.00 0.69
N at power=0.8 66 853 46 509 30 268
λ 18.76 1.45 26.98 2.43 41.24 4.62

0.15 Power at N=200 1.00 0.55 1.00 0.74 1.00 0.94
N at power=0.8 35 401 23 237 15 125
λ 36.23 3.09 54.39 5.22 84.20 9.97

0.20 Power at N=200 1.00 0.72 1.00 0.90 1.00 0.99
N at power=0.8 24 249 16 146 10 77
λ 52.84 4.98 82.42 8.51 129.61 16.23

0.25 Power at N=200 1.00 0.85 1.00 0.97 1.00 1.00
N at power=0.8 18 172 12 100 7 53
λ 69.28 7.23 111.77 12.45 179.93 23.74

Note. The effect size reflects the value of the discrepancy between the correlations of g and the lower-order factor
under the MA (i.e., correlation of one) and the MB . The average reliability of the indicators is shown in brackets.
The reliabilities of the indicators in the MB models were chosen as follows. In the two MB models that featured
two indicators per first-order factor, the reliabilities of the indicators were set to 0.7 and 0.8 in the reliable condition
and to 0.3 and 0.45 in the unreliable condition. In the two MB models that featured three indicators per first-order
factor, the reliabilities of the indicators were set to 0.55, 0.7 and 0.8 in the reliable condition and to 0.2, 0.3 and 0.45
in the unreliable condition. In the two MB models that featured four indicators per first-order factor, the reliabilities
of the indicators were set to 0.55, 0.7, 0.75 and 0.8 in the reliable condition and to 0.2, 0.3, 0.35 and 0.45 in the
unreliable condition.

7.4 Power Analysis of Selected Case Studies

In this section, we investigate the approximate power of five published studies in order to highlight
the importance of power in the context of identifying g with lower-order factors. We reconstructed
the original factor models using reported parameter values and determined the power to reject the
equivalence of g and the proposed lower-order factors. We focused on studies that used hierarchical
factor models —with g as a second or third-order factor— and reported a (near) perfect correlation
between g and a lower-order factor.

Design

The selected case studies and some details of the investigated factor models are listed in Table 7.3.
It is important to note that some of these studies (e.g., Gustafsson, 1984; Undheim & Gustafsson,
1987) formally tested the presence of a perfect correlation and clearly emphasized the equivalence of
g and the proposed lower-order factors, whereas others (e.g., W. Johnson & Bouchard, 2005) merely
reported the perfect correlation between the two factors and did not draw further conclusions about
their equivalence. Nevertheless, the results of these publications provided interesting case studies
to investigate the power to detect the distinctiveness of highly correlated factors.

The power analyses of the case studies were conducted as follows. First, we reconstructed
the MB models and the corresponding population covariance matrices using the original factor
structures and the exact parameter values reported in the articles.5 Although we attempted to

5In a few instances, our approximations of the original factor models have failed to converge. In these cases, we

154



7.5. General Discussion

approximate the original factor models as closely as possible, we did not allow for cross-factor
loadings and residual correlations. Further, if the reported correlation between g and the lower-
order factor of interest equaled one —either because it was fixed to one or estimated to be one—
we set the standardized factor loading between the two factors to 0.95. Note also that in some
models the residual variance of the lower-order factor of interest was negative (i.e., Heywood case;
Heywood, 1931). Although a Haywood case raises important questions related to model misspec-
ification and/or over-parameterization (Jöreskog & Sörbom, 1988), the issue of the adequacy of
these models is beyond the scope of the present article and will not be considered further. For
the purposes of the present investigation, if the reported residual variance of a lower-order factor
was negative, we set the standardized residual variance to 0.10, corresponding to a standardized
factor loading of 0.95. Next, we specified the MA models of perfect correlation by constraining the
residual variances of the lower-order factors of interest to equal zero. The MA models were then
fitted to the generated datasets using the original sample sizes. Lastly, we computed the power
to reject the various MA models using the obtained non-centrality parameters, dfdiff = 1, and
α = 0.05× 2 = 0.1.

Results

The results of the case studies are shown in Table 7.3. Across the various models, power varied
from 0.135 to 0.99. In most cases, however, power did not exceed 0.3, indicating that the power to
reject the equivalence of g and a given lower-order factor was generally very low. In the light of
the results reported above, this result was not unexpected. Most case studies featured extremely
low effect sizes and factor models with only a few (two or three) relatively unreliable indicators
per first-order factor. Also in line with our results, power was substantially higher for studies that
used relatively reliable or a large number of indicators, reaching 0.6 for Gustafsson’s (1984) model
and exceeding 0.9 for the first model of W. Johnson and Bouchard (2005). In summary, the results
suggested that the selected case studies, with a very few exceptions, were underpowered to detect
the distinctiveness of g and the proposed lower-order factors.

7.5 General Discussion

The goal of this study was to determine the power to reject the hypothesis that g and a lower-order
factor are perfectly correlated, given that the correlation is relatively high, but lower than one.
First, we established the power under a variety of realistic circumstances using artificial datasets.
Second, we investigated the power of five published studies by reconstructing the original factor
models using reported parameter values.

The results of our power analyses revealed that power was substantially influenced by the effect
size and the number and the reliability of the indicators. For highly reliable indicators, power
was high regardless of the effect size and the number of indicators. For less reliable indicators,
power increased as the effect size and the number of indicators increased. In the light of these
results, the ideal dataset to investigate the equivalence of g and a lower-order factor would feature
a relatively large number (i.e., three or four indicators per first-order factor) of reliable (i.e., from
0.55 to 0.80) indicators. Note, however, that Dolan (2000; see Jensen & Reynolds, 1982 for the
summary statistics) found the mean reliability of the indicators of the Wechsler Intelligence Scale for
Children-Revised (WISC-R; Wechsler, 1974) to equal approximately 0.44 (SD = 0.15). Similarly,
Dolan and Hamaker (2001; see Naglieri & Jensen, 1985 for the summary statistics) reported that

have slightly adjusted the factor structure or the parameter values of the models to assure convergence.
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Table 7.3 Power and the Details of the Factor Models Used in the Case Studies

Article Lower-order factor of in-
terest

Mean reliability
of indicators

Number of
indicators

Effect size N λ Power N at
power=0.80

Colom et al. (2004) Model 1 (p.284)a Working memory 0.37 12 (3)b 0.05 198 0.24 0.14 5101
Model 2 (p.285) Working memory 0.36 15 (3) 0.05 203 1.20 0.29 1046
Model 3 (p.286) Working memory 0.39 15 (3) 0.07 193 0.69 0.21 2010

Dunham et al. (2002) Model 1 (p.159) Nonverbal reasoning 0.57 6 (2) 0.05 130 0.24 0.14 3349
Model 2 (p.159)c Nonverbal reasoning 0.49 9 (2) 0.05 130 0.40 0.17 2010
Model 3 (p.159)c Memory 0.49 9 (2) 0.05 130 0.21 0.14 3828

Gustafsson (1984) Model 1 (p.192) Fluid reasoning 0.67 18 (2) 0.05 981 3.60 0.60 1685
W. Johnson and Bouchard (2005) Model 1 (p.403) Fluid reasoning 0.47 42 (7) 0.05 436 22.01 0.99 123

Model 2 (p.408) Perceptual reasoning 0.52 42 (5) 0.01 436 0.30 0.15 8985
Undheim and Gustafsson (1987) Model 1 (p.155) Fluid reasoning 0.52 26 (3) 0.05 144 0.40 0.17 2226

Model 2 (p.157) Fluid reasoning 0.53 10 (3) 0.05 144 0.25 0.14 3561
Model 3 (p.161) Fluid reasoning 0.49 28 (3) 0.05 149 0.69 0.21 1336
Model 4 (p.163) Fluid reasoning 0.54 13 (3) 0.05 149 2.50 0.48 369
Model 5 (p.166) Fluid reasoning 0.51 18 (3) 0.03 148 0.36 0.16 2542

Note. a The page number of the original factor model is shown in brackets. b The average number of indicators per first-order factor is shown in brackets. c The
original factor model featured perfect correlations between g and both the nonverbal reasoning and memory factors. In the present analysis, we examined the
power to reject the equivalence of g and the two first-order factors using two separate factor models.
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7.5. General Discussion

the mean reliability of the indicators of the WISC-R and the Kaufman Assessment Battery for
Children (K-ABC, Kaufman & Kaufman, 1983) equaled approximately 0.45 (SD = 0.18).

Our examination of published studies revealed that most of our case studies, which reported a
perfect correlation between g and a lower-order factor, were underpowered, with power coefficient
rarely exceeding 0.3. Consistent with our previous results, power was substantially higher for
studies that used relatively reliable (i.e., Gustafsson, 1984) or a large number of indicators (i.e.,
W. Johnson & Bouchard, 2005). In the light of these findings, we recommend that one consider the
issue of power before concluding that g and a given lower-order factor are perfectly correlated. In a
study designed to address the possibly perfect relationship between g and a lower-order factor, one
would ideally conduct power calculations beforehand. However, in a study in which one encounters
a (possibly) unexpected perfect correlation, post-hoc power calculations can be useful.

With respect to the correlations between g and the proposed lower-order factors, there is little
doubt that these may be quite large. Such correlations do certainly require an explanation. We
believe that the high correlations often found between g and lower-order factors may partly result
from using the same instrument to measure the common factors. Specifically, using the same instru-
ment (e.g., WISC-R) to define the lower-order factors may introduce variance that is attributable
to the particular measurement instrument (i.e., method variance; Campbell & Fiske, 1959), which
in turn may increase the correlations between the measures and ultimately the correlation between
g and the lower-order factors. For instance, two tests of a given construct, which employ the same
method (e.g., paper and pencil), are likely to correlate higher than two tests that employ different
methods (e.g., paper and pencil vs. experimental task). Also, the high correlations may partly be
attributable to sampling fluctuations or may result from using heterogeneous samples to assess the
equivalence of g and the proposed lower-order factors. For instance, IQ test scores are generally
more highly correlated in a sample of participants with a wide age range (say 18 to 76 years of age)
than in a sample with a smaller age range (18 to 36 years of age). Lastly, the reported high cor-
relations may result from disattenuation effects associated with the unreliability of the composite
scores derived from the aggregation of subtests loading on the lower-order factors (Gignac, 2007).

Nevertheless, it is possible that g may indeed be identical to a certain lower-order factor.
However, given the very mixed results and the lack of power of most published studies, we are
reluctant to accept this. We point out that if such an identity did truly exist, it would imply,
by the application of Occam’s razor, the demise of g as a causal factor in the study of individual
differences in cognitive abilities: why entertain the notion of a single, essentially ill-defined higher
order factor, if it is in fact identical to a well-defined lower-order factor (say, working memory)?

We also note that the focus on individual differences, which characterizes studies of g, has its
inherent interpretational limitations: the presence of a perfect correlation between two variables
is not sufficient to conclude that the variables are identical or that they share a common causal
substrate. Suppose, for the sake of argument, that in a sample of children, who vary sufficiently in
age, an appropriate statistical test reveals that the correlation between height and weight is equal
to one. The perfect correlation between height and weight does obviously not imply that the two
variables are identical nor that they necessarily share a common causal substrate.

In conclusion, the goal of the present study was to highlight the importance of considering
power in the context of identifying g with lower-order factors. Our results provide useful guidelines
on the ideal dataset and the necessary sample size required to reach sufficient power in a variety of
realistic situations. Furthermore, the procedure used here to investigate power is easy to implement
and the R code presented in Appendix D.1 provides a helpful tool to establish the power and the
necessary sample size in the particular situation at hand. As pointed out above, the failure to do so
might result in mistakenly concluding that g and a lower-order factor are perfectly correlated and
therefore —at least from the perspective of individual differences— can be considered identical.
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Chapter 8

Accounting for Measurement Error and

the Attenuation of the Correlation: A

Bayesian Approach

This chapter is currently in preparation as:
Dora Matzke, Alexander Ly, Ravi Selker, Wouter D. Weeda, Benjamin Scheibehenne, Michael D.

Lee, and Eric-Jan Wagenmakers
Accounting for measurement error and the attenuation of the correlation: A Bayesian approach.

Abstract

The Pearson product-moment correlation coefficient can be severely underestimated when the
observations are subject to measurement noise. Various approaches exist to correct the esti-
mation of the correlation in the presence of measurement error, but none are routinely applied
in psychological research. Here we outline a Bayesian correction method for the attenuation of
correlations proposed by Behseta et al. (2009) that is conceptually straightforward and easy to
apply. We illustrate the Bayesian correction with two empirical data sets; in each data set, we
first estimate posterior distributions for the uncorrected and corrected correlation coefficient
and then compute Bayes factors to quantify the evidence that the data provide for the presence
of an association. We demonstrate that correcting for measurement error can substantially
increase the correlation between noisy observations.

8.1 Introduction

The Pearson product-moment correlation coefficient is a well-known and frequently used measure
to assess the linear relationship between two variables. Its popularity in psychological research is
illustrated by the fact that we found that 42% of the 67 articles in the 2012 volume of the Journal
of Experimental Psychology: General (JEP:G) report at least one Pearson correlation coefficient,
with 152 correlations in total, and an average of 5.43 reported correlations per article. Also well-
known, at least among statisticians, is that measurement error decreases the observed correlation
between the variables (e.g., Charles, 2005; Spearman, 1904).
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Although it is generally recognized that most —if not all— psychological constructs are mea-
sured only imperfectly, few researchers seem to acknowledge explicitly that the observed correlation
often underestimates the true correlation between two variables. This neglect is especially puzzling
because various approaches are now available to correct the correlation for the measurement error
that affects the observations. Attempts to remedy the problem of the attenuation of the correla-
tion date back to Spearman (1904), who proposed to correct the measured correlation using the
reliability with which the observations were obtained. Spearman’s method, however, suffers from
a number of shortcomings. First, Spearman’s correction formula can produce corrected correlation
coefficients in excess of 1.00. Second, Spearman’s method assumes homogenous error variances, an
assumption that is likely to be violated in many real-life applications.

As an alternative, Behseta et al. (2009) proposed a Bayesian correction method that does not
suffer from the above limitations. Contrary to Spearman’s (1904) formula, the Bayesian method
yields corrected correlations that are naturally bounded by −1.00 and 1.00 and is not limited to
situations with homogenous error variances. Behseta et al.’s approach is conceptually straightfor-
ward and their simulations demonstrated that it is superior to Spearman’s method in terms of the
accuracy of the recovered corrected correlation.

Despite the availability of methods to correct the correlation coefficient for attenuation —be it
Spearman’s (1904) traditional method or Behseta et al.’s (2009) Bayesian approach— psychologists
seldom attempt to adjust their correlations for measurement noise. Indeed, out of the 28 JEP:G
articles in the 2012 volume which reported one or more correlations, only one acknowledged the
deleterious effects of measurement error and corrected the observed correlation. This situation
is unfortunate; as demonstrated by Behseta et al. —and as we will demonstrate again shorty—
correcting the correlation for attenuation may substantially increase the association between noisy
observations. Of course, correction is only possible if the magnitude of the measurement error is
known. Luckily, our JEP:G literature review suggests that the uncertainty of the observations may
be often estimated from the data, for example, when each observation is derived as the average
of multiple trials in a repeated measures design. Specifically, we found that for 25% (38/152) of
the reported correlations, the measurement error could have been estimated and corrected for. For
42% (16/38) of these correlations, correction was possible for both variables; for the remaining 58%
(22/38), correction was possible for only one of the variables.

The goal of the present article is therefore to facilitate the correction of attenuated correlations
with Behseta et al.’s (2009) Bayesian approach. To this end, we will first illustrate the consequences
of measurement error for the computation of the correlation and present Spearman’s (1904) tra-
ditional attenuation formula. We will then describe Behseta et al.’s Bayesian correction method
in detail. Finally, we will illustrate the use of the Bayesian correction with two empirical data
sets: one focusing on the correlation between parameters of cumulative prospect theory (Tversky
& Kahneman, 1992), the other focusing on the correlation between general intelligence and the
drift rate parameter of the Ratcliff diffusion model (Ratcliff, 1978; Wagenmakers, 2009).

8.2 Attenuation of the Correlation and Spearman’s Correction

In this section, we first show why the presence of measurement error decreases the observed cor-
relation between two variables. We then discuss Spearman’s (1904) method for correcting the
attenuation. Let θ and β be two independent random variables and let θ̂ and β̂ be the observed,
noise-contaminated measurements:

θ̂ = θ + ǫθ (8.1)
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and
β̂ = β + ǫβ , (8.2)

where ǫθ and ǫβ are the measurement errors associated with θ and β, respectively. The correlation
between the unobserved variables θ and β is given by

Cor(θ, β) =
Cov(θ, β)

√

Var(θ)×Var(β)
. (8.3)

Assuming that the measurement errors are uncorrelated with θ and β and with each other, the
correlation between the observed variables θ̂ and β̂ is given by

Cor(θ̂, β̂) = Cor(θ + ǫθ, β + ǫβ) =
Cov(θ, β)

√

(Var(θ) + Var(ǫθ))× (Var(β) + Var(ǫβ))
. (8.4)

It immediately follows from Equation 8.3 and Equation 8.4 that the observed correlation Cor(θ̂, β̂)
is always lower than the unobserved true correlation Cor(θ, β).

To remedy the problem of attenuation, Spearman (1904) proposed to correct the observed
correlation coefficient using the reliabilities of the measurements:

rθβ =
rθ̂β̂√

rθ̂θ̂ ×
√

rβ̂β̂
, (8.5)

where rθβ is the corrected sample correlation coefficient, rθ̂β̂ is the observed sample Pearson cor-

relation coefficient, and rθ̂θ̂ and rβ̂β̂ are the reliabilities of θ̂ and β̂, respectively. The reliabilities

can be computed using the sample variances, s2θ and s2β , and the measurement error variances, σ2
ǫθ

and σ2
ǫβ
, as follows:

rθ̂θ̂ =
s2
θ̂
− s2ǫθ
s2
θ̂

(8.6)

and

rβ̂β̂ =
s2
β̂
− s2ǫβ

s2
β̂

. (8.7)

Confidence intervals for the corrected correlation coefficient rθβ are outlined, for example, in Charles
(2005) and Winnie and Belfry (1982).

Spearman’s (1904) correction for measurement error is related to errors-in-variables models.
Errors-in-variables models (e.g., Buonaccorsi, 2010; Cheng & Van Ness, 1999; Fuller, 1987; for
Bayesian solutions, see Congdon, 2006; Gilks et al., 1996; Gustafson, 2004; Lunn et al., 2012) are
extensions of standard regression models that —similar to Spearman’s method— aim at correcting
the bias in parameter estimates that results from measurement error. If the criterion and the
response variables are both assumed to be measured with noise, Spearman’s method and the
correction within standard linear regression models result in the same disattenuation (see Behseta
et al., 2009, Appendix). Ratcliff and Strayer (2014) outline an alternative method to deal with
the adverse consequences of measurement error using Monte Carlo simulations. Cole and Preacher
(2014) discuss solutions to deal with measurement uncertainty in the context of path analysis.
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Example

Consider the following example. A researcher sets out to investigate the association between ex-
citability (θ) and depression (β); she hypothesizes that people with increased responsiveness to
threatening stimuli are likely to report more depressive symptoms. The researcher measures ex-
citability using mean response time (RT) to pictures of threatening images and measures depression
using a standard depression questionnaire. The researcher then correlates the observed mean RTs
(θ̂) and depression scores (β̂) of the i = 1, ..., 10 participants and obtains a Pearson correlation
coefficient rθ̂β̂ of -0.57. The mean RTs and depression scores of the 10 hypothetical participants
are reported in Table 8.1.

Aware of the fact that neither excitability nor depression is measured with perfect reliability,
the researcher decides to use Spearman’s (1904) method to correct the correlation coefficient for
the unreliability of the observations. Assuming that the reliability of mean RT rθ̂θ̂ is .65 and the
reliability of the depression questionnaire rβ̂β̂ is .39, she obtains the following corrected correlation
coefficient using Spearman’s formula:

rθβ =
−0.57√

0.65×
√
0.39

= −1.13. (8.8)

Table 8.1 Data for the Hypothetical Experiment on the Relationship between Mean RT and De-
pression.

Participant i Mean RT (θ̂) Depression score (β̂)

1 435 27
2 491 24
3 448 33
4 363 16
5 402 8
6 390 19
7 394 18
8 375 12
9 468 18
10 428 25

Observed variance (s2) 1732.04 54.67
Error variance (s2ǫ ) 605.73 33.56
Reliability .65 .39

Note. The reliabilities are computed with the observed variances (s2
θ̂

and s2
β̂
) and the error variances (s2ǫθ and s2ǫβ ) using Equation 8.6 and

Equation 8.7.

Our hypothetical experiment illustrates two shortcomings of Spearman’s (1904) correction for
attenuation. First, Spearman’s method can produce corrected correlation coefficients in excess of
1.00 or -1.00, implying —as shown in Equation 8.3 and Equation 8.4— that true score variance
is larger than the total observed variance (i.e., true score variance + error variance; see also
Muchinsky, 1996). Second, Spearman’s correction assumes homogenous error variances. Consider,
however, our illustrative RT experiment; mean RT is unlikely to be measured with the same
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precision for each participant. In fact, in most psychological investigations, error variance is likely
to differ across the observations, as the observations usually represent different participants.

In the next section, we describe Behseta et al.’s (2009) Bayesian correction for attenuation, an
alternative to Spearman’s (1904) method that does not suffer from the above mentioned shortcom-
ings: The Bayesian method yields corrected correlations that are bounded by −1 and 1 and can be
applied to situations with heterogeneous error variances. Behseta et al.’s approach is conceptually
straightforward and brings along the benefits of Bayesian modeling, such as easy-to-use statistical
software and a coherent inferential framework.

8.3 Bayesian Correction for the Attenuation of the Correlation

Behseta et al.’s (2009) correction for the attenuation of the correlation is based on Bayesian multi-
level (or hierarchical) modeling (e.g., Farrell & Ludwig, 2008; Gelman & Hill, 2007; M. D. Lee, 2011;
Matzke & Wagenmakers, 2009; Rouder et al., 2005) and estimates the posterior distribution of the
corrected correlation coefficient using Markov chain Monte Carlo sampling (MCMC; Gamerman &
Lopes, 2006; Gilks et al., 1996). As Behseta et al. showed through a series of simulation studies,
the Bayesian procedure is superior to Spearman’s (1904) method in terms of the accuracy of
the recovered corrected correlation and the coverage of the confidence interval, especially when the
assumption of normality is violated. In this section, we describe Behseta et al.’s Bayesian approach
in detail. The graphical representation of the Bayesian correction method is shown in Figure 8.1.

θ̂i β̂i

ηi

µθ µβσθ σβ

ρ

σǫθi σǫβi

µθ, µβ ∼ Normal(0, 1000)

σθ, σβ ∼ Uniform(0, 100)

ρ ∼ Uniform(−1, 1)

ηi ∼ MultivariateNormal

(

(µθ, µβ) ,

[

σ2
θ ρσθσβ

ρσθσβ σ2
β

]

)

θ̂i ∼ Normal(η1i , σ
2
ǫθi

)

β̂i ∼ Normal(η2i , σ
2
ǫβi

)
i = 1, ..., N observations

Figure 8.1 Graphical model for Behseta et al.’s (2009) Bayesian correction for the attenuation of
the correlation. Observed variables are represented by shaded nodes and unobserved variables are
represented by unshaded nodes. The graph structure indicates dependencies between the nodes
(e.g., M. D. Lee, 2008). The normal distributions are parameterized in terms of the variance σ2.
η1i = θi; η2i = βi.
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Level I: Modeling the Observed Data

The shaded nodes in the horizontal panel in Figure 8.1 represent the observed variables in the
model. As before, let θ and β represent the true values, θ̂ and β̂ the corresponding observed values,
and ǫθ and ǫβ the errors associated with θ and β, respectively. For each observation i, i = 1, ..., N ,

θ̂i and β̂i are given by

θ̂i = θi + ǫθi (8.9)

and
β̂i = βi + ǫβi

. (8.10)

The error terms ǫθi and ǫβi
are assumed to be drawn from independent zero-centered normal

distributions with variance σǫ2i
:

ǫθi ∼ Normal(0, σ2
ǫθi

) (8.11)

and
ǫβi

∼ Normal(0, σ2
ǫβi

). (8.12)

The error variances are assumed to be known a priori or are estimated from data. Note that
contrary to Spearman’s (1904) correction, the Bayesian approach does not assume homogenous
error variances across the N observations —each observation i has its own error variance.

Level II: Modeling Unobserved Means, Variances, and Correlations

The unshaded nodes in Figure 8.1 represent the unobserved variables in the model. For each
observation i, i = 1, ..., N , ηi = (θi, βi) is assumed to follow a bivariate normal distribution, with
mean µ and variance-covariance matrix Σ:

ηi ∼ Normal(µ,Σ), (8.13)

where

µ =

(

µθ

µβ

)

(8.14)

and

Σ =

(

σ2
θ ρσθσβ

ρσθσβ σ2
β

)

. (8.15)

Here ρ is the corrected correlation between θ and β —the correlation of interest that is uncontam-
inated by measurement error.

The means µ and the three elements (i.e., σθ, σβ , and ρ) of the variance-covariance matrix Σ

are estimated from the data and require prior distributions. In the present article, we will use the
following prior set-up:

µθ, µβ ∼ Normal(0, 1000), (8.16)

σθ, σβ ∼ Uniform(0, 100), (8.17)
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and

ρ ∼ Uniform(−1, 1). (8.18)

Note that Behseta et al. (2009) used a slightly different prior set-up, where Σ was assumed to
follow an Inverse-Wishart distribution. We chose to model the individual components in Σ rather
than Σ itself because this provides an intuitive specification that allows users to adapt the range
of the uniform prior for σθ and σβ to the measurement scale of their variables in a straightforward
manner.

Bayesian Parameter Estimation

In Bayesian parameter estimation, the prior distributions for the model parameters are updated
by the incoming data to obtain posterior distributions. The posterior distribution often cannot be
derived analytically; rather it must be approximated using numerical sampling techniques, such
as MCMC sampling (Gamerman & Lopes, 2006; Gilks et al., 1996). The posterior distribution
quantifies the uncertainty of the parameter estimates. The central tendency of the posterior, such
as the mean or median, is often used as a point estimate. The dispersion of the posterior, such as
the standard deviation or the percentiles, quantifies the precision of the parameter estimate: the
larger the dispersion, the greater the uncertainty in the estimated parameter. For example, the
95% Bayesian credible interval for the corrected correlation ρ ranges from the 2.5th to the 97.5th

percentile of its posterior distribution, indicating that we can be 95% confident that the true value
of ρ lies within this range.

Parameter estimation for the present approach may proceed using standard Bayesian statistical
software, such as WinBUGS (Bayesian inference Using Gibbs Sampling for Windows; Lunn et al.,
2012; for an introduction for psychologists, see Kruschke, 2010b, and M. D. Lee & Wagenmakers,
2013). The WinBUGS script is presented in Appendix E.1. Note that the WinBUGS script requires
minimal, if any, modification to run under OpenBUGS (Lunn et al., 2009) or JAGS (Plummer,
2003, 2013). The Stan project (Stan Development Team, 2012) provides yet another alternative
to obtain posterior distributions for the parameters.

Bayesian Hypothesis Testing

Once the model parameters are estimated, we can formally assess the presence of an association
using Bayes hypothesis testing. Throughout the article, we will rely on the Bayes factor —a
popular Bayesian model selection measure— to quantify the probability of the data under the null
hypothesis (H0: ρ = 0) relative to the probability of the data under the alternative hypothesis
(H1: ρ 6= 0). For instance, BF01 of 10 indicates that the data are 10 times more likely under the
null hypothesis than under the alternative hypothesis. Alternatively, BF01 of 1

10 indicates that the
data are 10 times more likely under the alternative hypothesis than under the null hypothesis (e.g.,
Jeffreys, 1961; Kass & Raftery, 1995).

We will compute two-sided Bayes factors using the Savage-Dickey density ratio method (e.g.,
Dickey & Lientz, 1970; Wagenmakers et al., 2010; Wetzels, Grasman, & Wagenmakers, 2010),
assuming a uniform prior distribution for the correlation ρ parameter. The Savage-Dickey density
ratio is an intuitive and flexible approach for the computation of Bayes factors in nested model
comparison. Applied to the present situation, BF01 is given by the ratio of the height of the
posterior and the prior distribution of ρ under the alternative hypothesis at ρ = 0. The height
of the prior distribution is calculated by evaluating the uniform probability density function on
−1.00 and 1.00 at ρ = 0; the height of the uniform prior distribution at ρ = 0 equals 1

2 . The height
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of the posterior distribution is calculated as follows. We first obtain samples from the posterior
distribution of ρ using WinBUGS. We then fit to the posterior samples a scaled beta distribution
with parameters α and β. Lastly, we evaluate the height of the scaled beta distribution at ρ = 0
using the obtained α and β parameters. One-sided (i.e., order-restricted) Bayes factors will be
computed as recommended by Morey and Wagenmakers (2014), namely by correcting the two-sided
Bayes factor using the proportion of posterior samples that is consistent with the order-restriction.
The R script (R Core Team, 2012) for the computation of the Bayes factor is available in the
supplemental materials at http://dora.erbe-matzke.com/publications.html.

8.4 Empirical Examples

In this section, we illustrate the use of Behseta et al.’s (2009) Bayesian correction for attenuation
with two empirical data sets. In the first example, we assessed the correlation between parameters
of cumulative prospect theory (CPT; Tversky & Kahneman, 1992) measured at two different time
points. In the second example, we assessed the correlation between general intelligence and the
drift rate parameter of the Ratcliff diffusion model (Ratcliff, 1978). In order to apply the graphical
model shown in Figure 8.1, we first estimated posterior distributions for the CPT and diffusion
model parameters for each participant separately. We then computed posterior distributions for
the uncorrected1 and the corrected correlation coefficients using the mean of the posterior distri-
bution of the individual model parameters as point estimate.2 In the corrected analysis, we used
the variance of the posterior distribution of the individual model parameters as estimate for the
participant-specific error variance. Finally, we formally assessed the presence of an association
using Bayes hypothesis testing.

Example 1: Inference for the Correlation between Parameters of CPT

As our first example, we computed the uncorrected and corrected correlation in a data set obtained
from a decision making experiment reported in Glöckner and Pachur (2012). The 64 participants
were instructed to choose between monetary gambles in two experimental sessions. The two sessions
were separated by one week and each featured 138 two-outcome gambles. The observed choice data
were modeled using cumulative prospect theory (CPT; Tversky & Kahneman, 1992). CPT has
a number of free parameters that reflect specific individual differences. Here we focus on the δ
parameter that governs how individual decision makers weight the probability information of the
gambles: higher values of δ indicate high risk aversion, whereas lower values of δ indicate less risk
aversion.

As in other models in the decision making literature, the CPT parameters are assumed to be
relatively stable across short periods of time. Here we therefore examined the association between
the δ parameter measured at the two experimental sessions. The CPT was fit to the data of
each individual participant, separately for the two measurement occasions. Model parameters
were obtained using Bayesian parameter estimation with JAGS (Plummer, 2013), by adapting
an existing model by Nilsson et al. (2011).3 The prior for δ was uninformative across possible

1In the uncorrected Bayesian analysis, the bivariate normal distribution in Equation 8.13 was placed directly on
the observed data.

2As we will discuss later, in the Bayesian framework, we are not limited to the two-step procedure outlined in
this section; Bayesian hierarchical modeling allows for the simultaneous estimation of the individual parameters and
the group-level means and covariances.

3The CPT account of performance in the Glöckner and Pachur (2012) data set is merely an illustration; we do
not suggest that the CPT with the present parameter setting provides the best, or even an adequate, description
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parameter values found in previous research but excluded theoretically implausible values.
We computed posterior distributions for the uncorrected and corrected correlation between the

δ1 and the δ2 parameters. We treated the mean of the posterior distribution of the individual δ1
and δ2 parameters as observed data. In the corrected analysis, we used the variance of the posterior
distribution of the individual δ1 and δ2 parameters as estimate for the participant-specific error
variance. Lastly, we computed one-sided Bayes factors for the uncorrected and corrected correlation
to quantify the evidence that the data provide for H0 (ρ = 0) relative to H1 (ρ > 0).

Results

The results are shown in Figure 8.2. The top-row panels show scatterplots of the observed δ̂i,1 and

δ̂i,2 parameters and the standard deviation of the measurement errors (i.e., σǫδi,1 and σǫδi,2 ). The

bottom left panel shows a scatterplot of the mean of the posterior distribution of the corrected δ
parameters (i.e., ηi = (δi,1, δi,2)) and the corresponding posterior standard deviations. The bottom
right panel shows the posterior distribution of the uncorrected and the corrected correlation (i.e,
ρ).

As shown in the upper left panel of Figure 8.2, the uncorrected Pearson correlation between the
observed δ̂1 and δ̂2 parameters is .62. If we take into account the uncertainty of the observations,
the correlation increases substantially: The bottom left panel shows that the posterior means of
the corrected δi,1 and δi,2 parameters are associated very highly; the bottom right panel shows
that the posterior distribution of the corrected ρ parameter is shifted to the right relative to the
posterior of the uncorrected correlation. In fact, after correcting for the noise in δ̂1 and δ̂2, the
mean of the posterior distribution of ρ increases from .61 to .92.

One-sided Bayes factors indicate decisive evidence (Jeffreys, 1961) for the presence of an asso-
ciation for the corrected as well as the uncorrected ρ parameter; in both cases, the data are more
than 4,000,000 times more likely under H1 than under H0. This result is visually evident from the
fact that the posterior distributions are located away from zero such that their height at ρ = 0 is
all but negligible.

Note that the dramatic increase in the correlation observed in the present data set is not
unusual. Figure 8.3 shows the results of a simulation study where we investigated the magnitude
of the expected attenuation for different values of the latent correlation in a parameter setting that
resembles the one found in the present data set. We conducted five sets of simulations, each with
a different true “latent” correlation: .92 (i.e., the posterior mean of the corrected ρ in the present
data set), .21, 0, -.21, and -.92. For each set of simulations, we generated 1,000 synthetic data
sets with N = 64, using the error variances σ2

ǫδi,1
and σ2

ǫδi,2
obtained from fitting the CPT to the

data, and the posterior mean of the µδ1 , µδ2 , σδ1 , and σδ2 parameters estimated with the Bayesian
correction method.4 In each synthetic data set, we then computed the attenuated “observed”
correlation. The gray violin plots in Figure 8.3 show the distribution of the predicted attenuated
correlations for the five values of the latent correlation.

Two results are noteworthy. First, all else being equal, the larger the absolute value of the true
latent correlation, the larger the attenuation. This relationship is also evident from Equation 8.3
and Equation 8.4. Second, the observed attenuated correlation in the empirical data (i.e., .62;
horizontal dashed line) is slightly higher than expected, but is well within the 2.5th and 97.5th

percentile of the attenuated correlations predicted by the model with the present parameter setting.

of the data of the individual participants. Note also that Glöckner and Pachur reported the results from fitting a
slightly different model than the one used in the present article.

4Note that this procedure is not the same as the posterior predictive assessment of model fit (e.g., Gelman &
Hill, 2007; Gelman et al., 1996).
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Figure 8.2 Corrected and uncorrected correlation between parameters of cumulative prospect theory
(CPT). The top left panel shows a scatterplot of the observed δ̂i,1 and δ̂i,2 parameters. The top

right panel shows a scatterplot of the observed δ̂i,1 and δ̂i,2 parameters and the standard deviation

of the measurement errors (i.e., σǫδi,1 and σǫδi,2 ; gray lines). The δ̂i,1, δ̂i,2, σǫδi,1 , and σǫδi,2 values

were obtained from fitting the CPT to the data. The bottom left panel shows a scatterplot of
the posterior mean of the corrected δi,1 and δi,2 parameters (i.e., ηi = (δi,1, δi,2)). The gray lines
show the standard deviation of the posterior distribution of the parameters. The bottom right
panel shows the posterior distribution of the uncorrected (gray density line) and the corrected
correlation (i.e, ρ; black density line). The dashed vertical line shows the Pearson correlation
coefficient computed with the observed δ̂i,1 and δ̂i,2 parameters. r = Pearson correlation coefficient.

In sum, correcting the correlation for measurement noise resulted in a dramatic increase in the
correlation between the CPT parameters; the mean of the posterior distribution of the correlation
parameter increased from .62 to .92. Despite this increase, the Bayes factor indicated decisive
evidence for the presence of an association in the corrected as well as the uncorrected analysis.
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Figure 8.3 Expected attenuation of the correlation between the δ parameters of cumulative prospect
theory (CPT). The figure shows that the attenuation of the correlation increases with the abso-
lute value of the latent correlation. The gray violin plots show the distribution of the predicted
attenuated correlations for five values of the latent correlation. Violin plots (e.g., Hintze & Nelson,
1998) combine information available from density plots with information about summary statistics
in the form of box plots. The black boxplot in each violin plot ranges from the 25th to the 75th

percentile of the attenuated correlations predicted by the model, where the white circle represents
the median of the predictions. The predicted correlations were generated using the error variances
σ2
ǫδi,1

and σ2
ǫδi,2

obtained from fitting the CPT to the data, and the posterior mean of the µδ1 , µδ2 ,

σδ1 , and σδ2 parameters estimated with the Bayesian correction method. The dashed line shows
the observed attenuated correlation in the empirical data. r = Pearson correlation coefficient.

Example 2: Inference for the Correlation between General intelligence and
Diffusion Model Drift Rate

As a second example, we computed the uncorrected and corrected correlation in a data set collected
by Weeda and Verouden (unpublished data). The data set featured response times (RT) and
accuracy data from 51 participants performing a two-choice RT task. The stimuli were borrowed
from the π-paradigm (Vickers, Nettelbeck, & Willson, 1972; Jensen, 1998) and consisted of a series
of configurations, each with one horizontal and two vertical lines (i.e.; two legs) that together
formed the letter π, with one of the vertical lines longer than the other. The task was to indicate
by means of a button press whether the left or the right leg of the π was longer. Task difficulty
was manipulated on three levels —easy, medium, and difficult— by varying the difference between
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the length of the two legs.
The RT and accuracy data were modeled with the Ratcliff diffusion model (Ratcliff, 1978; Wa-

genmakers, 2009). The diffusion model provides a theoretical account of performance in speeded
two-choice tasks. The four key parameters of the diffusion model correspond to well-defined psy-
chological processes (Ratcliff & McKoon, 2008; Voss et al., 2004), such as response caution (a), a
priori bias (z), the time taken up by processes unrelated to decision making (e.g., encoding and mo-
tor processes; Ter), and —the parameter of interest in the present article— the rate of information
accumulation drift rate (v).5

The drift rate parameter of the diffusion model has been repeatedly associated with higher
cognitive functions and reasoning (i.e., Ratcliff, Schmiedek, & McKoon, 2008; Ratcliff, Thapar, &
McKoon, 2010; Schmiedek et al., 2007; van Ravenzwaaij, Brown, & Wagenmakers, 2011), and this
is why we focus here on the correlation between drift rate and general intelligence. The four key
diffusion model parameters were estimated from the RT and accuracy data for each participant
separately using Bayesian parameter estimation with the diffusion model JAGS module (Wabersich
& Vandekerckhove, 2014). We used uninformative prior distributions based on parameter values
reported in Matzke and Wagenmakers (2009). As drift rate is known to decrease with increasing
task difficulty (e.g., Ratcliff & McKoon, 2008), we used the following order-restriction: vdifficult <
vmedium < veasy. The remaining parameters were constrained to be equal across the conditions,
and we set z = a

2 .
6 General intelligence was measured by the total score of the 20-min version

of the Raven Progressive Matrices Test (Hamel & Schmittmann, 2006; Raven, Raven, & Court,
1998).

We computed posterior distributions for the uncorrected and corrected correlation between the
mean of the drift rate parameters across the three task difficulty conditions (v̄) and the Raven
total score (g). For mean drift rate v̄, we treated the mean of the posterior distribution of the
individual v̄ parameters as observed data.7 In the corrected analysis, we used the variance of the
posterior distribution of the individual v̄ parameters as estimate for the participant-specific error
variance. For the Raven total score g, we assumed homogenous error variance and —for illustrative
purposes— investigated how the extent of the correction varies as a function of the amount of
measurement noise assumed in the data. Specifically, we examined three scenarios: we assumed
that 5%, 25%, and 55% of the total variance in Raven scores is attributable to measurement error,
corresponding to excellent, acceptable, and very poor reliability, respectively. Lastly, we computed
one-sided Bayes factors for the uncorrected and corrected correlation to quantify the evidence that
the data provide for H0 (ρ = 0) relative to H1 (ρ > 0) under each scenario.

5In addition to these key parameters, the diffusion model also features parameters that describe the trial-to-trial
variability of the key parameters.

6The diffusion model account of performance in the Weeda and Verouden data set (unpublished data) is merely
an illustration; we do not suggest that the diffusion model with the present parameter constraints provides the best,
or even an adequate, description of the data of the individual participants.

7Note that the scale of both drift rate and general intelligence are bounded: v̄ can take on values between 0 and
5.86 (i.e., prior range) and the Raven total score can take on values between 0 and 36. The use of the bivariate normal
group-level distribution shown in Figure 8.1 is therefore theoretically unjustified. As a solution, we may transform
the individual v̄ parameters and the Raven scores g to the real line using a probit transformation. Additional analyses
not reported here confirmed that using the transformed v̄ and g values yields results that are very similar to the ones
obtained using the untransformed drift rates and Raven scores. For simplicity, in the present article, we will report
the results of modeling the untransformed v̄ and Raven g values.
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Figure 8.4 Corrected and uncorrected correlation between mean drift rate v̄ and Raven total score
g. The top panels show scatterplots of the observed mean drift rates ˆ̄vi and Raven total scores ĝi
with the standard deviation of the measurement errors (i.e., σǫv̄i and σǫg ; gray lines) for the 5%,

25%, and 55% measurement noise scenarios. The ˆ̄vi and the σǫv̄i values were obtained from fitting
the diffusion model to the data. The middle panels show scatterplots of the posterior mean of the
corrected v̄i and gi parameters (i.e., ηi = (v̄i, gi)). The gray lines show the standard deviation of
the posterior distribution of the parameters. The bottom panel shows the posterior distribution of
the uncorrected (gray density line) and the corrected correlations (i.e, ρ) for the 5% (solid black
density line), 25% (dotted black density line), and the 55% (dotted-dashed black density line)
measurement noise scenarios. The dashed vertical line shows the Pearson correlation coefficient
computed with the observed mean drift rates ˆ̄vi and Raven total scores ĝi. r = Pearson correlation
coefficient.
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Results

The results are shown in Figure 8.4. The top-row panels show scatterplots of the observed mean
drift rates ˆ̄v and Raven total scores ĝ with the standard deviation of the measurement errors (i.e.,
σǫv̄i and σǫg) for the 5%, 25%, and 55% noise scenarios. The middle-row panels show scatterplots
of the mean of the posterior distribution of the corrected v̄ and g parameters (i.e., ηi = (v̄i, gi))
and the corresponding posterior standard deviations for each scenario. The bottom panel shows
the posterior distribution of the uncorrected and the corrected correlation (i.e, ρ) for each scenario.

As shown in the upper left panel of Figure 8.4, the uncorrected Pearson correlation between
the observed ˆ̄v parameters and the observed Raven scores ĝ is .14. As expected, the magnitude
of the correction for attenuation increases with increasing error variance: The middle-row panels
show that the association between the posterior means of the corrected v̄i and gi parameters
becomes stronger; the bottom panel shows that the mean of the posterior distribution of the
corrected ρ parameter is progressively shifted to higher values. Note, however, that the correction
is modest even if we assume that the Raven total score is an extremely unreliable indicator of
general intelligence. The mean of the posterior distribution of ρ equals .13 in the uncorrected
analysis, .14 in the corrected analysis with 5% noise, .16 in the corrected analysis with 25% noise,
and .21 in the corrected analysis with 55% noise. Note also that the posterior of ρ tends to be
quite spread out, a tendency that becomes more pronounced with increasing error variance.

One-sided Bayes factors indicate evidence against the presence of an association between mean
drift rate and Raven total score. The evidence, however, is “worth no more than a bare mention”
(Jeffreys, 1961). The BF01 decreases from 2.13 in the uncorrected analysis to 2.00 in the corrected
analysis with 5% noise, to 1.75 in the corrected analysis with 25% noise, and to 1.32 in the corrected
analysis with 55% noise. Even with extremely unreliable Raven scores, the data are thus still more
likely to have occurred under H0 than under HA. Note however that BF01 of 1.32 —or even BF01 of
2.13— constitutes almost perfectly ambiguous evidence, indicating that the data are not sufficiently
diagnostic to discriminate between H0 and HA. Inspection of the posterior distribution of the ρ
parameters suggests a similar conclusion: ρ is estimated quite imprecisely (i.e., the posteriors are
spread out) in all four analyses.

Figure 8.5 shows the results of a simulation study where we investigated the magnitude of
the expected attenuation for different values of the latent correlation in a parameter setting that
resembles the one found in the present data set. Throughout the simulations, we assumed that 55%
of the total variance of the Raven scores is attributable to error variance. We conducted five sets of
simulations, each with a different value of the true “latent” correlation: .92, .21 (i.e., the posterior
mean of the corrected ρ in the present data set), 0, -.21, and -.92. For each set of simulations, we
generated 1,000 synthetic data sets with N = 51, using the σ2

ǫv̄i
parameters obtained from fitting

the diffusion model to the data, and the posterior means of the µv̄, µg, σv̄, and σg parameters
estimated with the Bayesian correction method. In each synthetic data set, we then computed the
attenuated “observed” correlation. The gray violin plots in Figure 8.5 show the distribution of the
predicted attenuated correlations for the five values of the latent correlation.

As pointed out earlier, all else being equal, the larger the absolute value of the true latent
correlation, the larger the attenuation. Moreover, considering the relatively low corrected corre-
lation in the present data set, an attenuation of only .21 − .14 = .07 is perfectly reasonable. In
fact, the median of the attenuated correlations predicted by the model with the present parameter
setting very closely approximates the observed attenuated correlation in the empirical data (i.e.,
.14; horizontal dashed line).

In sum, correcting for measurement noise resulted in negligible increase in the correlation
between drift rate and general intelligence; even with unrealistically unreliable Raven scores, the
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posterior mean of the correlation parameter increased from .13 only to .21. Regardless of the type
of analysis (uncorrected or uncorrected) and regardless of the magnitude of the error variance,
the Bayes factor indicated evidence against the presence of an association between drift rate and
general intelligence. The evidence for the null hypothesis was, however, only anecdotal, a result
that is attributable to the substantial uncertainty in the estimated correlation parameters.
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Figure 8.5 Expected attenuation of the correlation between mean drift rate and general intelligence.
The figure shows that the attenuation of the correlation increases with the absolute value of the
latent correlation. The gray violin plots show the distribution of the predicted attenuated corre-
lations for five values of the latent correlation. The black boxplot in each violin plot ranges from
the 25th to the 75th percentile of the attenuated correlations predicted by the model, where the
white circle represents the median of the predictions. The predicted correlations were generated
assuming 55% error variance in the Rave scores, using the σ2

ǫv̄i
parameters obtained from fitting

the diffusion model to the data, and the posterior means of the µv̄, µg, σv̄, and σg parameters
estimated with the Bayesian correction method. The dashed line shows the observed attenuated
correlation in the empirical data. r = Pearson correlation coefficient.

8.5 Discussion

Although various approaches are available to correct the correlation in the presence of measurement
error, such corrections are presently the exception rather than the rule in experimental psychol-
ogy. The goal of the present paper was therefore to demonstrate the application of the Bayesian
correction of attenuated correlations (Behseta et al., 2009). We illustrated the use of the Bayesian
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method with two empirical data sets; in each data set, we first estimated posterior distributions
for the uncorrected and corrected correlation and then computed Bayes factors to quantify the
evidence that the data provide for the presence of the association.

In our first example, we computed the uncorrected and corrected correlation between parame-
ters of cumulative prospect theory (Tversky & Kahneman, 1992) and demonstrated that correcting
for measurement noise can result in a dramatic increase in the correlation: the mean of the poste-
rior distribution of the correlation parameter increased from .61 to .92. The Bayes factor indicated
decisive evidence for the presence of an association in the corrected as well as the uncorrected anal-
ysis. In our second example, we assessed the correlation between general intelligence and the drift
rate parameter of the diffusion model (Ratcliff, 1978; Wagenmakers, 2009), where we examined
three scenarios: we assumed that 5%, 25%, and 55% of the total variance in Raven scores is at-
tributable to measurement error, corresponding to excellent, acceptable, and very poor reliability,
respectively. Correcting for measurement noise resulted in negligible increase in the correlation;
even with extremely unreliable Raven scores, the posterior mean of the correlation parameter in-
creased from .13 to only .21. In all analyses, we obtained anecdotal evidence against the presence
of an association between drift rate and general intelligence, a result that is attributable to the
substantial uncertainty in the estimated correlation parameters.

Behseta et al.’s (2009) Bayesian correction for attenuation is easy-to-use and conceptually
straightforward. In fact, the present approach can be viewed as a simple Bayesian structural
equation model with two latent variables, each with a single indicator (see, for example, S.-Y. Lee,
2007; Song & Lee, 2012). The original formulation of the Bayesian correction method relies on
a slightly different prior set-up than the one used in the present article. Specifically, Behseta et
al. used an Inverse-Wishart distribution to model the variance-covariance matrix of the corrected
observations, whereas we chose to model the standard deviations and the correlation separately
using uniform distributions. We feel that the present specification is more intuitive and allows
users to adapt the range of the uniform prior for the standard deviations to the measurement scale
of their variables in a straightforward manner. Note also that Bayesian parameter estimation is
insensitive to the choice of the prior as long as sufficiently informative data are available (e.g.,
Edwards et al., 1963; Gill, 2002; M. D. Lee & Wagenmakers, 2013).

Correcting the correlation for measurement noise is, of course, impossible unless the error
variance of the observations is known or can be estimated from the data. Our investigation of
the extent of the correction as a function of the amount of measurement noise in the Raven scores
served merely as an illustration. In real-life applications, the magnitude of the error variance should
not be cherry-picked to obtain the desired (higher) correlation; rather it should be estimated from
the data. Bayesian inference is particularly suitable for modeling measurement error because
the resulting posterior distributions can be automatically used to quantify the uncertainty of the
parameter estimates.8 Accordingly, in our two examples, we treated the mean of the posterior
distribution of the CPT and diffusion model parameters as observed data and used the variance
of the posterior distributions as estimate for the participant-specific error variance. Note also
that within the Bayesian framework, we are not limited to the two-step procedure illustrated
in the present article; Bayesian hierarchical modeling allows for the simultaneous estimation of
the individual parameters and the group-level means and covariances, where the correlation is
automatically adjusted for the uncertainty of the individual estimates. The Bayesian estimation of
covariance structures is illustrated, for example, in Gelman and Hill (2007), Klauer (2010), Matzke
et al. (in press), Rouder et al. (2008), and Rouder et al. (2007).

8Naturally, using the variance of the posterior distribution as estimate for the error variance is only sensible if
the posteriors are approximately normally distributed.
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Our literature review showed that nearly 50% of the articles published in the 2012 volume of
the Journal of Experimental Psychology: General reported at least one Pearson product-moment
correlation coefficient. Despite the wide-spread use of correlations, most researchers do not ac-
knowledge explicitly that the observed correlation often underestimates the true correlation if the
variables are measured with noise. Here we illustrated the use of a Bayesian correction procedure
and showed that its application can dramatically increase the estimated correlation. Of course,
estimating the uncertainty of the observations is not always feasible. Also, our simulations con-
firmed that for relatively low true correlations, the correction is likely to have only a negligible
effect. We nevertheless urge researchers to carefully consider the issue of the attenuation and
whenever possible correct the observed correlation for the uncertainty of the measurements.
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Chapter 9

A Default Bayesian Hypothesis Test for

Mediation

A modified version of this chapter is currently in press as:
Michèle B. Nuijten, Ruud Wetzels, Dora Matzke, Conor V. Dolan,

and Eric-Jan Wagenmakers (in press).
A default Bayesian hypothesis test for mediation. Behavior Research Methods.1

Abstract

In order to quantify the relationship between multiple variables, researchers often carry out a
mediation analysis. In such an analysis, a mediator (e.g., knowledge of a healthy diet) transmits
the effect from an independent variable (e.g., classroom instruction on a healthy diet) to a
dependent variable (e.g., consumption of fruits and vegetables). Almost all mediation analyses
in psychology use frequentist estimation and hypothesis testing techniques. A recent exception
is Yuan and MacKinnon (2009), who outlined a Bayesian parameter estimation procedure for
mediation analysis. Here we complete the Bayesian alternative to frequentist mediation analysis
by specifying a default Bayesian hypothesis test based on the Jeffreys-Zellner-Siow approach.
We further extend this default Bayesian test by allowing a comparison to directional or one-sided
alternatives, using Markov chain Monte Carlo techniques implemented in JAGS. All Bayesian
tests are implemented in the R package BayesMed.

9.1 Introduction

Mediated relationships are central to the theory and practice of psychology. In the prototypical
scenario, a mediator (M , e.g., knowledge of a healthy diet) transmits the effect from an indepen-
dent variable (X, e.g., classroom instruction on a healthy diet) to a dependent variable (Y , e.g.,
consumption of fruits and vegetables). Other examples arise in social psychology, where attitudes
(X) cause intentions (M), and these intentions affect behavior (Y ; MacKinnon, Fairchild, & Fritz,

1The final publication is available at http://link.springer.com/article/10.3758/s13428-014-0470-2.
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2007). To quantify such relationships between mediator, independent variable, and dependent vari-
able, researchers often use a toolbox of popular statistical methods collectively known as mediation
analysis.

The currently available tools for mediation analyses are almost exclusively based on classical
or frequentist statistics, featuring concepts such as confidence intervals and p values. Recently,
Yuan and MacKinnon (2009) proposed an alternative, Bayesian mediation analysis that allows
researchers to obtain a posterior distribution (and associated credible interval) for the mediated
effect. This posterior distribution quantifies the uncertainty about the strength of the mediated
effect under the assumption that the effect does not equal zero. This approach constitutes a
valuable addition to the toolbox of mediation methods, but it specifically concerns parameter
estimation and not hypothesis testing. As Yuan and MacKinnon (2009) state in their conclusion:
“One important topic we have not covered in this article is hypothesis testing (...) Strict Bayesian
hypothesis testing is based on Bayes factor, which is essentially the odds of the null hypothesis
being true versus the alternative hypothesis being true, conditional on the observed data. The
use of Bayesian hypothesis testing (...) would be a reasonable future research topic in Bayesian
mediation analysis.”

Hence, the goal of this paper is to add another statistical method to the toolbox of mediation
analysis, namely the Bayes factor hypothesis test alluded to by Yuan and MacKinnon (2009). In
the development of this test we have assumed a default specification of prior distributions based on
the Jeffreys-Zellner-Siow framework (Liang et al., 2008), promoted in psychology by Jeff Rouder,
Richard Morey, and colleagues (Rouder et al., 2009; Rouder, Morey, Speckman, & Province, 2012;
Rouder & Morey, 2012) as well as ourselves (Wetzels et al., 2009, 2012; Wetzels & Wagenmakers,
2012). In our opinion, the default specification of prior distributions is useful because it provides
a reference analysis that can be carried out regardless of subjective considerations about the topic
at hand. Of course, researchers who have prior knowledge may wish to incorporate that knowledge
into the models to devise a more informative test (e.g., Armstrong & Dienes, 2013; Dienes, 2011;
Guo, Li, Yang, & Dienes, 2013). Here we focus solely on the default test as it pertains to the
prototypical, single-level scenario of three variables.

The outline of this paper is as follows. First, we briefly discuss the conventional frequentist tests
and the existing Bayesian mediation analysis proposed by Yuan and MacKinnon (2009). We then
explain Bayesian hypothesis testing in general and introduce our default Bayesian hypothesis test
for mediation. We illustrate the performance of our test with a simulation study and an example of
a psychological study. Finally, we discuss software in which we implemented the Bayesian methods
for mediation analysis: the R package BayesMed.

9.2 Frequentist Mediation Analysis

Consider a relation between an independent variable X and a dependent variable Y (see Figure
9.1, panel (a)). In a linear regression equation, such a relation can be represented as follows:

Yi = β0(1) + τXi + ǫ(1), (9.1)

where subscript i identifies the participant, τ represents the relation between the independent
variable X and the dependent variable Y , β0(1) is the intercept, and ǫ(1) is the residual. The effect
of X on Y , path τ , is called the total effect.

The relation between X and Y can be mediated by mediating variable M , which means that a
change in X leads to a change in M , which then leads to a change in Y (see Figure 9.1, panel (b)
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and (c)). The resulting mediation model can be represented by the following set of linear regression
equations:

Yi = β0(2) + τ ′Xi + βMi + ǫ(2), (9.2)

Mi = β0(3) + αXi + ǫ(3), (9.3)

where τ ′ represents the relation between X and Y after adjusting for the effects of the mediator
M , α represents the relation between X and M , and β represents the relation between M and Y .
Furthermore, ǫ(1), ǫ(2), and ǫ(3) are assumed to be conditionally normally distributed, independent,
homoskedastic residuals. Throughout the remainder of this paper, we focus on the standardized
mediation model (i.e., a model in which the variables are standardized), and refer to the regression
coefficients α, β, and τ ′ as paths.

The product of α and β is the indirect effect, or the mediated effect, assuming that α and β
are independent. The remaining direct effect of X on Y is denoted with τ ′. If the mediated effect
differs from zero and τ ′ equals zero, the effect of X on Y is completely mediated by M (see Figure
9.1 panel (c)). If τ ′ has a value other than zero, the relationship between X and Y is only partially
mediated by M (see Figure 9.1 panel (b)).

� �
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Figure 9.1 Diagram of the standard mediation model. Panel (a) shows a direct relation between
X and Y , panel (b) shows partial mediation, and panel (c) shows full mediation. Diagonal arrows
indicate that the graphical node is perturbed by an error term.

A popular method to test for mediation is to test paths α and β simultaneously. The estimated
indirect effect α̂β̂ is divided by its standard error and the resulting Z statistic is compared to the
standard normal distribution to assess whether the effect is significantly different from zero, in
which case the null hypothesis of no mediation can be rejected.

Several approaches are available for calculating the standard error of α̂β̂, but the one used in
the Sobel test (Sobel, 1982) is the most commonly reported:

σ̂α̂β̂ =
√

β̂2σ̂2
α + α̂2σ̂2

β , (9.4)

where α̂ and β̂ are the point estimates of the regression coefficients of the mediated effect, and σ̂α
and σ̂β their standard errors. The 95% confidence interval for the mediated effect is then given by

α̂β̂ ± 1.96× σ̂α̂β̂ .
One problem with the Sobel test is that it assumes a symmetrical sampling distribution for the

mediated effect, whereas in reality this distribution is skewed (MacKinnon, Lockwood, & Hoffman,
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1998). Consequently, the Sobel test has relatively low power (MacKinnon, Warsi, & Dwyer, 1995).
A solution to this problem is to construct a confidence interval that takes the asymmetry of the
distribution into account (see e.g., the product method of MacKinnon, Lockwood, Hoffman, West,
& Sheets, 2002) or the profile likelihood method (see Venzon & Moolgavkar, 1988).

Our goal here is not to argue against frequentist statistics in general, or p values in particular
— for this, we refer the interested reader to the following articles and references therein: Berger
and Delampady (1987); Berger and Wolpert (1988); Dienes (2011); Edwards et al. (1963); O’Hagan
and Forster (2004); Rouder et al. (2012); Sellke, Bayarri, and Berger (2001); Wagenmakers (2007);
Wetzels et al. (2011). Instead, our goal is to outline an additional Bayesian tool that can be
used for mediation analysis. The availability of multiple tools is useful, not just because different
situations may require different tools, but also because they allow a robustness check; if different
tools yield opposing conclusions the careful researcher does well to report the results from both
tests, indicating that the data are ambiguous in the sense that the conclusion depends on the
analysis method at hand.

9.3 An Alternative: Bayesian Estimation

Our end goal is to propose a Bayesian alternative for the frequentist mediation test. Below we
consider the Bayesian treatment of the mediation model in detail, but first we briefly discuss
Bayesian inference in general terms. In the Bayesian framework, uncertainty is quantified by
probability. Prior beliefs about parameters are formalized by prior probability distributions which
are updated by the observed data to result in posterior beliefs or posterior distributions (Dienes,
2008; M. D. Lee & Wagenmakers, 2013; Kruschke, 2010b; O’Hagan & Forster, 2004).

The Bayesian updating process proceeds as follows. First, before observing the data under
consideration, the Bayesian statistician assigns a probability distribution to one or more model
parameters θ based on her prior knowledge — hence, this distribution is known as the prior
probability distribution or simply “the prior”, denoted p(θ). Next, one observes data D, and the
statistical model can be used to calculate the associated probability of D occurring under specific
values of θ, a quantity known as the likelihood, denoted p(D | θ). The prior distribution p(θ) is
then updated to the posterior distribution p(θ | D) according to Bayes’ rule:

p(θ | D) =
p(D | θ)p(θ)

p(D)
. (9.5)

Note that the marginal likelihood p(D) =
∫

p(D | θ)p(θ) dθ functions as a normalizing constant
that ensures that the posterior distribution will integrate to one. Because the normalizing constant
does not contain θ it is not important for parameter estimation, and Equation 9.5 is often written
as follows:

p(θ | D) ∝ p(D | θ)p(θ), (9.6)

or in words:

Posterior Distribution ∝ Likelihood× Prior Distribution,

where ∝ means “proportional to”.
In a Bayesian mediation analysis the above updating principle can be used to transition from

prior to posterior distributions for parameters α, β, and τ ′, as proposed by Yuan and MacKinnon
(2009). Their method allows the user to determine the posterior distribution of the indirect effect
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αβ, together with a 95% credible interval. This interval has the intuitive interpretation that we
can be 95% confident that the true value of αβ resides within this interval.

The approach of Yuan and MacKinnon (2009) is appropriate when estimating the size of the
mediated effect. However, in experimental psychology the research question is often framed in terms
of model selection or hypothesis testing, that is, the researcher seeks to answer the question: “does
the effect exist?”. Parameter estimation and model selection have different aims and, depending
on the situation at hand, one procedure may be more appropriate than the other. We contend that
there are situations where a hypothesis test is scientifically useful (e.g., Iverson, Wagenmakers,
& Lee, 2010; Rouder et al., 2009) and in what follows we proceed to outline a default Bayesian
hypothesis test for mediation. In order to keep this article self-contained, we will first introduce
the principles of Bayesian hypothesis testing (Hoijtink, Klugkist, & Boelen, 2008; Myung & Pitt,
1997; Vandekerckhove, Matzke, & Wagenmakers, 2013; Wagenmakers et al., 2010).

9.4 Bayesian Hypothesis Testing

A Bayesian hypothesis test is a model selection procedure with two models or hypotheses. Assume
two competing models or hypotheses, M0 and M1, with respective a priori plausibility p(M0)
and p(M1) = 1− p(M0). Differences in prior plausibility are often subjective but can be used to
formalize the idea that extraordinary claims require extraordinary evidence (M. D. Lee & Wagen-
makers, 2013, Chapter 7). The ratio p(M1)/p(M0) is known as the prior model odds. The data
update the prior model odds to arrive at the posterior model odds, p(M1 | D)/p(M0 | D), as
follows:

p(M1 | D)

p(M0 | D)
=

p(D | M1)

p(D | M0)

p(M1)

p(M0)
, (9.7)

or in words:

Posterior Model Odds = Bayes Factor× Prior Model Odds.

Equation 9.7 shows that the change in model odds brought about by the data is given by the
so-called Bayes factor (Jeffreys, 1961), which is the ratio of marginal likelihoods (i.e., normalizing
constants in Equation 9.5):

BF10 =
p(D | M1)

p(D | M0)
. (9.8)

The Bayes factor quantifies the weight of evidence for M1 versus M0 that is provided by the data
and as such it represents “the standard Bayesian solution to the hypothesis testing and model
selection problems” (Lewis & Raftery, 1997, p. 648) and “the primary tool used in Bayesian
inference for hypothesis testing and model selection” (Berger, 2006, p. 378).

A BF10 > 1 indicates that the data are more likely under M1, and a BF10 < 1 indicates that
the data are more likely under M0. For example, when BF10 = .08 the observed data are 12.5
times more likely under M0 than under M1 (i.e., BF01 = 1/BF10 = 1/.08 = 12.5). Note that the
Bayes factor allows researchers to quantify evidence in favor of the null hypothesis.

Even though the default Bayes factor has an unambiguous and continuous scale, it is sometimes
useful to summarize the Bayes factor in terms of discrete categories of evidential strength. Jeffreys
(1961, Appendix B) proposed the classification scheme shown in Table 9.1. We replaced the labels
“worth no more than a bare mention” with “anecdotal”, “decisive” with “extreme”, and “substan-
tial” with “moderate”. These labels facilitate scientific communication but should be considered
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only as an approximate descriptive articulation of different standards of evidence. Under equal prior
odds, Bayes factors can be converted to posterior probabilities p (M1 | D) = BF10/ (BF10 + 1).
This means that, for example, BF10 = 2 translates to p (M1 | D) = 2/3.

Table 9.1 Evidence Categories for the Bayes Factor BF10 (Jeffreys, 1961)

.

Bayes factor BF10 Interpretation

> 100 Extreme evidence for M1

30 – 100 Very strong evidence for M1

10 – 30 Strong evidence for M1

3 – 10 Moderate evidence for M1

1 – 3 Anecdotal evidence for M1

1 No evidence
1/3 – 1 Anecdotal evidence for M0

1/10 – 1/3 Moderate evidence for M0

1/30 – 1/10 Strong evidence for M0

1/100 – 1/30 Very strong evidence for M0

< 1/100 Extreme evidence for M0

Note. We replaced the labels “Not worth more than a bare mention” with “Anecdotal”, “Decisive” with “Extreme”,
and “Substantial” with “Moderate”.

9.5 Bayesian Hypothesis Test for Mediation

The Bayesian hypothesis test for mediation contrasts the following two models:

M0 : αβ = 0, (9.9)

M1 : αβ 6= 0.

Observe that M1 entails that both α 6= 0 and β 6= 0, so that BF10 can be obtained by combining
the evidence for the presence of the two paths. Furthermore, note that in the standardized model,
path α equals the correlation rXM , and path β equals the partial correlation rMY |X . This means
that we can use the existing default Bayesian hypothesis tests for correlation and partial correlation
(Wetzels & Wagenmakers, 2012) and combine the evidence for the presence of the separate paths
to yield the overall Bayes factor for mediation.

The Default JZS Prior

The construction of good default priors is an active area of research in Bayesian statistics (e.g.,
Consonni, Forster, & La Rocca, 2013; Overstall & Forster, 2010). Most work in this area has been
done in the context of linear regression. It is therefore advantageous to formulate the tests for
correlation and partial correlation in terms of linear regression, so that existing developments for
the selection of default priors can be brought to bear.

A popular default prior for linear regression is Zellner’s g prior, which includes a normal dis-
tribution on the regression coefficients α, Jeffreys’ prior on the precision φ (i.e., a prior that is
invariant under transformation; Jeffreys, 1961), and a uniform prior on the intercept β0:
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p(α | φ, g,X) ∼ N(0,
g

φ
(XTX)−1), (9.10)

p(φ) ∝ 1

φ
,

p(β0) ∝ 1,

where X denotes the matrix of predictor variables and the precision φ is the inverse of the variance.
The coefficient g is a scaling factor and controls the weight of the prior relative to the weight of the
data. For example, if g = 1, the prior has exactly as much weight as the data, and if g = 10, the
prior has one tenth of the weight of the data. A popular default choice is g = n, the unit information
prior, where the prior has as much influence as a single observation (Kass & Wasserman, 1995)
and the behavior of the test becomes similar to that of BIC (G. Schwarz, 1978).

However, Liang et al. (2008) showed that the above specification yields a bound on the Bayes
factor, even when there is overwhelming information supporting M1. This “information paradox”
can be overcome by assigning the regression coefficients a Cauchy prior instead of a normal prior
(Zellner & Siow, 1980). Equivalently, this can be accomplished by assigning g from Equation 9.10
an Inverse-Gamma(1/2, n/2) prior:

p(α | φ, g,X) ∼ N(0,
g

φ
(XTX)−1), (9.11)

p(g) =
(n/2)1/2

Γ(1/2)
g(−3/2)e−n/(2g),

p(φ) ∝ 1

φ
.

The above specification is known as the Jeffreys-Zellner-Siow or JZS prior. The JZS prior
was adopted by Wetzels and Wagenmakers (2012) for the default tests of correlation and partial
correlation, and the same tests are used here to compute the Bayes factor for mediation. It should
be stressed, however, that the framework is general and allows researchers to add substantive
knowledge about the topic under study by changing the prior distributions (e.g., Armstrong &
Dienes, 2013; Dienes, 2011; Guo et al., 2013). With the JZS tests for correlation and partial
correlation in hand, we created the default Bayesian hypothesis test for mediation in three steps
as described in the next paragraphs.

Step 1: Evidence for Path α

The first step in the hypothesis test for mediation is to establish the Bayes factor for a correlation
between X and M , path α (see Figure 9.1). This test can be formulated as a comparison between
two linear models:

M0 : M = β0 + ǫ, (9.12)

M1 : M = β0 + αX + ǫ,

where ǫ is the normally distributed error term. The default JZS Bayes factor quantifies the extent
to which the data support M1 with path α versus M0 without path α, as follows (Wetzels &
Wagenmakers, 2012):
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BF10 = BFα (9.13)

=
P (D | M1)

P (D | M0)

=
(n/2)1/2

Γ(1/2)
×
∫ ∞

0
(1 + g)(n−2)/2 × [1 + (1− r2)g]−(n−1)/2g(−3/2)e−n/(2g) dg,

where n is the number of observations and r is the sample correlation.
For the proposed mediation test, we have to multiply the posterior probabilities of paths α and

β, as both independent paths need to be present for mediation to hold. Hence we need to convert
the Bayes factor for path α to a posterior probability. Under the assumption of equal prior odds
this conversion is straightforward:

p(α 6= 0 | D) =
BFα

BFα + 1
. (9.14)

Step 2: Evidence for Path β

The second step in the hypothesis test for mediation is to establish the Bayes factor for a unique
correlation between M and Y (without any influence from X), path β (see Figure 9.1). Again, this
test can be formulated as a comparison between two linear models:

M0 : Y = β0 + τX + ǫ, (9.15)

M1 : Y = β0 + τ ′X + βM + ǫ,

where ǫ is the normally distributed error term. The default JZS Bayes factor quantifies the extent
to which the data support M1 with path β versus M0 without path β, as in a test for partial
correlation (Wetzels & Wagenmakers, 2012):

BF10 = BFβ (9.16)

=
P (D | M1)

P (D | M0)

=

∫∞
0 (1 + g)(n−1−p1)/2 × [1 + (1− r21)g]

−(n−1)/2g(−3/2)e−n/(2g) dg
∫∞
0 (1 + g)(n−1−p0)/2 × [1 + (1− r20)g]

−(n−1)/2g(−3/2)e−n/(2g) dg
,

where n is the number of observations, r21 and r20 represent the explained variance of M1 and M0,
respectively, and p1 = 2 and p0 = 1 are the number of regression coefficients or paths in M1 and
M0, respectively. As before, we can convert the Bayes factor for β to a posterior probability under
the assumption of unit prior odds:

p(β 6= 0 | D) =
BFβ

BFβ + 1
. (9.17)
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Step 3: Evidence for Mediation

The third step in the hypothesis test for mediation is to multiply the evidence for α with the
evidence for β to obtain the overall evidence for mediation:

Evidence for Mediation = p(α 6= 0 | D)× p(β 6= 0 | D). (9.18)

The resulting evidence for mediation is a posterior probability that ranges from zero when there is
no evidence for mediation at all, to one when there is absolute certainty that mediation is present.
We can also express the evidence for mediation as a Bayes factor through a simple transformation:

BFmed =
Evidence for Mediation

1− Evidence for Mediation
, (9.19)

where a BFmed > 1 indicates evidence for mediation, and BFmed < 1 indicates evidence against
mediation.

Testing for Full or Partial Mediation

An optional fourth step in the hypothesis test for mediation is to assess the evidence for full versus
partial mediation. The relation between X and Y is fully mediated by M when αβ differs from
zero and the direct path between X and Y , path τ ′, is zero. The evidence for τ ′ can be assessed
with the JZS test for partial correlation as we did for path β (see Equation 9.16). Note however
that the specification of the null model has changed:

M0 : Y = β0 + βM + ǫ, (9.20)

M1 : Y = β0 + τ ′X + βM + ǫ.

With this model specification, the default JZS Bayes factor quantifies the extent to which the data
support M1 with path τ ′ versus M0 without path τ ′. As before, the resulting JZS Bayes factor
for τ ′ can be converted to a posterior probability:

p(τ ′ 6= 0 | D) =
BFτ ′

BFτ ′ + 1
. (9.21)

Together, the Bayes factor for τ ′ and the Bayes factor for mediation indicate whether mediation
is full or partial: if the Bayes factor for mediation is substantially greater than one and the Bayes
factor for τ ′ is substantially smaller than one, there is evidence for full mediation. On the other
hand, if both the Bayes factor for mediation and the Bayes factor for τ ′ are substantially greater
than one, there is evidence for partial mediation.

9.6 Simulation Study

In order to provide an indication of how the mediation test performs, we designed a simulation
study. The goal of the simulation study was to confirm that the Bayes factor draws the correct
conclusion: when mediation is present we expect BFmed to be higher than 1, when mediation is
absent we expect BFmed to be lower than 1.
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Creating the Data Sets

We assessed performance of the test in different scenarios. The parameters α and β could take the
values 0, .30, and .70, τ was fixed to zero. We did not vary τ ′ since it has no influence on the Bayes
factor for mediation, which only concerns the effect αβ. Furthermore, we chose four sample sizes:
N = 20, 40, 80, and 160. The 3× 3 parameter values combined with the four sample sizes resulted
in 36 different scenarios. For each scenario, we created the corresponding covariance matrix of X,
Y , and M , all with a variance of one. This standardization has no bearing on the results as they
are scale free. We then used the covariance matrix to generate for each scenario N multivariate
normally distributed values for X, M , and Y .

Results

Figure 9.2 shows the natural logarithm of the Bayes factors for mediation in the different scenarios.
The different shades of grey of the panels show the strength of the mediation that governed the
generated data: the darker the grey, the stronger the mediation. In the scenarios in which there was
no mediation (α = 0 and/or β = 0) the Bayes factors indicated moderate to very strong evidence
for the null model, depending on the sample size. In the scenario of strong mediation (α = .7 and
β = .7) the Bayes factors quickly increase from anecdotal evidence (N = 20) to moderate evidence
(N = 40) and further on to very strong and extreme evidence for mediation. In the scenarios
of moderate mediation (α = .7 and β = .3 and vice versa), the Bayes factors start to indicate
evidence for mediation from sample sizes of around 60. In the scenario of weak mediation (α = .3
and β = .3) the mediation is too weak for the proposed test to detect it with small sample sizes. In
those scenarios the test only starts to indicate evidence for mediation from a sample size of around
80 onward. In summary, the proposed test can distinguish between no mediation and mediation,
provided that effect size and sample size are sufficiently large.

Discussion

The results from the simulation study confirm that the JZS Bayesian hypothesis test for mediation
performs as advertised: when mediation is absent, the test indicates moderate to strong evidence
against mediation; when mediation is present, the test indicates evidence for mediation, provided
that effect size and sample size are sufficiently large. As expected, the evidence for mediation
increases with effect size and with sample size.

Even though the default test performs well in a qualitative sense, it has one shortcoming that
remains to be addressed: with the proposed method it is not possible to perform a one-sided test.
This is regrettable, because in many situations the researcher has a clear idea on the direction of
the possible paths α, β, and τ ′. In order to perform a one-sided Bayesian hypothesis test, the prior
need to be restricted such that it assigns mass to only positive (or negative) values. This is not
possible in the mediation test as outlined above.

9.7 Extension to One-Sided Tests

As mentioned above, our default prior on a regression coefficient is a Cauchy(0,1) distribution.
This prior instantiates a two-sided test, as it represents the belief that the effect is just as likely to
be positive than negative. In many situation, however, researchers have strong prior ideas about
the direction of the effect (Hoijtink et al., 2008). In the Bayesian framework, such prior ideas are
directly reflected in the prior distribution. More specifically, assume we expect path α to be greater
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Figure 9.2 Performance of the default JZS Bayesian hypothesis test for mediation in different
scenarios. Each panel shows the natural logarithm of the Bayes factor for mediation for different
values of α and β and different sample sizes. The white panels correspond to scenarios in which
there is no mediation, the grey panels to scenarios in which there is mediation. The darker the
panel, the stronger the mediation that is present. The horizontal dotted line at zero indicates the
boundary that separates evidence for the null model (below the line) and evidence for the mediation
model (above the line). Note that the scaling in the scenario of strong mediation is different from
the other scenarios to give a more adequate overview of the results.
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than zero and we seek a test of this order-restricted hypothesis against the null hypothesis that α
is zero. For this, we consider the following three hypotheses:

M0 : α = 0, (9.22)

M1 : α ∼ Cauchy(0, 1),

M2 : α ∼ Cauchy+(0, 1),

where Cauchy+(0, 1) indicates that α can only take values on the positive side of the Cauchy(0,1)
distribution (i.e., it is a folded Cauchy distribution).

The test of interest features the comparison between the one-sided hypothesis M2 versus the
null hypothesis M0, that is, we seek the Bayes factor BF20. This Bayes factor can be derived in
many ways, for instance using relatively straightforward techniques such as the Savage-Dickey den-
sity ratio (Dickey & Lientz, 1970; Wagenmakers et al., 2010; Wetzels, Grasman, & Wagenmakers,
2010) or relatively intricate techniques such as reversible jump MCMC (Green, 1995). Here we
apply a different method that is possibly the most reliable and the least computationally expensive
(Pericchi, Liu, & Torres, 2008; Morey & Wagenmakers, 2014). This method takes advantage of
the fact that we can easily calculate the two-sided Bayes factor, BF10. With this Bayes factor in
hand, we only need to apply a simple correction to derive the desired one-sided Bayes factor BF10.
Specifically, note that the Bayes factor is transitive:

BF20 = BF21 ×BF10, (9.23)

which is immediately apparent from its expanded form

p(D | M2)

p(D | M0)
=

p(D | M2)

p(D | M1)
× p(D | M1)

p(D | M0)
. (9.24)

Thus, the desired one-sided test on α requires only BF21 and BF10. We already have access
to BF10, and this leaves the calculation of BF21, that is, the Bayes factor in favor of the order-
restricted model M2 over the unrestricted model M1. As was shown by Klugkist et al. (2005),
this Bayes factor equals the ratio of two probabilities that can be easily obtained: the first is
the posterior probability that α > 0, under the unrestricted model M1; the second is the prior
probability that α > 0, again under the unrestricted model M1. Formally:

BF21 =
p(α > 0 | M1,D)

p(α > 0 | M1)
. (9.25)

Since the prior distribution is symmetric around zero, the denominator equals .5 and Equation 9.25
can be further simplified to:

BF21 = 2 · p(α > 0 | M1,D) (9.26)

One straightforward way to determine p(α > 0 | M1,D) is (1) to use a generic program for
Bayesian inference such as WinBUGS, JAGS, or Stan; (2) implementM1 in the program and collect
Markov chain Monte Carlo (MCMC) samples from the posterior distribution of α; (3) approximate
p(α > 0 | M1,D) by the proportion of posterior MCMC samples for α that are greater than zero.2

In our implementation of the one-sided mediation tests, we make use of Equations 9.23 and
9.26. In order to obtain BF21, we implemented the unrestricted models in JAGS (Plummer, 2009).
The JAGS code itself is provided in Appendix F.1, and it allows researchers to adjust the prior

2The approximation can be made arbitrarily close by increasing the number of MCMC samples.
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distributions if they so desire. We confirmed the correctness of our JAGS implementation by com-
paring the analytical results for the two-sided Bayes factor BF10 against the Savage-Dickey density
ratio results based on the MCMC samples from JAGS (see Appendix F.2). Finally, note that our
one-sided mediation test can incorporate order-restriction on any of the paths simultaneously.

9.8 Example: The Firefighter Data

To illustrate the workings of the various mediation tests, we will apply them to the same example
data Yuan and MacKinnon (2009) used, concerning the PHLAME firefighter study (Elliot et al.,
2007). In this study it was investigated whether the effect of a randomized exposure to one
of three interventions (X) on the reported eating of fruits and vegetables (Y ) was mediated by
knowledge of the benefits of eating fruits and vegetables (M ; see Equations 9.1, 9.2, and 9.3). The
interventions were either a “team-centered peer-led curriculum” or “individual counseling using
motivational interviewing techniques”, both to promote a healthy lifestyle, or a control condition.
The correlation matrix of the data is shown in Table 9.2.

Table 9.2 Correlation Matrix of the PHLAME Firefighter Data. N = 354.

X Y M

X 1.00 0.08 0.18
Y 0.08 1.00 0.16
M 0.18 0.16 1.00

The Conventional Approach: The Frequentist Product Method

Yuan and MacKinnon (2009) first reported the results of the conventional frequentist product
method mediation analysis (see Table 9.3). This method tests whether the indirect effect αβ
differs significantly from zero. The estimate for αβ was .056 with a standard error of .026 (estimated
with the Sobel method; Sobel, 1982), with the 95% confidence interval (.013, .116) (MacKinnon,
Lockwood, & Williams, 2004; the interval takes into account that αβ is not normally distributed).
Since the 95% confidence interval does not include zero, frequentist custom suggests that the test
provides evidence that the effect of X on Y is mediated by M .

The Yuan and MacKinnon (2009) Approach: Bayesian Parameter Estimation

Next, Yuan and MacKinnon (2009) reported the results of their Bayesian mediation analysis,
which is based on parameter estimation with noninformative priors (see Table 9.3). The mean
of the posterior distribution of αβ was .056 with a standard error of .027. The 95% credible
interval for αβ was (.011, .118). These Bayesian estimates are numerically consistent with the
frequentist results. It should be stressed, however, that the 95% confidence interval does not
allow a test. As summarized by Berger (2006): “Bayesians cannot test precise hypotheses using
confidence intervals. In classical statistics one frequently sees testing done by forming a confidence
region for the parameter, and then rejecting a null value of the parameter if it does not lie in the
confidence region. This is simply wrong if done in a Bayesian formulation (and if the null value
of the parameter is believable as a hypothesis).” (p. 383; see also Lindley, 1957; Wagenmakers &
Grünwald, 2006).
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Table 9.3 Three Estimates of the Mediated Effect α̂β̂ for the PHLAME Firefighter Data Set with
Associated 95% Confidence/Credible Intervals.

α̂β̂ CI95%
Frequentist product method .056 (.013, .116)
Yuan & MacKinnon (2009) .056 (.011, .118)
Default Bayesian hypothesis test .056 (.012, .116)

The Bayes Factor Approach: The Default Bayesian Hypothesis Test

We will now consider the results of the proposed Bayesian hypothesis test with the default JZS
prior set-up. First we estimated the posterior distribution of αβ, using the method of Yuan and
MacKinnon (2009) but now with the JZS prior instead of a noninformative prior (see Table 9.3).
The resulting posterior distribution had a mean of .056 and a 95% credible interval of (.012, .116).
This is consistent with the results of both the frequentist test and the Bayesian mediation estimation
routine of Yuan and MacKinnon (2009). As expected, the choice of the JZS prior set-up over a
noninformative prior set-up does not much influence the results in term of parameter estimation.

The advantage of the JZS prior specification is that we can also formally test whether the effect
differs from zero. Our analytical test indicates that the Bayes factor for path α is 10.06, which
corresponds to a posterior probability of 10.06/(10.06 + 1) = .91. The Bayes factor for path β is
2.68, which corresponds to a posterior probability of 2.68/(2.68 + 1) = .73. If we multiply these
posterior probabilities, we obtain the posterior probability for mediation: .91 × .73 = .66. This
posterior probability is easily converted to a Bayes factor: .66/(1 − .66) = 1.94. Hence, the data
are about twice as likely under the model with mediation than under the model without mediation.
In terms of Jeffreys’ evidence categories this evidence is anecdotal or “not worth more than a bare
mention”.

It is also possible to include an order-restriction in the mediation model at hand. According to
the theory, we expect a positive relation between the mediator “knowledge of the benefits of eating
fruits and vegetables” and the dependent variable “the reported eating of fruits and vegetables”, or
in other words: we expect path β to be greater than zero. If we implement this order-restriction,
our test indicates a new Bayes factor for path β of 5.33, with a corresponding posterior probability
of 5.33/(5.33 + 1) = .84. If we multiply the posterior probability of α with the new posterior
probability of β, we obtain the new posterior probability of mediation: .91 × .84 = .76, with
a corresponding Bayes factor for mediation of .76/(1 − .76) = 3.17. With the imposed order
restriction, the observed data are now about three times as likely under the mediation model than
under the model without mediation, which according to the Jeffreys’ evidence categories constitutes
evidence for mediation on the border between “anecdotal” and “moderate”.

9.9 R package: BayesMed

In order to make our default Bayesian hypothesis tests available, we built the R package BayesMed
(Nuijten, Wetzels, Matzke, Dolan, & Wagenmakers, in preparation). R is a free software environ-
ment for statistical computing and graphics (R Core Team, 2012) and can be easily downloaded
and installed, which makes it a good platform for our test.

BayesMed includes both the basic test for mediation (jzs med) and the accompanying tests
for correlation (jzs cor) and partial correlation (jzs partcor), as well as the associated Savage-
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Dickey density ratio versions (jzs medSD, jzs corSD, and jzs partcorSD, respectively). Further-
more, we added the possibility to estimate the indirect effect αβ, based on the procedure out-
lined in Yuan and MacKinnon (2009), but with a JZS prior set-up. Finally, we also included
the Firefighter data. The use of the tests and their options are described extensively in the
help files within the package. Until the package is available on CRAN, it can be obtained from
https://github.com/MicheleNuijten/BayesMed.

9.10 Concluding Comments

We have outlined a default Bayesian hypothesis test for mediation and presented an R package
that allows it to be applied easily. This default test complements the earlier work by Yuan and
MacKinnon (2009) on Bayesian estimation for mediation. In addition, we have extended the default
tests by allowing more informative, one-sided alternatives to be tested as well. Nevertheless, our
test constitutes only a first step. Avenues for further development include, but are not limited
to, the following: (1) integrate the estimation and testing approaches by using the estimation
outcomes from earlier work as a prior for the later test (Verhagen & Wagenmakers, 2014); (2)
explore methods to incorporate substantive prior knowledge (e.g., Dienes, 2011); (3) extend the
test to interval null hypotheses, that is, null hypotheses that are not defined by a point mass at
zero, but instead by a practically meaningful area around zero (Morey & Rouder, 2011); and (4)
generalize the methodology to more complex models such as hierarchical models or mixture models.

As for all Bayesian hypothesis tests that are based on Bayes factors, users need to realize that
the test depends on the specification of the alternative hypothesis. In general, it is a good idea
to conduct a sensitivity analysis and examine the extent to which the outcomes are qualitatively
robust to alternative plausible prior specifications (e.g., Wagenmakers et al., 2011). Such sensitivity
analyses are facilitated by our JAGS code presented in Appendix F.1.

In sum, we have provided a default Bayesian hypothesis test for mediation. This test allows
users to quantify statistical evidence in favor of both the null hypothesis (i.e., no mediation) and the
alternative hypothesis (i.e., full or partial mediation). The test also allows informative hypotheses
to be tested in the form of order-restrictions. Several extension of the methodology are possible
and await future implementation.

191





Part IV

Improving Research Practice

193





Chapter 10

Two Birds with One Stone: A

Preregistered Adversarial Collaboration

on Horizontal Eye Movements in Free

Recall

This chapter has been submitted for publication as:
Dora Matzke, Sander Nieuwenhuis, Hedderik van Rijn, Heleen A. Slagter, Maurits W. van der

Molen, and Eric-Jan Wagenmakers (2013).
Two birds with one stone: A preregistered adversarial collaboration on horizontal eye movements

in free recall.

Abstract

A growing body of research suggests that horizontal saccadic eye movements facilitate the
retrieval of episodic memories in free recall and recognition memory tasks. Nevertheless, a
minority of studies have failed to replicate this effect. The present paper attempts to resolve
the inconsistent results by introducing a novel variant of proponent-skeptic collaboration. The
proposed approach combines the features of adversarial collaboration and purely confirmatory
preregistered research. Prior to data collection, the adversaries reached consensus on an optimal
research design, formulated their expectations, and agreed to submit the findings to an academic
journal regardless of the outcome. To increase transparency and secure the purely confirmatory
nature of the investigation, the two parties set up a publicly available adversarial collaboration
agreement that detailed the proposed design and all foreseeable aspects of the data analysis.
As anticipated by the skeptics, a series of Bayesian hypothesis tests indicated that horizontal
eye movements did not improve free recall performance. The skeptics suggest that the non-
replication may partly reflect the use of suboptimal and questionable research practices in earlier
eye movement studies. The proponents counter this suggestion and use a p-curve analysis to
argue that the effect of horizontal eye movements on explicit memory does not merely reflect
selective reporting.
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10.1 Introduction

Do horizontal saccades make it easier for people to retrieve events from memory? Past research
seems to suggest that they do. A growing number of investigations report that only 30 seconds of
horizontal saccadic eye movements can improve memory retrieval and boost performance in both
recall and recognition tasks. A number of studies have, however, failed to replicate the seemingly
well-established effect of horizontal eye movements on free recall performance.

Motivated by the inconsistent results, here we describe a purely confirmatory proponent-skeptic
collaboration that focuses on the association between horizontal eye movements and episodic mem-
ory. Proponent-skeptic collaboration has been repeatedly advocated as a constructive method of
scientific conflict resolution (Hofstee, 1984; Kahneman, 2003; Latham, Erez, & Locke, 1988; Mellers,
Hertwig, & Kahneman, 2001). Moreover, we believe that adversarial collaborations —especially
when coupled with the preregistration of the statistical analyses— may remedy a number of factors
that contributed to the recent crisis of confidence in psychological research and may increase the
transparency of scientific communication (see also Koole & Lakens, 2012; Wagenmakers et al.,
2011).

10.2 Preregistered Adversarial Collaboration: A Confirmatory
Proponent-Skeptic Investigation

Adversarial collaboration is a cooperative research effort that is undertaken by two (groups of)
investigators who hold different views on a particular empirical question. The term adversarial
collaboration was coined by Kahneman (2003, see also Latham et al., 1988), who —unsatisfied with
the inefficiency of traditional reply-rejoinder disputes— urged the scientific community to engage
in a “good-faith effort to conduct debates by carrying out joint research” (p. 729). The goal of an
adversarial collaboration is to reach consensus on an experimental design and the corresponding
testable hypotheses. To facilitate the interpretation of the results, the adversaries are required to
formulate and document their expectations about the outcome of the study prior to data collection.
Adversarial collaborations are often carried out under the guidance of a third-party researcher, the
arbiter, who oversees the collaboration and acts as an impartial referee in case of disagreements
(see also Mellers et al., 2001; Nier & Campbell, 2012). Although adversarial collaboration does
not necessarily result in the complete resolution of the disagreement, it often leads to new testable
hypotheses and is therefore likely to advance the debate.

Although the past two decades have witnessed a number of successful adversarial collaborations
in various disciplines (e.g., Bateman, Kahneman, Munro, Starmer, & Sugden, 2005; Cadsby, Cro-
son, Marks, & Maynes, 2008; Gilovich, Medvec, & Kahneman, 1998; Mellers et al., 2001; Schlitz,
Wiseman, Watt, & Radin, 2006; Tetlock & Mitchell, 2009; Wiseman & Schlitz, 1997, 1998), this
form of conflict resolution is unfortunately still the exception rather than the rule. The lack of ad-
versarial collaboration is especially unfortunate in light of the recent “crisis of confidence” (Pashler
& Wagenmakers, 2012, p. 528) in psychological research. The crisis is fueled by concerns about
the replicability of key results (e.g., Hunter, 2001) and the widespread use of questionable research
practices, such as the selective reporting of significant results (e.g., Simmons, Nelson, & Simonsohn,
2011). The controversy has drawn widespread public attention and triggered a broad range of re-
sponses. At one end of the spectrum, failures to replicate key studies in the psychological literature
(e.g., Doyen, Klein, Pichon, & Cleeremans, 2012; Shanks et al., 2013) have prompted hostility and
finger-pointing between research groups. At the other end of the spectrum, the dispute has given
rise to valuable attempts to identify and remedy the factors that contributed to the development of
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the crisis. Although the proposed recommendations vary considerably in focus, they all emphasize
the importance of increasing the transparency of scientific communication (Ioannidis, 2005; Koole
& Lakens, 2012; Pashler & Harris, 2012; Wagenmakers et al., 2011, 2012).

Transparency should not only be a concern once the data have been collected; it has been
suggested that researchers should commit themselves to the methods of data analysis prior to data
collection (e.g., Wagenmakers et al., 2012; de Groot, 1961a, 1961b). Failure to do so may lure
researchers into tailoring the analyses to patterns in the observed data in order to find statistically
significant results (John, Loewenstein, & Prelec, 2012; Simmons et al., 2011). Fishing for signifi-
cant results, however, invalidates the interpretation of Type I and Type II error rates and may lead
to distorted statistical conclusions. In fact, Wagenmakers et al. (2012) argued that the widespread
confusion between exploratory and confirmatory research is the main ‘fairy-tale’ factor in contem-
porary psychology. Wagenmakers et al. have therefore urged researchers to preregister their studies
and publicly disclose prior to data collection which dependent variables they intend to measure
and which statistical analyses they intend to conduct (see also Bakker, van Dijk, & Wicherts, 2012;
Chambers, Munafo, & et al., 2013; de Groot, 1961a; Goldacre, 2009; Ioannidis, 2005; Koole & Lak-
ens, 2012; Nosek, Spies, & Motyl, 2012; Wagenmakers et al., 2011). The preregistration of experi-
ments has been substantially simplified by the development of web-based research archives and data
repositories such as the Open Science Framework (OSF; http://openscienceframework.org).

Here we advocate a hybrid variant of scientific conflict resolution that combines the features of
adversarial collaboration (Kahneman, 2003) and preregistered confirmatory research (Wagenmakers
et al., 2012). The proposed approach may not only assists the constructive resolution of scientific
debates, but may also remedy a number of factors that contributed to the present crisis in psychol-
ogy. We propose the following guidelines for preregistered proponent-skeptic collaborations (see
also Mellers et al., 2001, and Hofstee, 1984, for suggestions for adversarial collaborations). First,
the adversaries reach consensus on an optimal research design. This precaution eliminates the
possibility of later disputes regarding the execution of the study. Second, the two parties formulate
their hypotheses and expectations in advance. This precaution decreases the probability of the
investigators falling prey to various cognitive biases, such as hindsight bias (i.e., judging an event
as more predictable after it has occurred; Roese & Vohs, 2012) and confirmation bias (i.e., favoring
information that confirms one’s own hypotheses; Nickerson, 1998). Third, the adversaries agree to
write a joint article and submit it to an academic journal regardless of the outcome of the study.
This precaution may in the long term counteract publication bias and the file drawer problem
(Rosenthal, 1979; Greenwald, 1975). Lastly, as the novel but crucial ingredient, the two parties set
up an adversarial collaboration agreement. The agreement describes the proposed research design
and all foreseeable aspects of the pre-processing and analysis of the data. This precaution secures
the purely confirmatory nature of the investigation and increases the transparency of scientific
communication.

The remainder of the article describes a joint investigation that focused on the effects of hor-
izontal eye movements on episodic memory. We will first introduce the research area, motivate
the reasons for the preregistered adversarial collaboration, and describe the proposed experimental
design and the corresponding statistical analyses. We will then describe the methods of the study
in more detail and present the results of the investigation. Lastly, the adversaries will present their
own perspective on the results as well as on the process of the joint work.
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10.3 Horizontal Eye Movements and Episodic Memory

Background and Motivation

Past research suggests that horizontal saccadic eye movements assist the consolidation and retrieval
of memories. For instance, bilateral eye movements have been reported to decrease the severity of
memory symptoms in eye-movement desensitization and reprocessing (EMDR, Shapiro, 1989), a
well-known therapeutic approach for the treatment of post traumatic stress disorder (e.g., C. W. Lee
& Cuijpers, 2013). During EMDR, the patient is required to recall the traumatic memory while
performing horizontal eye movements. EMDR is argued to change the traumatic (sensory) memory
into a more (verbal) declarative memory, while simultaneously reducing the patient’s emotional
arousal and avoidance.

As a result of the suggested association between eye movements and memory in clinical con-
texts, the past decades have witnessed a growing number of experimental studies on the effects
of horizontal eye movements. Eye movement experiments typically employ either free recall or
recognition memory paradigms and require participants to perform 30 seconds of horizontal eye
movements immediately prior to the test phase. According to the alternating hemispheric acti-
vation hypothesis (Christman, Garvey, Propper, & Phaneuf, 2003; Propper & Christman, 2008),
alternating horizontal eye movements result in the alternating activation of the two brain hemi-
spheres. This activation pattern may lead to increased hemispheric communication, which in turn
benefits the retrieval of memories. As strongly right-handed individuals show lower interhemi-
spheric interaction than mixed- and left-handed individuals, the benefits of horizontal saccades are
typically more pronounced for strongly right-handers (e.g., Brunyé, Mahoney, Augustyn, & Taylor,
2009; Lyle, Logan, & Roediger, 2008; Lyle, Hanaver-Torrez, Hackländer, & Edlin, 2012).

Consistent with the alternating hemispheric activation hypothesis, the majority of eye move-
ment studies report that horizontal eye movements improve episodic memory retrieval compared
to no eye movements, especially for strongly right-handed participants (e.g., Brunyé et al., 2009;
Christman et al., 2003; Christman, Propper, & Dion, 2004; Lyle et al., 2008; Lyle & Osborn,
2011; Nieuwenhuis et al., 2013; Parker, Buckley, & Dagnall, 2009; Parker & Dagnall, 2007, 2010,
2012; Parker, Relph, & Dagnall, 2008). Similarly, various studies show that horizontal eye move-
ments improve memory performance compared to vertical eye movements (e.g., Brunyé et al., 2009;
Christman et al., 2003; Parker et al., 2009; Parker & Dagnall, 2007, 2012; Parker et al., 2008). The
literature is, however, not entirely consistent. First, Lyle et al. (2008) reported that vertical eye
movements –similar to horizontal eye movements– improve memory retrieval compared to no eye
movements. Second, Samara, Elzinga, Slagter, and Nieuwenhuis (2011) found that the beneficial
effect of horizontal eye movements was only present for the recall of emotional stimuli.

Motivated in part by the above mentioned inconsistencies, the skeptics (i.e., the first, third,
and sixth author) have recently conducted two pilot studies in which they attempted to replicate
the beneficial effect of horizontal eye movements on free recall. The skeptics compared the re-
call of emotional and neutral study words from Samara et al. (2011) after horizontal and vertical
eye movements. In the first study, the skeptics tested 19 strongly right-handed participants in a
within-subject design and found no difference in recall performance between the two eye move-
ment conditions. In the second study, the skeptics tested 16 strongly right-handed participants
in a between-subject design. In line with the first study, no differences were found between the
horizontal and vertical eye movement condition. The skeptics were thus unable to replicate the
beneficial effect of horizontal eye movements on free recall performance.

In light of the somewhat inconsistent results in the literature and the additional null results
obtained in the two pilot studies, the skeptics invited the proponents (i.e., second and fourth
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author) to participate in the present adversarial collaboration. Prior to data collection, the ad-
versaries appointed an impartial referee (i.e., the fifth author) and set up an adversarial collab-
oration agreement. The adversarial collaboration agreement was registered at the OSF before
a single participant was tested. The preregistration and the agreement can be downloaded at
http://openscienceframework.org/project/LAyZm/.

Proposed Experiment and Expectations

The proposed experiment was an attempt to establish whether horizontal eye movements improve
episodic memory retrieval. The investigation followed a strictly confirmatory design and relied on
preregistered statistical analyses. The adversaries agreed that the proposed design best reflected
the prototypical experiment in the field, and that the results were potentially the most compelling
to both skeptics and proponents.

Participants were presented with a list of neutral study words for a subsequent free recall test.
Prior to recall, participants were requested to perform –depending on the experimental condition–
either horizontal, or vertical, or no eye movements (i.e., looking at a central fixation point). The
type of eye movement was thus manipulated between-subjects. As the effect of eye movement
on episodic memory has been reported to be influenced by handedness, we tested only strongly
right-handed individuals. The dependent variable of interest was the number of correctly recalled
words.

The proponents expected horizontal eye movements to affect recall performance. Specifically,
the proponents expected that the number of correctly recalled words (1) was higher in the horizontal
than in the no eye movement condition, and (2) was higher in the horizontal than in the vertical
eye movement condition. The proponents did not expect the number of correctly recalled words
to differ between the vertical and the no eye movement condition. In contrast, the skeptics did
not expect horizontal eye movements to affect recall performance. Specifically, the skeptics did
not expect the number of correctly recalled words to differ between (1) the horizontal and no eye
movement condition, (2) the horizontal and vertical eye movement condition, and (3) the vertical
and no eye movement condition.

To demonstrate that the results are not contaminated by unintended peculiarities of the exper-
imental setting, the skeptics and the proponents also attempted to replicate the well-established
associative-priming effect using a lexical decision task (e.g., de Groot, 1984, 1987; Neely, 1976,
1977). The associative-priming task required participants to categorize letter strings as words or
nonwords. Each target word was preceded by a prime word that was either an associate of the
target (e.g., dog-cat) or was unrelated to the target (e.g., uncle-cat). The dependent variable of
interest was the mean response time (RT) for correct responses to target words. Typically, mean
correct RTs are shorter for target words preceded by related primes than for target words preceded
by unrelated primes.

Data Analysis

In adversarial collaborations is it essential to be able to quantify evidence in favor of the null
hypothesis. Moreover, it is desirable to collect data until the pattern of results is sufficiently
clear. Neither requirement can be accomplished within the framework of frequentist statistics.
The present experiment therefore relied on Bayesian hypothesis testing using the Bayes factor
(e.g., Berger & Mortera, 1999; Edwards et al., 1963; Jeffreys, 1961; Kass & Raftery, 1995; Rouder
et al., 2012, 2009; Wagenmakers, 2007; Wagenmakers et al., 2010, 2011, 2012; Wetzels et al., 2009).
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The Bayes factor (BF01) is a Bayesian model selection measure that quantifies the probability of
the data under the null hypothesis (H0) relative to the probability of the data under the alternative
hypothesis (H1).

1 For instance, BF01 = 10 indicates that the data are 10 times more likely under
the null hypothesis than under the alternative hypothesis. Alternatively, BF01 =

1
10 indicates that

the data are 10 times more likely under the alternative hypothesis than under the null hypothesis.
Within the framework of Bayesian inference, the intention with which the data are collected is
irrelevant (Edwards et al., 1963); hence we can monitor the Bayes factor as the data are collected
(i.e., sequential hypothesis testing), and may stop testing whenever the evidence is sufficiently
compelling.

Accordingly, the adversaries set out to test at least 20 participants in each of the three eye
movement conditions and agreed to stop testing whenever the Bayes factor for the horizontal eye
movement vs. no eye movement condition comparison reflects ‘strong’ evidence for the null or
the alternative hypothesis (see Jeffreys, 1961, for a classification scheme for the Bayes factor).
Specifically, the two parties agreed to stop data collection whenever BF01 > 10 or BF01 < .1 for
the horizontal vs. no eye movement condition comparison. The adversarial collaboration agreement
contains the precise specification of the stopping rule.

Skeptics and proponents agreed to test the three hypotheses using default unpaired Bayesian
t tests as specified by Wetzels et al. (2009). This test relies on the default Jeffreys-Zellner-Siow
prior setting, the standard choice for model selection in regression models (Liang et al., 2008) and
in the t test (Rouder et al., 2009; Wagenmakers et al., 2011, 2012). The test assumes a Cauchy
distribution for the effect size under the alternative hypothesis with a location parameter of zero
and a scale parameter of one (i.e., δ ∼ Cauchy(0, 1)). The Cauchy distribution resembles a standard
normal distribution with relatively fat tails, reflecting lack of knowledge about the effect size in a
particular paradigm. The Cauchy distribution has been proposed as an objective prior and results
in a conservative test.

As the proponents had specific expectations about the direction of the effects (e.g., better recall
in the horizontal than in the no eye movement condition), the adversaries used order-restricted
(i.e, one-sided) t tests, resulting in a folded Cauchy distribution for effect size that is defined for
positive numbers only (i.e., δ ∼ Cauchy(0, 1)+). Note that neither party expected differences
in recall performance between the vertical and the no eye movement condition. The adversaries
nevertheless decided to use a one-sided t test because a few studies in the literature reported that
—similar to horizontal eye movements— vertical eye movement may also improve episodic memory
(e.g., Lyle et al., 2008). The adversaries tested the presence of the associative-priming effect using
a one-sided paired-sample Bayesian t test as specified by Wetzels et al. (2009).

10.4 Methods

The detailed description of the materials and the procedures of the experiment is also available in
the adversarial collaboration agreement.

Participants

Participants were recruited from the psychology student pool of the University of Amsterdam. The
degree of handedness within this pool of subjects had been assessed with the Edinburgh Handed-
ness Inventory (EHI; Oldfield, 1971) as part of an earlier test battery (i.e., the UvA ”testweek”).

1The subscript 01 in BF01 indicates that we compute the probability of the data under H0 relative to the
probability of the data under H1. In contrast, the subscript 10 would indicate that we compute the probability of
the data under H1 relative to the probability of the data under H0.
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Handedness scores range from −100 (strongly left) to +100 (strongly right) in steps of 5. Indi-
viduals with EHI score equal to or above +80 were considered strongly right-handed and were
approached to participate in the experiment.

Skeptics and proponents agreed to exclude the data of two participants: one participant was
under the influence of drugs, whereas the other participant failed to provide a valid EHI score.
The remaining 79 participants (17 male; mean age 21.22 years; mean EHI 95.06) had normal or
corrected-to-normal vision, were native speakers of Dutch, and were not diagnosed with dyslexia.
Participation was rewarded with course credits or with e10.

Tasks and Stimuli

Free Recall and Eye Movement Task

The study list for the free recall task consisted of a primacy buffer of three words, 72 experimental
words, and a recency buffer of three words. The study words were neutral Dutch words that
featured in Zeelenberg, Wagenmakers, and Rotteveel (2006).2 Before the presentation of the first
word, a fixation cross appeared in the middle of the screen for 3000 ms. The study words were
then presented sequentially in black using lower-case 34 point Arial in the middle of a light-gray
display for 2000 ms, with an inter-stimulus interval of 500 ms. The order of word presentation was
randomized across participants.

The computerized eye movement task started with a central fixation cross presented against a
light-gray display for 3000 ms. In the horizontal and vertical eye movement conditions, participants
were instructed to follow a black circle with a diameter of approximately 4◦ visual angle with their
eyes. The circle alternated between the left and right (horizontal eye movements) or between
the top and bottom (vertical eye movements) portion of the display for 30 sec. As the circle
changed position every 500 ms, participants performed two saccadic eye movements per second.
The distance between the left and right position of the circle was the same as the distance between
the top and bottom position, namely 27◦. In the no eye movement condition, a colored circle was
presented at the center of the display. The circle changed color every 500 ms, alternating between
blue and red.

Associative-Priming Task

The stimulus pool consisted of 64 prime-word pairs and 64 prime-nonword pairs. The primes and
the word targets were Dutch nouns, while the nonwords were pseudowords derived from Dutch
nouns by changing one or two letters. The nonwords were generated using the Wuggy software
(Keuleers & Brysbaert, 2010). In all prime-word pairs, the target word appeared as an associate
of the prime in the Dutch word association norms (de Groot, 1980). The prime-word pairs were
adopted from de Groot (1984, 1987). The primes for the prime-nonword pairs were unrelated to
the prime-word pairs and to the nouns that were used to create the nonwords. One subset of the
prime-nonword pairs was adopted from de Groot (1984), whereas the other subset was selected
uniquely for the purpose of the present experiment.

The stimulus pool was used to create two lists that each contained 32 related prime-word pairs
and 32 unrelated prime-word pairs. The unrelated word pairs were created by rearranging the
primes and the word targets of 32 of the 64 related prime-word pairs. Each target word thus
appeared in both lists, either as a target in a related prime-word pair or as a target in an unrelated
prime-word pair. The length and frequency of the target words were equated across the related

2The stimulus words are available from the adversarial collaboration agreement.
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and unrelated prime-word pairs in both lists. The associative strength of the related prime-word
pairs was equated across the two lists. The same prime-nonword pairs were used across the two
lists. Word length was equated across nonwords and the target words in the prime-word pairs.3

The two stimulus lists were counterbalanced across participants. The prime-word pairs and
the prime-nonword pairs were presented sequentially on a computer screen. The order of stimulus
presentation was randomized across participants. The stimuli were presented in black using lower-
case 34 point Arial in the middle of a light-gray display. First, a fixation cross appeared on the
screen for 1000 ms slightly above and left of the position of the to-be-presented prime, followed by a
blank inter-stimulus interval of 20 ms. Next, the prime appeared in the middle of the screen for 400
ms, followed by a blank inter-stimulus interval of 40 ms. Next, the target appeared slightly below
the position of the previously presented prime. The target remained on screen until the participant
responded or until 2400 ms elapsed. Participants were instructed to press ‘M’ with their right index
finger for ‘word’ responses and to press ‘Z’ with their left index finger for ‘nonword’ responses.
Incorrect responses were followed by the message ‘FOUT’ (i.e., incorrect), responses slower than
1200 ms were followed by the message ‘TE LANGZAAM’ (i.e., too slow), and responses faster
than 200 ms were followed by the message ‘TE SNEL’ (i.e., too fast). If the participant failed to
respond within 2400 ms, ‘TE LANGZAAM’ appeared automatically on the screen and an error
was recorded. The feedback was presented 20 ms after response/target offset, slightly below the
position of the previous target. The feedback remained on the screen for 1200 ms. The feedback
scheme was intended to promote accurate but fast responding. Following 1000 ms after a correct
response or after the offset of an error message, the fixation cross reappeared on the screen.

The experimental stimuli were presented in four blocks of 32 prime-target pairs. A forced rest
of 30 sec. separated the experimental blocks. The presentation of the 128 experimental prime-
target pairs was preceded by a practice list of 32 prime-target pairs. The practice list consisted
of 8 related prime-word pairs, 8 unrelated prime-word pairs, and 16 prime-nonword pairs, none of
which were also present in the 128 experimental word-target pairs.

Procedure

Participants were tested individually. Participants were seated behind the computer screen and
were given an explanation of the tasks. For the free recall test, participants were explicitly in-
structed to memorize the presented words for a subsequent memory test. For the eye movement
task, participants were instructed to follow the circle with their eyes by making saccadic eye move-
ments and to keep their head still. The experimenter carefully monitored participants’ compliance
with the instructions, including the eye movement behavior.

Participants were randomly assigned to the three eye movement conditions based on the order of
arrival (i.e., Participant 1 was assigned to the horizontal eye movement condition, Participant 2 to
the vertical eye movement condition, Participant 3 to the no eye movement condition, Participant
4 to the horizontal eye movement condition, etc.). Participants were then presented with the study
list and performed —depending on the eye movement condition— horizontal, vertical, or no eye
movements. Next, participants performed a 5-minute paper-and-pencil free recall test.

After a 10-minute break, participants carried out the associative-priming task. Instructions
emphasized fast but accurate responding. Participants were instructed to pay attention to both
letter strings (i.e., prime and target), but only respond to the second letter string (i.e., the target).
The instructions did not mention the association between the related prime-word pairs. Lastly,
participants completed an exit interview, inquiring about their age and gender. In addition, par-

3The associative-priming stimuli are available from the adversarial collaboration agreement.
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ticipants were asked to indicate whether they were aware of the goal of the experiment, and if so,
they were asked to describe what they thought the goal was.

10.5 Results

Confirmatory Analyses

Eye Movement Task

The free recall data are available on the OSF at http://openscienceframework.org/project/
pXT3M/. Based on the exclusion criteria specified in the adversarial collaboration agreement, we
excluded the free recall data of two participants who correctly described the goal of the experiment
and four participants who recalled fewer than five items correctly. The analyses reported below are
based on the data of 25 participants in the horizontal eye movement (NH = 25), 24 participants
in the vertical eye movement (NV = 24), and 24 participants in the no eye movement condition
(NF = 24).

The left panel of Figure 10.1 shows the average number of correctly recalled experimental words
in the three eye movement conditions; on average, participants in the horizontal eye movement
condition recalled the fewest words and participants in the no eye movement condition recalled the
most words. The average number of correctly recalled words was 10.88 (4.32) in the horizontal,
12.96 (5.89) in the vertical, and 15.29 (6.38) in the no eye movement condition. The right panel
of Figure 10.1 shows the posterior distribution of each of the effect sizes. In Bayesian inference,
the posterior distribution quantifies the uncertainty about an estimated parameter (i.e., effect size)
conditional on the evidence provided by the data. The posterior distributions assign most mass to
negative effect sizes. Thus, consistent with the observed data, the posterior distributions for the
effect sizes indicate that participants recalled fewer words in the horizontal eye movement condition
than either in the vertical or the no eye movement condition and that participants recalled fewer
words in the vertical than in the no eye movement condition. Effect size is the largest for the
horizontal vs. no eye movement comparison. The horizontal vs. vertical and the vertical vs. no
eye movement comparisons resulted in smaller and nearly identical effect size estimates.

As Bayesian inference allows for sequential hypothesis testing, we computed the Bayes factor
after each triad of participants. Figure 10.2 shows the results of the sequential analyses using one-
sided unpaired Bayesian t tests under the assumption of equal variances. The sequential analysis
plots show the log Bayes factor as a function of the number of participants per condition; log Bayes
factors smaller than zero indicate evidence for the alternative hypothesis, whereas log Bayes factors
higher than zero indicate evidence for the null hypothesis.

For all three hypotheses, the evidence in favor of the null hypothesis gradually increased as
the data accumulated. After testing 73 participants, the Bayes factor indicated that the data are
15 times more likely under the null hypothesis of no difference between the horizontal and the no
eye movement condition than under the alternative hypothesis (BF01 = 15.39).4 Similarly, the
Bayes factor indicated that the data are more than 10 times more likely under the null hypothesis
of no difference between the horizontal and the vertical eye movement condition than under the
alternative hypothesis (BF01 = 10.12). Lastly, the Bayes factor indicated that the data are more

4After five weeks of data collection, the BF01 was above 10 for the horizontal eye movements vs. no eye
movement comparison. The adversaries, however, agreed to continue testing for an additional week in order to
obtain compelling evidence also for the horizontal vs. vertical eye movements and the vertical vs. no eye movement
comparisons. For the amendment to the adversarial collaboration agreement that documents this decision, see the
OSF at http://openscienceframework.org/project/pXT3M/
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than 9 times more likely under the null hypothesis of no difference between the vertical and the
no eye movement condition than under the alternative hypothesis (BF01 = 9.64). As shown in
the right panels of Figure 10.2, essentially the same results were obtained under the assumption of
unequal variances. Unsurprisingly, the frequentist alternatives of the one-sided unpaired Bayesian t
tests yielded non-significant results: t(47) = −2.85, p > .99 for the horizontal vs. no eye movement
comparison, t(47) = −1.41, p = .92 for the horizontal vs. vertical comparison, and t(46) = −1.32,
p = .90 for the vertical vs. no eye movement comparison, assuming equality of variances.

In sum, as anticipated by the skeptics, the Bayes factor indicated strong evidence in favor of
the null hypothesis for the horizontal vs. no eye movement as well as the horizontal vs. vertical
eye movement comparisons. As expected by both parties, the Bayes factor indicated substantial
evidence in favor of the null hypothesis for the vertical vs. no eye movement comparisons.
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Figure 10.1 Mean number of words recalled correctly and effect sizes in the three eye movement
conditions. The left panel shows the average number of experimental words recalled correctly in
the three eye movement conditions. The error bars indicate the standard error. The right panel
shows the posterior distribution of the estimated effect size for the horizontal−no eye movement
comparison (solid black line), for the horizontal−vertical eye movement comparison (solid grey
line), and for the vertical−no eye movement comparison (dashed line).

Associative-Priming Task

The priming data are available on the OSF at http://openscienceframework.org/project/

pXT3M/. We used only correct RTs that were longer than 250 ms and shorter than 1500 ms,
resulting in an average exclusion rate of 6.39%. Based on the exclusion criteria specified in the
adversarial collaboration agreement, we excluded one participant with error rate higher than 20%.
We excluded the data of one additional participant because of computer failure. The analysis
reported below is based on 77 participants.
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Log Bayes factor for the eye movement task:
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Log Bayes factor for the eye movement task:
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Figure 10.2 Log Bayes factors for the comparison of the number of correctly recalled words between
the horizontal, vertical, and no eye movement conditions.

Figure 10.3 shows mean RT for the related and the unrelated prime-word pairs and the corre-
sponding effect size. As expected, mean RTs for target words preceded by related primes (493.96
ms, sd = 66.44) were shorter than mean RTs for target words preceded by unrelated primes (527.06,
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sd = 66.35). The posterior distribution assigns most mass to large negative effect sizes. Figure 10.4
shows the results of the sequential analysis using Bayes factors from the default one-sided paired-
sample Bayesian t test. As the data accumulated, the evidence for the alternative hypothesis
gradually increased. After testing 77 participants, the Bayes factor indicated that the data are
528,848,417 times more likely under the alternative hypothesis than under the null hypothesis
(BF01 = 1.890901E− 09). This result supports the adversaries’ expectation and indicates extreme
evidence for the presence of the associative-priming effect.
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Figure 10.3Mean RT and effect size for the associative-priming task. The left panel shows mean RT
for the related and the unrelated prime-word pairs. The error bars indicate the standard error. The
right panel shows the posterior distribution of the estimated effect size for the related−unrelated
prime-word comparison.

Exploratory Analyses

This section presents the results of a series of analyses aimed at exploring the robustness of the
conclusions with respect to the prior setting used for the analysis of the eye movement data.
In order to minimize the role of subjective expectations, the confirmatory analyses assumed the
default Cauchy(0, 1)+ prior for effect size. The choice of the Cauchy prior may nevertheless be
disputed; we might just as well have used a prior that is informed by the eye-movement literature
or a prior that assumes smaller variability in effect size than the default Cauchy distribution.
Especially the latter possibility warrants further investigation as Bayes factors are sensitive to
the shape of the prior distribution (e.g., Bartlett, 1957; Liu & Aitkin, 2008; Vanpaemel, 2010).
Specifically, wide prior distributions define highly complex models (i.e., models that can generate
a wide range of predictions), resulting in Bayes factors that support the null hypothesis. Thus,
highly uninformative prior distributions yield Bayes factors that lend infinite support for the null
hypothesis (Jeffreys, 1961).
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Log Bayes factor for the associative−priming task
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Figure 10.4 Log Bayes factor for the comparison of mean RT for related vs. unrelated prime-word
pairs.

Here we investigate the extent to which the variability of the prior distribution of effect size
influences the Bayes factor. We replaced the Cauchy prior on effect size with a zero centered normal
prior and varied the standard deviation (sd) from 0 to 2, creating progressively more spread out
—uninformative— priors. As we are concerned with one-sided tests, we used a normal prior that
is defined for positive numbers only (i.e., δ ∼ Normal(0, sd)+).

Figure 10.5 shows changes in the log Bayes factor as a function of the standard deviation of the
normal prior on effect size. The black triangle corresponds to the Bayes factor computed with the
standard normal prior —the so-called unit information prior— on effect size (i.e., δ ∼ Normal(0, 1)).
As before, log Bayes factors smaller than zero indicate evidence for the alternative hypothesis,
whereas log Bayes factors higher than zero indicate evidence for the null hypothesis. Two aspects
of the results are noteworthy. First, as the standard deviation of the normal prior increases (i.e.,
prior becomes progressively wider), the Bayes factor increasingly favors the null hypothesis. As
mentioned above, this result reflects a typical aspect of Bayesian hypothesis testing. Second, the log
Bayes factor is never smaller than zero. This result indicates that the Bayes factor never favors the
alternative hypothesis over the null hypothesis regardless of the variability of the prior distribution.
Even under the prior setting that maximally supports the alternative hypothesis (i.e., standard
deviation very close to zero), the log Bayes factor is only around 0, indicating perfectly ambiguous
evidence. This finding is not surprising; mean recall was highest in the no eye movement condition
and lowest in the horizontal eye movement condition, a result that contradicts the order-restriction
specified for the one-sided t test.

The results of the robustness analyses indicated that the Bayes factor, as expected, varied as a
function of the standard deviation of the prior distribution of the effect size. Although the strength
of the support for the null hypothesis varied as a function of the prior setting, the Bayes factor
always favored the null hypothesis over the alternative hypothesis regardless of the variability of
the prior.
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Figure 10.5 Log Bayes factors (log BF01) as a function of the standard deviation (sd) of the zero-
centered normal prior on effect size. Equal variances are assumed. The black triangle corresponds
to the Bayes factor computed with a standard normal prior (i.e., unit-information prior) on effect
size.

10.6 Discussion

Adversarial collaboration has been repeatedly advocated as a constructive method of scientific
conflict resolution (Hofstee, 1984; Kahneman, 2003; Latham et al., 1988; Mellers et al., 2001). We
believe that adversarial collaborations —especially when coupled with preregistration— may also
remedy a number of factors that contributed to the crisis of confidence in psychological science and
increase the transparency of scientific communication (see also Koole & Lakens, 2012; Wagenmak-
ers et al., 2011). The present paper therefore introduced the notion of preregistered adversarial
collaboration, a novel variant of scientific conflict resolution. The proposed approach combines the
features of adversarial collaboration and purely confirmatory research (Wagenmakers et al., 2012).

We illustrated the use of preregistered adversarial collaboration with a joint proponent-skeptic
investigation on the effect of horizontal eye movements on episodic memory performance. The rules
of the collaboration were as follows. First, the adversaries reached consensus on an optimal research
design. Specifically, the adversaries agreed to manipulate the type of eye movement between
subjects: Participants were requested to perform either horizontal, or vertical, or no eye movements
prior to the recall of the study list. Second, the two parties formulated their expectations and agreed
to submit the findings to an academic journal whether or not those expectations are supported
by the data. Third, the adversaries appointed an impartial referee whose task was to oversee
the collaboration. Lastly, but importantly, the two parties set up a publicly available adversarial
collaboration agreement that described the proposed design and all foreseeable aspects of the
data analysis. The adversarial collaboration agreement was registered at the OSF before a single
participant was tested. The adversarial collaboration agreement presented here may serve as a
blueprint for future work.

As expected by the skeptics, the Bayes factor indicated strong evidence in favor of the null
hypothesis for the horizontal eye movement vs. no eye movement as well as for the horizontal eye
movement vs. vertical eye movement comparisons. As expected by both parties, the Bayes factor
indicated substantial evidence in favor of the null hypothesis for the vertical eye movement vs.
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no eye movement comparison. Lastly, the results of the associative-priming task supported the
adversaries’ expectation and indicated extreme evidence for the presence of an associative-priming
effect. In what follows, the skeptics and the proponents will present their own perspectives on the
results of the experiment and the process of the joint research effort.

Discussion by Skeptics

Reflection on the Results

The results clearly supported our expectations: Horizontal eye movements did not improve free
recall performance in the present experiment. Our joint study thus failed to replicate the beneficial
effect of bilateral eye movements on episodic memory. Despite our best efforts to carry out a
prototypical experiment, the present study —and our two pilot studies— contradicts the seemingly
well-established finding on the association between horizontal eye movements and memory retrieval.

Our failure to replicate may, of course, simply be due to chance; even if the effect under scrutiny
truly exists, a certain number of replication attempts are necessarily doomed to be unsuccessful
(e.g., Francis, 201s). Note, however, that our two pilot studies also yielded null results. We propose
therefore that the conflicting findings may reflect mechanisms that are related to (1) statistical
problems in the literature; (2) prevailing research practices in psychology; and (3) methodological
shortcomings of the prototypical research design.

On the statistical side, we believe that the effect of horizontal eye movements on episodic
memory may be overestimated as a result of the statistical problems associated with p value-based
null hypothesis testing. A well-known problem of frequentist hypothesis testing is that p values
overstate evidence against the null hypothesis (Berger & Delampady, 1987; Edwards et al., 1963;
V. E. Johnson, 2013; Sellke et al., 2001). Wetzels et al. (2011) showed that 70% of the p values from
t tests in experimental psychology that fall between .01 and .05 correspond to Bayes factors that
indicate that the data are no more than three times more likely under the alternative hypothesis
than under the null hypothesis. This suggests that a number of “significant” findings in the eye
movement literature (e.g., Brunyé et al., 2009; Lyle et al., 2008; Samara et al., 2011) may in
fact reflect negligible effects that are “not worth more than a bare mention” (Jeffreys, 1961). The
present paper therefore advocates the use of Bayesian hypothesis testing with default Bayes factors.

Although it is likely that the eye movement literature is biased by the statistical peculiarities
of p values, the results of the present experiment cannot be explained purely in terms of differences
in statistical framework. The Bayesian conclusions were corroborated with the results of p value-
based hypothesis tests. In fact, participants in the horizontal eye movement condition recalled on
average the fewest words, a result that contradicts most —if not all— reported findings in the eye
movement literature.

We therefore argue that the conflicting results may partly reflect bias and the use of ques-
tionable research practices, both of which can distort the literature. That is, the beneficial effect
of horizontal eye movements on free recall may seem more established than it actually is, due to
publication bias and the file-drawer problem (Rosenthal, 1979; Greenwald, 1975). Error mech-
anisms during the interpretation of the data, such as hindsight bias and positive confirmation
bias, may likewise contribute to the unbalanced literature by fueling the use of questionable re-
search practices (QRP). QRPs may include optional stopping (i.e., collecting data until the p value
reaches a desired significance criterion), selectively reporting results from experimental conditions
and dependent variables that produce significant effects, hypothesizing after the results are known
(HARKing), and the use of post-hoc exclusion criteria, such as arbitrary handedness cut-off scores.5

5The following investigations all used different criteria for classifying participants as strongly right-handed:
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The present paper therefore emphasizes the importance of preregistration and the strict separation
of confirmatory and exploratory research (see also de Groot, 1961a).

Lastly, on the methodological side, we argue that limitations of the prototypical research design
may contribute to the conflicting findings. In the present study, as in most eye movement studies,
the experimenter was not blind to participants’ eye movement condition. The expectations of the
experimenter may have unintentionally influenced the outcome of the study by, say, selectively
increasing participants’ motivation in a given eye movement condition (Rosenthal, 1976). In the
current study, the data were collected by the skeptics. Despite our best efforts, our expectations
might have been subtly communicated to the participants and have contributed to the null finding in
the present experiment and in our two pilot studies. The possibility of the experimenter effect as an
explanation for our results warrants further investigation. Note however that if the experimenter’s
expectation can indeed eliminate or even reverse the effect of bilateral eye movement on free recall,
the phenomenon is more fragile than suggested by the literature, a possibility that may explain
the present failure to replicate.

Reflection on the Process

Preregistered adversarial collaboration is a labor-intensive undertaking that requires more planning
and anticipation than carrying out standard research. Prior to data collection, the adversaries are
required to reach consensus on an experimental design and have to anticipate and document —as
far as possible— all foreseeable aspects of the data collection and the data analysis. We believe,
however, that the advantages of the proposed approach outweigh the disadvantages, as the initial
effort involved in setting up the joint research pays off in numerous ways. By critically evaluating
and attempting to anticipate all aspects of the research effort, the two parties capitalize on expert
knowledge and maximize the probability that the proposed experiment resolves the disagreement.
Moreover, the public disclosure of the the experimental procedures and statistical analyses secures
the purely confirmatory nature of the research and increases the transparency of the investigation.

Note that preregistration of the proposed experiment does not mean that all aspects of the re-
search effort are carved in stone. If both parties agree, the adversarial collaboration agreement may
be amended to account for unexpected events during data collection. For instance, as documented
in the present adversarial collaboration, we agreed to modify the stopping rule and our strategy
for participant recruitment during data collection (see amendment to the adversarial collaboration
agreement on the OSF and footnote 5). Similarly, preregistration of the data analysis does not
mean that investigators cannot follow up interesting patterns in the data or —as demonstrated
here— investigate the robustness of the conclusions. We believe that exploratory research plays
an essential role in science; it generates new testable hypotheses and facilitates scientific progress.
We also believe, however, that researchers should explicitly acknowledge which results are based
on explorations and which results are based on strictly confirmatory analyses.

In sum, setting up preregistered joint research requires more effort on behalf of the investigators
than carrying out standard research. We believe, however, that the additional work is a small price
to pay for the possibility of constructive conflict resolution and a great increase in transparency.
We hope that preregistered adversarial collaboration —or some other variant of confirmatory joint
research— will in the near future become the rule rather than the exception for settling scientific
disputes in psychology. In light of the rather heated debates in our discipline, there is certainly
room for improvement.

Brunyé et al. (2009) used EHI > median, Christman et al. (2004, Experiment 1) used EHI ≥ median, Christman et
al. (2004, Experiment 2) used EHI ≥ 75, and Lyle and Osborn (2011) used EHI ≥ 80.
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Discussion by Proponents

Reflection on the Results

We were surprised by these results. In a previous study, we found a beneficial effect of horizontal eye
movements on recall of emotional words but not neutral words (Samara et al., 2011). However, the
null effect for neutral words may have been due to the small sample size (N = 14) and/or the relative
long period between the horizontal eye movements and subsequent recall test due to an intermittent
baseline EEG recording; in a subsequent study, using a much larger sample and no intermittent
EEG recording, we did replicate the effect (Nieuwenhuis et al., 2013, Experiment 1). In additional
experiments we found a similar beneficial effect on word recall of alternating (vs. simultaneous)
left-right tactile but not auditory stimulation, a pattern of results predicted by the alternating
hemispheric activation hypothesis (Christman et al., 2003; Propper & Christman, 2008). These
and other studies (Propper & Christman, 2008) used procedures and stimulus material that were
similar to those used in the current study. In addition, the current study only included consistently
right-handed individuals as the effect of horizontal eye movements on memory is present in strong
left- and right-handers but not in mixed-handers (Lyle et al., 2008, 2012). It is thus surprising that
in the current study, previously reported positive effects of horizontal eye movements on memory
performance were not replicated.

So how can we account for the current non-replication? As the skeptics suggest, the non-
replication might be a false negative. Or it may be due to experimenter bias (Rosenthal & Rubin,
1978). To rule out this latter possibility, experimenters in future studies will have to be blind to the
condition to which a participant is assigned. Here, we consider in more detail another explanation
offered by the skeptics: the possibility that researchers selectively report positive studies or anal-
yses, or use any of several questionable strategies (e.g., optional stopping; try different contrasts)
for producing a significant effect of horizontal eye movements. To investigate this possibility we
conducted a p-curve analysis (Simonsohn, Nelson, & Simmons, 2014). That is, we plotted the
distribution of statistically significant p values (< .05) reported in studies on the beneficial effects
of horizontal eye movements on memory and examined the form of the distribution. As Simonsohn
and colleagues argue, “only right-skewed p-curves, those with more low (e.g., .01s) than high (e.g.,
.04s) significant p values, are diagnostic of evidential value. P -curves that are not right-skewed
suggest that the set of findings lacks evidential value, and p-curves that are left-skewed suggest the
presence of intense p-hacking” (i.e. obtaining statistically significant results using QRPs).

For this analysis, we selected all studies that examined the effects of 30 seconds of horizontal
eye movements (relative to a control condition) on explicit memory in consistently-handed healthy
individuals. The steps involved in the selection of p values that meet these selection criteria are
documented in the recommended p-curve disclosure table (cf. Simonsohn et al., 2014) available
as supplemental material at http://dora.erbe-matzke.com/publications.html. Figure 10.6
shows the results of the p-curve analysis based on these p values. As can be seen in this figure,
the p-curve is significantly right-skewed, χ2(36) = 102.33, p < .0001, indicating that these studies
do contain evidential value. This means that we can rule out p-hacking as the sole explanation
for the reported effects of horizontal eye movements. As Simonsohn and colleagues show, with a
sample size of ∼ 20 p values, it is virtually impossible for p-curve analysis to indicate that the
sample contains evidential value when in fact the studies were intensely p-hacked. Nevertheless, it
is worth noting that there is an uptick in the p-curve at .05 (test for left skew: χ2(36) = 28.23,
p = .82). A p-curve is markedly right-skewed when an effect is real but only mildly left-skewed
when a finding is p-hacked. So Simonsohn and colleagues acknowledge that if a set of findings
combines true effects with nonexistent ones, the p-curve will usually not detect the latter. Thus,

211



10. Two Birds with One Stone: A Preregistered Adversarial Collaboration on

Horizontal Eye Movements in Free Recall

p value

P
er

ce
nt

ag
e 

of
 p

 v
al

ue
s

.01 .02 .03 .04 .05

0

20

40

60

80

100

.0060
<.001
<.001
.0010
<.001
<.001
.0097
<.001

44.4%

.0104

.0130

11.1%

.0230

.0260

11.1%

.0300

.0390

11.1%

.0440

.0470

.0450

.0440

22.2%

Figure 10.6 P -curve: The distribution of statistically significant p values in the eye movement
literature. The p-curve shows the percentage of significant p values on the intervals p < .01,
.01 ≤ p < .02, .02 ≤ p < .03, .03 ≤ p < .04, .04 ≤ p < .05. The exact p values in a given interval
are printed above the corresponding percentage.

the p-curve analysis suggests that the effect of horizontal eye movements on explicit memory is a
true effect, but leaves open the possibility that some of the significant findings were p-hacked.

The analysis yielded two other noteworthy findings. First, of the 18 p values that were selected
for the p-curve analysis, 11 were < .025, and 7 of these 11 more significant p values were published
by one group (i.e., Parker, Dagnall, and colleagues). Indeed, altogether only 5 different research
groups have contributed to the literature examined here. It is thus important that more laboratories
will replicate the effect. Second, in the current study, effects of horizontal eye movements on recall
were examined. Therefore, we asked whether there was a difference in p values between studies
using recall and studies using recognition tests, as it is possible that horizontal eye movements
affect one type of memory more strongly than the other. This was not the case: of the 11 p values
< .025, 5 reflected recall tests and 6 reflected recognition tests. Of the 7 significant p values > .025,
4 were based on recall tests, 3 on recognition tests.

Considering the empirical results and the p-curve analysis reported here, did the present ad-
versarial collaboration resolve the disagreement between the skeptics and the proponents? No;
the skeptics are probably no less skeptical, and we, the proponents, are not convinced by a single
failure to replicate, especially given the results of the p-curve analysis. However, we have become
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more cautious about the conclusions that can be drawn from the studies reported so far, and will
follow the further development of this field of research with a critical eye. It is important to note
that although several authors have speculated about a link between this memory literature and a
more clinical literature suggesting that eye movements reduce the vividness and distress associated
with emotional autobiographical memories, we do not believe that the current results should lead
researchers to call into question those clinical findings. A recent meta-analysis has found significant
evidence that eye movements affect the processing of distressing memories in eye-movement desen-
sitization and reprocessing (EMDR) therapy (moderate effect size) and in non-therapy contexts
(large effect size; C. W. Lee & Cuijpers, 2013).

Reflection on the Process

Although our adversarial collaboration has not resolved the debate, it has generated new testable
ideas and has brought the two parties slightly closer by demonstrating that the beneficial effect
of bilateral eye movements on episodic memory is not unequivocal. We recommend that other
researchers in this field use similar strict methods in future studies, and emphasize the importance
of reporting non-replications.

Discussion by Referee

An impartial referee has been involved in the adversarial collaboration throughout the course of
the process. The referee was asked to settle any dispute between parties that might arise with
regard to issues not specified in the contract. That did not happen. The parties agreed on
the “Adversarial Collaboration Agreement” contract without the need for a referee. The referee
received weekly updates during data collection and observed that the parties were able to solve
issues not specified in the contract, e.g., the required number of participants or outlier/exclusion
criteria, on their own. Finally, and most importantly, the parties agreed upon the outcome of the
adversarial collaboration. The results that emerged from this adversarial collaboration show that
horizontal eye movements did not improve free recall. Game over and done with? It seems not to be
the case. The results are clearly in support of the skeptics’ expectations. However, while accepting
the negative findings and acknowledging the benefits of preregistered adversarial collaboration,
the proponents are not convinced by a single failure to replicate, especially given the results of
the p-curve analysis. In retrospect, then, we have to conclude that the adversarial collaboration
agreement was not watertight. It should have specified the conditions under which the parties
would have been prepared to give up their point of view. If a single failure to replicate, based upon
a strict agreement concerning the particulars of the experiment and associated data analysis, is
not sufficient, the obvious danger is to encounter a situation well described by an unknown quote
“Theories are like old soldiers, they never die but slowly fade away”.
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Statistical evidence in experimental psychology: An empirical comparison using 855 t tests.

Perspectives on Psychological Science, 6, 291-298.1

Abstract

Statistical inference in psychology has traditionally relied heavily on p value significance testing.
This approach to drawing conclusions from data, however, has been widely criticized, and two
types of remedies have been advocated. The first proposal is to supplement p values with
complementary measures of evidence such as effect sizes. The second is to replace inference
with Bayesian measures of evidence such as the Bayes factor. The authors provide a practical
comparison of p values, effect sizes, and default Bayes factors as measures of statistical evidence,
using 855 recently published t tests in psychology. The comparison yields two main results.
First, although p values and default Bayes factors almost always agree about what hypothesis
is better supported by the data, the measures often disagree about the strength of this support;
for 70% of the data sets for which the p value falls between 0.01 and 0.05, the default Bayes
factor indicates that the evidence is only anecdotal. Second, effect sizes can provide additional
evidence to p values and default Bayes factors. The authors conclude that the Bayesian approach
is comparatively prudent, preventing researchers from overestimating the evidence in favor of
an effect.

11.1 Introduction

Experimental psychologists use statistical procedures to convince themselves and their peers that
the effect of interest is real, reliable, replicable, and hence worthy of academic attention. A rep-
resentative example comes from Mussweiler (2006), who studied whether particular actions can

1The final publication is available at http://pps.sagepub.com/content/6/3/291.short.
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activate a corresponding stereotype. To test this hypothesis empirically, Mussweiler unobtrusively
induced half the participants, the experimental group, to move in a portly manner that is stereo-
typic for the overweight. The other half, the control group, made no such movements. Next, all
participants were given an ambiguous description of a target person and then used a 9-point scale
(1 = not at all, 9 = very) to rate this person on dimensions that correspond to the overweight
stereotype (e.g., “unhealthy”, “sluggish”, “insecure”). To assess whether performing the stereo-
typic motion affected the rating of the ambiguous target person, Mussweiler computed a t statistic
(t(18) = 2.1), and found that this value corresponded to a low p value (p < 0.05).2 Following
conventional protocol, Mussweiler concluded that the low p value should be taken to provide “ini-
tial support for the hypothesis that engaging in stereotypic movements activates the corresponding
stereotype” (Mussweiler, 2006, p. 18).

The use of t tests and corresponding p values in this way constitutes a common and widely
accepted practice in the psychological literature. It is, however, not the only possible or reasonable
approach to measuring evidence and making statistical and scientific inferences. Indeed, the use of
t tests and p values has been widely criticized (e.g., J. Cohen, 1994; Cumming, 2008; Dixon, 2003;
Howard, Maxwell, & Fleming, 2000; M. D. Lee & Wagenmakers, 2005; G. R. Loftus, 1996; Nicker-
son, 2000; Wagenmakers, 2007). There are at least two different criticisms, coming from different
perspectives and resulting in different remedies. First, many have argued that null hypothesis tests
should be supplemented with other statistical measures, such as confidence intervals and effect
sizes. Within psychology, this approach to remediation has sometimes been institutionalized, be-
ing required by journal editors or recommended by the American Psychological Association (e.g.,
American Psychological Association, 2010; J. Cohen, 1988; Erdfelder, 2010; Wilkinson & the Task
Force on Statistical Inference, 1999).

A second, more fundamental criticism that comes from Bayesian statistics is that there are basic
conceptual and practical problems with p values. Although Bayesian criticism of psychological
statistical practice dates back at least to Edwards et al. (1963), it has become especially prominent
and increasingly influential in the last decade (e.g., Dienes, 2008; Gallistel, 2009; Kruschke, 2010c,
2010a; M. D. Lee, 2008; Myung et al., 2000; Rouder et al., 2009). One standard Bayesian measure
for quantifying the amount of evidence from the data in support of an experimental effect is the
Bayes factor (Gönen, Johnson, Lu, & Westfall, 2005; Rouder et al., 2009; Wetzels et al., 2009).
The measure takes the form of an odds ratio: It is the probability of the data under one hypothesis
relative to that under another (Dienes, 2011; Kass & Raftery, 1995; M. D. Lee & Wagenmakers,
2005).

With this background, it seems that psychological statistical practice currently stands at a
three-way fork in the road. Staying on the current path means continuing to rely on p values. A
modest change is to place greater focus on the additional inferential information provided by effect
sizes and confidence intervals. A radical change is struck by moving to Bayesian approaches, such
as Bayes factors. The path that psychological science chooses seems likely to matter. It is not just
that there are philosophical differences between the three choices. It is also clear that the three
measures of evidence can be mutually inconsistent (e.g., Berger & Sellke, 1987; Rouder et al., 2009;
Wagenmakers, 2007; Wagenmakers & Grünwald, 2006; Wagenmakers et al., 2010).

In this article, we assess the practical consequences of choosing among inference by p values,
by effect sizes, and by Bayes factors. By practical consequences, we mean the extent to which
conclusions of extant studies change according to the inference measure that is used. To assess
these practical consequences, we reanalyzed 855 t tests reported in articles from the 2007 issues

2The findings suggest that Mussweiler (2006) conducted a one-sided t test. In the remainder of this article, we
conduct two-sided t tests.
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of Psychonomic Bulletin & Review (PBR) and Journal of Experimental Psychology: Learning,
Memory and Cognition (JEP:LMC). For each t test, we compute the p value, the effect size,
and the Bayes factor and study the extent to which they provide information that is redundant,
complementary, or inconsistent. On the basis of these analyses, we suggest the best direction for
measuring statistical evidence from psychological experiments.

11.2 Three Measures of Evidence

In this section, we describe how to calculate and interpret the p value, the effect size, and the Bayes
factor. For concreteness, we use Mussweiler’s (2006) study on the effect of action on stereotypes.
The mean score of the control group, Mc, was 5.8 on a weight-stereotype scale (sc = 0.69, nc = 10),
and the mean score of the experimental group, Me, was 6.4 (se = 0.66, ne = 10).

The p Value

The interpretation of p values is not straightforward, and their use in hypothesis testing is heavily
debated (J. Cohen, 1994; Cortina & Dunlap, 1997; Cumming, 2008; Dixon, 2003; Frick, 1996;
Gigerenzer, 1993, 1998; Hagen, 1997; Killeen, 2005, 2006; Kruschke, 2010c, 2010a; M. D. Lee
& Wagenmakers, 2005; G. R. Loftus, 1996; Nickerson, 2000; Schmidt, 1996; Wagenmakers &
Grünwald, 2006; Wainer, 1999). The p value is the probability of obtaining a test statistic (in this
case, the t statistic) at least as extreme as the one that was observed in the experiment, given that
the null hypothesis is true and the sample is generated according to a specific intended procedure,
such as fixed sample size. Fisher (1935) interpreted these p values as evidence against the null
hypothesis. The smaller the p value, the more evidence there was against the null hypothesis.
Fisher viewed these values as self-explanatory measures of evidence that did not need further
guidance. In practice, however, most researchers (and reviewers) adopt a 0.05 cutoff: p values
less than 0.05 constitute evidence for an effect, and those greater than 0.05 do not. More fine-
grained categories are possible, and Wasserman (2004, p. 157) proposes the gradations shown in
Table 11.1. Note that Table 11.1 lists various categories of evidence against the null hypothesis.
A basic limitation of null hypothesis significance testing is that it does not allow a researcher to
gather evidence in favor of the null (Dennis, Lee, & Kinnell, 2008; Gallistel, 2009; Rouder et al.,
2009; Wetzels et al., 2009).

Table 11.1 Evidence Categories for p Values (adapted from Wasserman, p. 157, 2004).

p value Interpretation

< 0.001 Decisive evidence against H0

0.001 – 0.01 Substantive evidence against H0

0.01 – 0.05 Positive evidence against H0

> 0.05 No evidence against H0

For the data from Mussweiler (2006), we compute a p value based on the t test. The t test is
designed to test whether a difference between two means is significant. First, we calculate the t
statistic:

t =
Me −Mc

√

s2pooled

(

1
ne

+ 1
nc

)

=
6.42− 5.79

√

0.46
(

1
10 + 1

10

)

= 2.09,
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where Mc and Me are the means of both groups, nc and ne are the sample sizes, and s2pooled
estimates the common population variance:

s2pooled =
(ne − 1)s2e + (nc − 1)s2c

ne + nc − 2
.

Next, the t statistic with ne+nc− 2 = 18 degrees of freedom results in a p value slightly larger
than 0.05 (≈ 0.051). For our concrete example, Table 11.1 leads to the conclusion that the p value
is on the cusp between “no evidence against H0” and “positive evidence against H0”.

The Effect Size

Effect sizes quantify the magnitude of an effect and serves as a measure of how much the results
deviate from the null hypothesis (J. Cohen, 1988; Thompson, 2002; Richard, Bond, & Stokes-Zoota,
2003; Rosenthal, 1990; Rosenthal & Rubin, 1982). For the data from Mussweiler (2006), the effect
size d is calculated as follows:

d =
Me −Mc

spooled
=

6.42− 5.79

0.68
= 0.93.

Note that in contrast to the p value, the effect size is independent of sample size; increasing the
sample size does not increase effect size but instead allows it to be estimated more accurately.

Effect sizes are often interpreted in terms of the categories introduced by J. Cohen (1988), as
listed in Table 11.2, ranging from “small” to “very large”. For our concrete example, d = 0.93,
and we conclude that this effect is large to very large. Interestingly, the p value was on the cusp
between the categories “no evidence against H0” and “positive evidence against H0” whereas the
effect size indicates the effect to be strong.

Table 11.2 Evidence Categories for Effect Sizes as Proposed by J. Cohen (1988).

Effect Size Interpretation

< 0.2 Small effect size
0.2 – 0.5 Small to medium effect size
0.5 – 0.8 Medium to large effect size

> 0.8 Large to very large effect size

The Bayes Factor

In Bayesian statistics, uncertainty (or degree of belief) is quantified by probability distributions
over parameters. This makes the Bayesian approach fundamentally different from the classical
“frequentist” approach, which relies on sampling distributions of data (Berger & Delampady, 1987;
Berger & Wolpert, 1988; Jaynes, 2003; Lindley, 1972).

Within the Bayesian framework, one may quantify the evidence for one hypothesis relative to
another. The Bayes factor is the most commonly used (although certainly not the only possible)
Bayesian measure for doing so (Jeffreys, 1961; Kass & Raftery, 1995). The Bayes factor is the
probability of the data under one hypothesis relative to the other. When a hypothesis is a simple
point, such as the null, then the probability of the data under this hypothesis is simply the likelihood
evaluated at that point. When a hypothesis consists of a range of points, such as all positive effect
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sizes, then the probability of the data under this hypothesis is the weighted average of the likelihood
across that range. This averaging automatically controls for the complexity of different models,
as has been emphasized in Bayesian literature in psychology (e.g., Pitt et al., 2002; Rouder et al.,
2009).

We take as the null that a parameter α is restricted to 0 (i.e., H0 : α = 0), and take as the
alternative that α is not zero (i.e., HA : α 6= 0). In this case, the Bayes factor given data D is
simply the ratio

BFA0 =
p (D | HA)

p (D | H0)
=

∫

p (D | HA, α) p (α | HA) dα

p (D | H0)
,

where the integral in the denominator takes the average evidence over all values of α, weighted by
the prior probability of those values p (α | HA) under the alternative hypothesis.

An alternative —but formally equivalent— conceptualization of the Bayes factor is as a measure
of the change from prior model odds to posterior model odds, brought about by the observed data.
This change is often interpreted as the weight of evidence (Good, 1983; Good, 1985). Before seeing
the data D, the two hypotheses H0 and HA are assigned prior probabilities p(H0) and p(HA). The
ratio of the two prior probabilities defines the prior odds. When the data D are observed, the
prior odds are updated to posterior odds, which is defined as the ratio of the posterior probabilities
p(H0 | D) and p(HA | D):

p(HA | D)

p(H0 | D)
=

p(D | HA)

p(D | H0)
× p(HA)

p(H0)
. (11.1)

Equation 11.1 shows that the change from prior odds to posterior odds is quantified by p(D |
HA)/p(D | H0), the Bayes factor BFA0.

Under either conceptualization, the Bayes factor has an appealing and direct interpretation as
an odds ratio. For example, BFA0 = 2 implies that the data are twice as likely to have occurred
under HA than under H0. Jeffreys (1961), proposed a set of verbal labels to categorize the Bayes
factor according to its evidential impact. This set of labels, presented in Table 11.3, facilitates
scientific communication but should only be considered an approximate descriptive articulation of
different standards of evidence (Kass & Raftery, 1995).

Table 11.3 Evidence Categories for the Bayes Factor BFA0 (Jeffreys, 1961).

Bayes factor Interpretation

> 100 Decisive evidence for HA

30 – 100 Very strong evidence for HA

10 – 30 Strong evidence for HA

3 – 10 Substantial evidence for HA

1 – 3 Anecdotal evidence for HA

1 No evidence
1/3 – 1 Anecdotal evidence for H0

1/10 – 1/3 Substantial evidence for H0

1/30 – 1/10 Strong evidence for H0

1/100 – 1/30 Very strong evidence for H0

< 1/100 Decisive evidence for H0

Note. We replaced the label “worth no more than a bare mention” with “anecdotal”. Note that, in contrast to p

values, the Bayes factor can quantify evidence in favor of the null hypothesis.
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In general, calculating Bayes factors is more difficult than calculating p values and effect sizes.
However, psychologists can now turn to easy-to-use Web pages to calculate the Bayes factor for
many common experimental situations or use software such as WinBUGS (Lunn et al., 2000;
Wetzels et al., 2009; Wetzels, Lee, & Wagenmakers, 2010).3 In this article, we use the Bayes
factor calculation described in Rouder et al. (2009). Rouder et al.’s development is suitable for
one-sample and two-sample designs, and the only necessary input is the t value and sample size.

The Bayes factor that we report in this article is the result of a default Bayesian t test (for details
see Rouder et al., 2009). The test is default because it applies regardless of the phenomenon under
study: For every experiment, one uses the same prior on effect size for the alternative hypothesis,
the Cauchy(0,1) distribution. This prior has statistical advantages that make it an appropriate
default choice (for example, it has excellent theoretical properties in the limit, when N → ∞ and
t → ∞; for details see Liang et al., 2008).

The default test is easy to use and avoids informed specification of prior distributions that other
researchers may contest. Conversely, one may argue that the informed specification of priors is
the appropriate way to take problem-specific prior knowledge into account. Bayesian statisticians
are divided over the relative merits of default versus informed specifications of prior distributions
(Press, Chib, Clyde, Woodworth, & Zaslavsky, 2003). In our opinion, the default test provides an
excellent starting point of analysis, one that may later be supplemented with a detailed problem-
specific analysis (see Dienes, 2011, 2008; Kruschke, 2010a, 2010b, 2011, for additional discussion
of informed priors).

In our concrete example, the resulting Bayes factor for t = 2.09 and a sample size of 20
observations is BFA0 = 1.56. Accordingly, the data are 1.56 times more likely to have occurred
under the alternative hypothesis than under the null hypothesis. This Bayes factor falls into the
category “anecdotal”. In other words, this Bayes factor indicates that although the alternative
hypothesis is slightly favored, we do not have sufficiently strong evidence from the data to reject
or accept either hypothesis.

11.3 Comparing p Values, Effect Sizes and Bayes Factors

For our concrete example, the three measures of evidence are not in agreement. The p value was
on the cusp between the categories “no evidence against H0” and “positive evidence against H0”,
the effect size indicates a large to very large effect size, and the Bayes factor indicates that the
data support the null hypothesis almost as much as they support the alternative hypothesis. If
this example is not an isolated one, and the measures differ in many psychological applications,
then it is important to understand the nature of those differences.

To address this question, we studied all of the empirical results evaluated by a t test in the
2007 volumes of PBR and JEP:LMC. This sample was comprised of 855 t tests from 252 articles.
These articles covered 2,394 journal pages and addressed many topics that are important in modern
experimental psychology. Our sample suggests, on average, that an article published in PBR and
JEP:LMC contains about 3.4 t tests, which amounts to one t test for every 2.8 pages. For simplicity
we did not include t tests that result from multiple comparisons in ANOVA designs (for a Bayesian
perspective on multiple comparisons see Scott & Berger, 2006). Even though our t tests are
sampled from the field of experimental/cognitive psychology, we expect our findings to generalize
to many other subfields of psychology, as long as the studies in these subfields use the same level

3A Web page for computing a Bayes factor online is http://pcl.missouri.edu/bayesfactor, and a Web page
to download a tutorial and a flexible R/WinBUGS function to calculate the Bayes factor can be found at www

.ruudwetzels.com.
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Figure 11.1 The relationship between effect size and p values. Points denote comparisons (855 in
total). Points denoted by circles indicate relative consistency between the effect size and p value,
whereas those denoted by triangles indicate gross inconsistency. The scale of the axes is based on
the decision categories, as given in Table 11.1 and Table 11.2.

of statistical significance, approximately the same number of participants, and approximately the
same number of trials per participant (Howard et al., 2000).

In the next sections we describe the empirical relation between the three measures of evidence,
starting with the relation between effect sizes and p values.

Comparing Effect Sizes and p Values

The relationship between the obtained p values and effect sizes is shown as a scatter plot in
Figure 11.1. Each point corresponds to one of the 855 comparisons. Different panels are introduced
to distinguish the different evidence categories, as given in Table 11.1 and Table 11.2.

Figure 11.1 suggests that p values and effect sizes capture roughly the same information in the
data. Large effect sizes tend to correspond to low p values, and small effect sizes tend to correspond
to large p values. The two measures, however, are far from identical. For instance, a p value of
0.01 can correspond to effect sizes ranging from about 0.2 to 1, and an effect size near 0.5 can
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Figure 11.2 The relationship between Bayes factor and effect size. Points denote comparisons (855
in total). The scale of the axes is based on the decision categories, as given in Table 11.2 and
Table 11.3.

correspond to p values ranging from about 0.001 to 0.05. The triangular points in the top-right
panel of Figure 11.1 highlight gross inconsistencies. These 8 studies have a large effect size, above
0.8, but their p values do not indicate evidence against the null hypothesis. A closer examination
revealed that these studies had p values very close to 0.05, and were comprised of small sample
sizes.

Comparing Effect Sizes and Bayes Factors

The relationship between the obtained Bayes factors and effect sizes is shown in Figure 11.2. Much
as with the comparison of p values with effect sizes, it seems clear that the default Bayes factor and
effect size generally agree, though not exactly. No striking inconsistencies are apparent: No study
with an effect size greater than 0.8 coincides with a Bayes factor below 1/3, nor does a study with
very low effect size below 0.2 coincide with a Bayes factor above 3. The two measures, however, are
not identical. They differ in the assessment of strength of evidence. Effect sizes above 0.8 range
all the way from anecdotal to decisive evidence in terms of the Bayes factor. Also note that small
to medium effect sizes (i.e., those between 0.2 and 0.5) can correspond to Bayes factor evidence in
favor of either the alternative or the null hypothesis.

This last observation highlights that Bayes factors may quantify support for the null hypoth-
esis. Figure 11.2 shows that about one-third of all studies produced evidence in favor of the null
hypothesis. In about half of these studies favoring the null, the evidence is substantial. Because of
the file-drawer problem (i.e., only significant effects tend to get published) this is an underestimate
of the true amount of null findings and their Bayes factor support.
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Figure 11.3 The relationship between Bayes factor and p value. Points denote comparisons (855
in total). The scale of the axes is based on the decision categories, as given in Table 11.1 and
Table 11.3.

Comparing p Values and Bayes Factors

The relationship between the obtained Bayes factors and p values is shown in Figure 11.3, again
using interpretative panels. It is clear that default Bayes factors and p values largely covary with
each other. Low Bayes factors correspond to high p values and high Bayes factors correspond to
low p values, a relationship that is much more exact than for our previous two comparisons. The
main difference between default Bayes factors and p values is one of calibration; p values accord
more evidence against the null than do Bayes factors. Consider the p values between 0.01 and
0.05, values that correspond to “positive evidence” and that usually pass the bar for publishing in
academia. According to the default Bayes factor, 70% of these experimental effects convey evidence
in favor of the alternative hypothesis that is only “anecdotal”. This difference in the assessment
of the strength of evidence is dramatic and consequential.
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11.4 Conclusions

We compared p values, effect sizes and default Bayes factors as measures of statistical evidence in
empirical psychological research. Our comparison was based on a total of 855 different t statistics
from all published articles in two major empirical journals in 2007. In virtually all studies, the
three different measures of evidence are broadly consistent: Small p values correspond to large
effect sizes and large Bayes factors in favor of the alternative hypothesis. Despite the fact that
the measures of evidence reach the same conclusion about what hypothesis is best supported by
the data, however, the measures differ with respect to the strength of that support. In particular,
we noted that p values between 0.01 and 0.05 often correspond to what, in Bayesian terms, is
only anecdotal evidence favor of the alternative hypothesis. The practical ramifications of this are
considerable.

Practical Ramifications

Our results showed that when the p value falls in the interval from 0.01 to 0.05, there is a 70%
chance that the default Bayes factor indicates the evidence for the alternative hypothesis to be only
anecdotal or “worth no more than a bare mention”; this means that the data are no more than
three times more likely under the alternative hypothesis than they are under the null hypothesis.
Hence, for the studies under consideration here, it seems that a p value criterion more conservative
than 0.05 is appropriate. Alternatively, researchers could avoid computing a p value altogether and
instead compute the Bayes factor. Both methods help prevent researchers from overestimating the
strength of their findings and help the field from incorporating ambiguous findings as if they were
real and reliable (Ioannidis, 2005).

As a practical illustration, consider a series of recent experiments on precognition (Bem, 2011).
In nine experiments with over 1,000 participants, Bem intended to show that precognition exists,
that is, that people can foresee the future. And indeed, eight out of nine experiments yielded a
significant result. However, most p values fell in the ambiguous range of 0.01 to 0.05, and, across
all nine experiments, a Bayes factor analysis indicates about as much evidence for the alternative
hypothesis as against it (Kruschke, 2011; Wagenmakers et al., 2011). We believe that this situation
typifies part of what could be improved in psychological research today. It is simply too easy to
obtain a p value below 0.05 and subsequently publish the result.

When researchers publish ambiguous results as if they were real and reliable, this damages the
field as a whole: Time, effort, and money will be invested to replicate the phenomenon, and, when
replication fails, the burden of proof is almost always on the part of the researcher who, after all,
failed to replicate a phenomenon that was demonstrated to be present (with a p value in between
0.01 and 0.05).

Thus, our empirical comparison shows that the academic criterion of 0.05 is too liberal. Note
this problem would not be solved by opting for a stricter significance level, such as 0.01. It is well
known that the p value decreases as the sample size n increases. Hence, if psychologists switch to
a significance level of 0.01 but inevitably increase their sample sizes to compensate for the stricter
statistical threshold, then the phenomenon of anecdotal evidence will start to plague p values even
when these p values are lower than 0.01. Therefore, we make a case for Bayesian statistics in the
next section.
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A Case for Bayesian Statistics

We have compared the conclusions from the different measures of evidence. It is easy to make
a case for Bayesian statistical inference in general, based on arguments already well documented
in statistics and psychology (e.g., Dienes, 2008; Jaynes, 2003; Kruschke, 2010c, 2010a; M. D. Lee
& Wagenmakers, 2005; Lindley, 1972; Wagenmakers, 2007). We briefly mention three arguments
here.

First, unlike null hypothesis testing, Bayesian inference does not violate basic principles of
rational statistical decision making such as the stopping rule principle or the likelihood principle
(Berger & Delampady, 1987; Berger & Wolpert, 1988). This means that the results of Bayesian
inference do not depend on the intention with which the data were collected. As stated by Edwards
et al. (1963, p. 193), “the rules governing when data collection stops are irrelevant to data inter-
pretation. It is entirely appropriate to collect data until a point has been proven or disproven, or
until the data collector runs out of time, money, or patience”.

Second, Bayesian inference takes model complexity into account in a rational way. Specifically,
the Bayes factor has the attraction of not assigning a special status to the null hypothesis and so
makes it theoretically possible to measure evidence in favor of the null (e.g., Dennis et al., 2008;
Gallistel, 2009; Kass & Raftery, 1995; Rouder et al., 2009).

Third, we believe that Bayesian inference provides the kind of answers that researchers care
about. In our experience, researchers are usually not that interested in the probability of en-
countering data at least as extreme as those that were observed, given that the null hypothesis
is true and the sample was generated according to a specific intended procedure. Instead, most
researchers want to know what they have learned from the data about the relative plausibility of
the hypotheses under consideration. This is exactly what is quantified by the Bayes factor.

These advantages notwithstanding, the Bayes factor is not a measure of the mere size of an
effect. Hence, the measure of effect size confers additional information, particularly when small
numbers of participants or trials are involved. So, especially for these sorts of studies, there is
an argument for reporting both a Bayes factor and an effect size. We note that, from a Bayesian
perspective, the effect size can naturally be conceived as a (summary statistic of) the posterior
distribution of a parameter representing the effect, under an uninformative prior distribution. In
this sense, a standard Bayesian combination of parameter estimation and model selection could
encompass all of the useful measures of evidence we observed (for an example of how Bayes factor
estimation can be incorporated in a Bayesian estimation framework, see, for instance, Kruschke,
2011).

Our final thought is that reasons for adopting a Bayesian approach now are amplified by
the promise of using an extended Bayesian approach in the future. In particular, we think the
hierarchical Bayesian approach, which is standard in statistics (e.g., Gelman & Hill, 2007), and
is becoming more common in psychology (e.g., Kruschke, 2010c, 2010b; M. D. Lee, 2011; Rouder
& Lu, 2005) could fundamentally change how psychologists identify effects. Hierarchical Bayesian
analysis can be a valuable tool both for meta-analyses and for the analysis of a single study. In
the meta-analytical context, multiple studies can be integrated, so that what is inferred about
the existence of effects and their magnitude is informed, in a coherent and quantitative way, by a
domain of experiments. In the context of a single experiment, a hierarchical analysis can be used
to take variability across participants or items into account.

In sum, our empirical comparison of 855 t tests shows that three often-used measures of evidence
—p values, effect sizes, and Bayes factors— almost always agree about what hypothesis is better
supported by the data. The measures often disagree about the strength of this support: for those
data sets with p values in between 0.01 and 0.05, about 70% are associated with a Bayes factor
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that indicates the evidence to be only anecdotal or “worth no more than a bare mention” (Jeffreys,
1961). This analysis suggests that many results that have been published in the literature are not
established as strongly as one would like.
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Raoul P. P. P. Grasman, Lourens Waldorp, and Eric-Jan Wagenmakers (2013).
Hidden multiplicity in multiway ANOVA: Prevalence, consequences, and remedies.

Abstract

Many empirical researchers do not realize that the common multiway analysis of variance
(ANOVA) harbors a multiple comparison problem. In the case of two factors, three separate
null hypotheses are subject to test (i.e., two main effects and one interaction). Consequently,
the probability of a Type I error is 14% rather than 5%. He we describe the multiple compar-
ison problem and demonstrate that researchers seldom correct for it. We then illustrate the
use of the sequential Bonferroni correction —one of several correction procedures— and show
that its application alters at least one of the substantive conclusions in 45 out of 60 articles
considered. An alternative method to combat the multiplicity problem in multiway ANOVA is
preregistration of the hypotheses.

12.1 Introduction

The factorial or multiway analysis of variance (ANOVA) is one of the most popular statistical
procedures in psychology. Whenever an experiment features two or more factors, researchers
usually apply a multiway ANOVA to gauge the evidence for the effect of each of the separate
factors as well as their interactions. For instance, consider a response time experiment with a 2×3
balanced design (i.e., a design with equal number of participants in each condition); factor A is
speed-stress (high or low) and factor B is the age of the participants (14-20 years, 50-60 years,
and 75-85 years). The standard multiway ANOVA tests whether factor A is significant, whether
factor B is significant, and whether the interaction term A×B is significant. In the same vein, the
standard multiway ANOVA is also frequently used in non-experimental settings (e.g., to assess the
potential influence of gender and age on major depression).
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Despite its popularity, few researchers realize that the multiway ANOVA harbors a multiple
comparisons problem, particularly when detailed hypotheses have not been specified a priori (to be
discussed in more detail later). Consider, for example, the 2×3 scenario introduced above. Without
a-priori hypotheses (i.e., when the researcher’s attitude can best be described by ”let us see what we
can find”; de Groot, 1969), three independent tests are carried out. Hence, given the null hypothesis
(H0) is true and α = 0.05, the probability of at least one significant result equals 1− (1− 0.05)3 =
0.14. This is called a Type I error or familywise error rate. The problem of Type I error is not
trivial: add a third, balanced factor to the 2×3 scenario (e.g., a 2×3×3 design), and the probability
of finding at least one significant result when H0 is true increases to 1 − (1− 0.05)7 = 0.30. The
situation becomes even more troublesome for designs with unequal numbers of participants per
condition: in such unbalanced designs, the three tests in our hypothetical 2× 3 experiment are no
longer independent and this further increases the probability of a Type I error (Rao & Toutenburg,
1999). Thus, in the absence of strong a priori expectations about the tests that are relevant, the
α-inflation is dramatic and should be cause for great concern.

The goal of the present article is to highlight the problem of multiple comparison inherent in
multiway ANOVA. To this end, we first conduct a literature review and demonstrate that the prob-
lem is widely ignored: recent articles published in leading psychology journals contain virtually
no procedures to correct for the multiple comparison problem. Next, we outline one possible rem-
edy, the sequential Bonferroni procedure (Hartley, 1955; Hochberg, 1988; Holm, 1979; McHugh,
1958; Shaffer, 1986; Wright, 1992). Finally, we demonstrate that the sequential Bonferroni pro-
cedure alters at least one of the substantive conclusions in 45 of 60 randomly chosen articles. In
order to prevent the loss of power that is inherent to all correction procedures, we recommend the
pre-registration of the hypotheses of interest.

12.2 Type I Errors and the Oneway ANOVA

A Type I error occurs when the null hypothesis (H0) is falsely rejected in favor of the alternative
hypothesis (H1). With a single test, such as the oneway ANOVA, the probability of a Type I error
can be controlled by setting the significance level α. For example, when α = 0.05, the probability
of a Type I error is 5%. It is well-known, however, that the multiple comparison problem arises
even in the oneway ANOVA whenever the independent variable has more than two levels and post-
hoc tests are employed to investigate which condition means differ significantly from one another.
Consider, for instance, a researcher who uses a oneway ANOVA and obtains a significant effect for
Ethnicity on the total score of a depression questionnaire. Assume that Ethnicity has three levels
(e.g., Caucasian, African-American, and Asian); hence, the researcher will usually perform multiple
post-hoc tests to investigate which ethnic groups differ significantly from one another —here the
three post-hoc tests are Caucasian vs. African-American, Caucasian vs. Asian, and African-
American vs. Asian. Note that when the three test statistics are independent —as for balanced
designs— the overall Type I error equals 1 − (1 − 0.05)3 = 0.14. That is, the probability that at
least one post-hoc test leads to a false rejection of H0 has increased almost threefold. Fortunately,
for the oneway ANOVA, the multiple comparison problem has been thoroughly studied. Software
programs such as SPSS (IBM Corp., 2012) explicitly address the multiple comparison problems by
offering a host of correction methods including Tukey’s HSD test, Hochberg’s GT2, and the Scheffé
method (Hochberg, 1974; Scheffé, 1953; Tukey, 1973).

228



12.3. The Explorative Multiway ANOVA: A Family of Hypotheses

12.3 The Explorative Multiway ANOVA: A Family of
Hypotheses

Now consider a design that is only slightly more complicated. Suppose a researcher wants to
examine the effect of Ethnicity (E; three levels) as well as Gender (G; two levels) on the total
score on a depression questionnaire. Furthermore, suppose that the researcher in question has
no firm a priori hypotheses about how E and G influence the depression total score; that is,
the researcher is predominantly interested in finding out whether any kind of relationship exists
between E, G and depression, a classic example of the guess phase of the empirical cycle in which
hypotheses are formed rather than tested (de Groot, 1969).

In the above example, the multiway ANOVA without strictly formulated a priori hypotheses is
an explorative one: Using statistical software, such as SPSS, the researcher obtains the results for
all three hypotheses involved (i.e., main effect of E, main effect of G, and the E ×G interaction)
by means of a single mouse click. As such, in an explorative setting, all hypotheses implied by the
design are considered and tested jointly, rendering this collection of hypotheses a family, where
“... the term ‘family’ refers to the collection of hypotheses [...] that is being considered for joint
testing” (Lehmann & Romano, 2005). We therefore argue that a multiple comparison problem
lurks in the explorative use of the multiway ANOVA.

To see this, consider the results of a fictitious explorative multiway ANOVA reported in Ta-
ble 12.1. When interpreting the ANOVA table, most researchers would conclude that both main
effects as well as the interaction are significant because all p values are smaller than α = 0.05. This
conclusion is intuitive and directly in line with the numbers reported in Table 12.1. Nevertheless,
this conclusion is incorrect. The researcher does not have firm a priori hypotheses and tests all
three hypotheses simultaneously and is therefore engaged in an explorative “fishing expedition”.
The tests in the multiway ANOVA for balanced designs are independent (Toutenburg, 2002) and
thus the multiple comparison problem, when unaddressed, results in a 14% Type I error proba-
bility. Note that multiway ANOVAs in the psychological literature often consist of three or four
factors and this compounds the problem. In the case of an explorative multiway ANOVA with
three factors, we are dealing with seven tests (i.e., three main effects, three first-order interactions,
and one second-order interaction), resulting in a 30% Type I error probability; with four factors,
the probability of incorrectly rejecting one or more null hypotheses increases to 54%. It is therefore
incorrect to evaluate the p values from a multiway ANOVA table with α = 0.05.

Note that the above sketched scenario is different from the situation where the researcher uses
a multiway ANOVA for confirmatory purposes; that is, when the researcher tests one or more a
priori postulated hypotheses (i.e., hypothesis testing in the predict phase of the empirical cycle;
de Groot, 1969). For instance, consider a design with two factors and one pre-defined hypothesis:
the family is no longer defined as encompassing all three hypotheses implied by the design, but as
all to-be-tested hypotheses, in this case a single hypothesis, rendering it unnecessary to adjust the
α level.

The realization that explorative multiway ANOVAs inherently harbor a multiple comparison
problem may come as a surprise to many empiricists, even to those who regularly use multiway
ANOVAs. In standard statistical textbooks, the multiple comparison problem is almost exclusively
discussed in the context of oneway ANOVAs. In addition, statistical software packages, such as
SPSS, do not present the possible correction procedures for the multiway case, inviting researchers
to evaluate the resulting p values with α = 0.05.

We are by no means the first to identify the multiplicity problem in multiway ANOVAs (see,
e.g., Didelez, Pigeot, & Walter, 2006; Fletcher, Daw, & Young, 1989; Kromrey & Dickinson, 1995;
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Table 12.1 Example ANOVA Table for the Three Tests Associated with a 2×3 Design with Gender
(G) and Ethnicity (E) as Independent Factors.

Effect Factor df1 df2 F p value

Main G 1 30 5 0.0329∗

Main E 2 30 4 0.0288∗

Interaction G× E 2 30 4.5 0.0195∗

Note. ∗,significant at α = 0.05

Olejnik, Li, Supattathum, & Huberty, 1997; Ryan, 1959; R. A. Smith, Levine, Lachlan, & Fediuk,
2002). Earlier work, however, does not feature in mainstream statistical textbooks and is written
in a technical style that is inaccessible to scholars without sophisticated statistical knowledge. As
a result, empirical work has largely ignored the multiplicity problem. Unfortunately, as we will
demonstrate shortly, the ramifications can be profound.

One may argue that the problem sketched above is less serious than it appears. Perhaps
the majority of researchers test only a single pre-specified hypothesis, thereby circumventing the
multiple comparison problem. Or perhaps, whenever researchers conduct multiple tests, they use
some sort of procedure to adjust the α level for the individual tests. This is unfortunately not the
case.

With respect to the former, it is quite common to perform what Gigerenzer (2004) has termed
the “null ritual” where researchers specify H0 in purely statistical terms (e.g., equality of means)
without providing an alternative hypothesis in substantive terms (e.g., women are more depressed
than men). Additionally, Kerr (1998) notes that researchers are often lurked into presenting a post-
hoc hypothesis (e.g., Caucasian people are more depressed than African-American people: main
effect of Ethnicity on depression) as if it were an a priori hypothesis (i.e., Hypothesizing After the
Results are Known: HARKing). Hence, hindsight bias and confirmation bias make it difficult for
researchers to ignore unexpected “significant” (i.e., individual test with p < 0.05) effects.

With respect to the latter, in the next section, we investigate whether researchers correct
for multiple comparisons when they use multiway ANOVAs. The short answer is that, almost
without exception, researchers interpret the results of the individual tests in isolation, without any
correction for multiple comparisons.

12.4 Practice: Multiway Corrections in Six Journals

We selected six journals that rank among the most widely read and cited journals in experimental,
social, and clinical psychology. Specifically, we investigated all 2010 publications of the following
journals:

1. Journal of Experimental Psychology: General (volume 139; issues 1-4; 40 papers).

2. Psychological Science (volume 21; issues 1-12; 285 papers).

3. Journal of Abnormal Psychology (volume 119; issues 1-4; 88 papers).

4. Journal of Consulting and Clinical Psychology (volume 78; issues 1-6; 92 papers).

5. Journal of Experimental Social Psychology (volume 46; issues 1-6; 178 papers).
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Table 12.2 Percentage of Articles Overall and in the Six Selected Journals that Used a Multiway
ANOVA, and the Percentage of These Articles that Used Some Sort of Correction Procedure.

Journal % with mANOVA % with mANOVA & correction

Journal of Experimental Psychology: General 84.61 0
Psychological Science 43.16 0

Journal of Abnormal Psychology 31.82 0
Journal of Consulting and Clinical Psychology 16.30 0

Journal of Experimental Social Psychology 65.17 2.59
Journal of Personality and Social Psychology 54.41 1.35

Overall 47.62 1.03

Note. Overall, all papers from the six journals; mANOVA, multiway ANOVA.

6. Journal of Personality and Social Psychology (volumes 98-99; issues 1-6; 136 papers).

For each article, we assessed whether the papers featured one of more multiway ANOVAs and
whether the authors had reported some sort of correction procedure (e.g., an omnibus test; see
below) to remedy the multiple comparison problem. The results are summarized in Table 12.2.

Two results stand out. First, almost half of the articles under investigation here used a multiway
ANOVA, underscoring the popularity of this testing procedure. Second, only around 1% of the
articles used a correction procedure. In all four cases where a correction procedure was used, this
was an omnibus F test, where one pools the sums of squares and degrees of freedom for all main
effects and interactions into a single F statistic. The individual F tests should only be conducted
if both this omnibus H0 is rejected as well as all other combinations of null hypotheses (Fletcher
et al., 1989; Wright, 1992). For example, for a 2 × 2 ANOVA, one should first test the omnibus
hypothesis with all three hypotheses included (two main effects and the interaction). If significant,
then one proceeds to test the three combinations of two null hypotheses (i.e., main effects A and
B, main effect A and interaction, main effect B and interaction). Finally, if significant, only then
can one safely continue and test the individual hypotheses. When this closed test procedure is
followed, one is safeguarded against capitalization on chance both for unbalanced and balanced
designs (Shaffer, 1995).

In sum, our literature review confirms that the multiway ANOVA is a highly popular statistical
method in psychological research, but that its use is almost never accompanied by a correction for
multiple comparisons. Note that this state of affairs is different for fMRI and genetics research
where the problem is more evident and it is common practice to correct for multiplicity (e.g.,
Poldrack et al., 2008).

12.5 Possible Remedy: Sequential Bonferroni Correction

As noted earlier, statisticians have long been aware of the multiple comparison problem in multiway
ANOVAs. However, our literature review demonstrated that this awareness has not resonated in
the arena of empirical research in psychology.

In the few cases where a correction procedure was used, this involved an omnibus F test, a
test that cannot control the familywise Type I error under partial null conditions (Kromrey &
Dickinson, 1995). For example, suppose that in a threeway ANOVA, a main effect is present
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Table 12.3 The Sequential Bonferroni Procedure for the Hypothetical Example of Table 1.

Effect p value αadj H0

G× E 0.0195 0.0167 not rejected
E 0.0288 0.0250 not rejected
G 0.0329 0.0500 not rejected

Note. The sequential Bonferroni procedure entails: (1) sorting p values in as-
cending order; (2) computing adjusted α level per test (αadj); (3) sequentially
evaluating each p value with adjusted α level (i.e., reject or not reject H0); and
(4) stopping whenever H0 is not rejected (and do not reject all remaining untested
H0).

for one factor but not for the remaining two factors; then the overall F test is likely to yield a
significant F value because, indeed, the omnibus H0 is false. However, the omnibus test does not
remedy the multiple comparison problem involving the remaining two factors.

A more general correction is known as the sequential Bonferroni procedure (also known as the
Bonferroni-Holm correction). The sequential Bonferroni correction was first introduced by Hartley
(1955) and subsequently (independently) re-invented and/or modified by others (Hochberg, 1988;
Holm, 1979; McHugh, 1958; Shaffer, 1986; Rom, 1990; Wright, 1992). How does the procedure
work? Let us revisit our hypothetical example in which a researcher conducts a twoway ANOVA
with G and E as independent factors (uncorrected results are listed in Table 12.1). The results of
the sequential Bonferroni correction procedure for this example are presented in Table 12.3. First,
one sorts all significant p values in ascending order, that is, with the smallest p value first. Next,
one computes an adjusted α level, αadj . For the smallest p value, αadj equals α divided by the
number of tests. In the present example, we conduct three tests so αadj for the smallest p value
equals 0.05/3 = 0.01667. For the second p value, αadj equals α divided by the number of tests
minus 1: αadj = 0.05/2 = 0.025. For the final p value, αadj equals α divided by the total number
of tests minus 2: αadj = 0.05/1 = 0.05. Next, one evaluates each p value with the adjusted α
level, sequentially, with the smallest p value evaluated first. Importantly, if the H0 associated with
a given p value is not rejected (i.e., p > αadj), all testing ends and all remaining tests are also
considered non-significant.

In our example, we evaluate p = 0.0195 with αadj = 0.01667: p > αadj and therefore we
conclude that the G × E interaction is not significant. We therefore stop testing and conclude
that the remaining main effects are not significant either. Thus, with the sequential Bonferroni
correction procedure, we conclude that none of the effects are significant; without the correction
procedure, we had concluded that all of the effects were significant.

We note that other correction procedures are available, for instance those that focus on the false
discovery rate (Benjamini & Hochberg, 1995); these other procedures might result in a different
conclusion. The false discovery rate procedure, for example, which we will later discuss in more
detail, is less conservative than the sequential Bonferroni correction and would have resulted in
more effects being judged significant.

Thus, the sequential Bonferroni correction procedure allows one to control for the familywise
error by evaluating each H0 –from the one associated with the smallest to the one associated with
the largest p value– against an α level that is adjusted in order to control for the inflated probability
of a Type I error. In this way, the probability of incorrectly rejecting one or more null hypotheses
will be no larger than 5% (for a proof, see Hartley, 1955). Note that for a relatively small number
of tests k, the sequential Bonferroni correction is notably less conservative than the standard Bon-
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ferroni correction where one divides α by k for all null hypotheses. However, sequential Bonferroni
is a conservative procedure in that it never rejects the remaining null hypotheses whenever a given
H0 is not rejected, regardless of how many null hypotheses remain. That is, it does not matter
whether we deal with five or 50 null hypotheses, one single H0 that is not rejected means that the
remaining null hypotheses cannot be rejected either. As such, it has been argued that procedures
such as (sequential) Bonferroni, while adequately reducing the probability of a Type I error, reduce
power and hence inflate the probability of a Type II error (i.e., not rejecting H0 when H1 is true;
e.g., Benjamini & Yekutieli, 2001; Nakagawa, 2004).

An alternative might be to forego control of the familywise error and instead control the false
discovery rate, which is the expected proportion of erroneous rejections ofH0 among all rejections of
H0 (e.g., Benjamini, Drai, Elmer, Kafkafi, & Golani, 2001). With the false discovery rate method,
the probability of a Type II error is smaller than with the sequential Bonferroni correction but this
comes at the expense of a higher probability of a Type I error.

12.6 Consequences: Sequential Bonferroni Applied to 60
Published Articles

In our hypothetical example, none of the null hypotheses were rejected after the sequential Bonfer-
roni correction (see Table 12.3), whereas, without any correction, all null hypotheses were rejected
(see Table 12.1). One may argue that this example is extreme and contrived, and that such dra-
matic changes in conclusions will not regularly occur in the empirical literature. We addressed this
claim quantitatively as follows. For each of the six journals listed in Table 12.2, we randomly chose
10 articles that reported one or more multiway ANOVAs. For these 60 papers, we re-evaluated
the results (see www.aojcramer.com for R code (R Core Team, 2012) to perform the sequential
Bonferroni procedure) after applying the sequential Bonferroni correction. The results paint a
grim picture: in 75% (45/60) of the cases, one or more p values were no longer significant after
correcting for multiple comparisons. That is, in the majority of cases, one or more conclusions are
not substantiated by the corrected outcomes of the statistical analyses.

12.7 Conclusion

Our literature review showed that, across a total of 819 articles from six leading psychology journals,
hardly any researchers have corrected for the multiple comparison problem that is an inherent
property of multiway ANOVA. A reanalysis of a subset of 60 papers showed that the results of
foregoing such correction procedures are worrying: Many conclusions reported in the literature
may no longer hold after applying a correction procedure. The good news is that the sequential
Bonferroni procedure (Hartley, 1955) is a simple, easy-to-use correction method that controls the
α level, that is, the probability of falsely rejecting true null hypotheses.

One disadvantage of the sequential Bonferroni procedure is conceptual: The significance of a
particular factor depends on the significance of other, unrelated factors. For instance, the main
effect for G reported in Table 12.1 and Table 12.3 is associated with p = 0.0329. If the effects
for the other two factors (i.e., E ×G and E) had been more compelling (e.g., p < 0.01), the final
and third test for G would have been conducted with α = 0.05 level, and the result would have
been labeled significant. This dependence on the results of unrelated tests may strike one as odd.
However, such oddities are a general characteristic of p values (e.g., Wagenmakers, 2007). Note
that the regular Bonferroni correction does not have this conceptual drawback, but it is inferior in
terms of power.
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We do not wish to suggest that the sequential Bonferroni procedure is the only or even the
best procedure to correct for multiple comparisons in the multiway ANOVA. As noted before,
several other procedures exist. These alternative procedures differ in terms of the balance between
safeguarding against Type I and Type II errors. On the one hand, it is crucial to control the
probability of incorrectly rejecting the H0 (i.e., the Type I error). On the other hand, it is also
important to minimize the Type II error, that is, to maximize power (Button et al., 2013).

So what is a researcher to do? Using the sequential Bonferroni correction, one is safeguarded
against Type I errors at the expense of failing to detect some effects that are true. Using the false
discovery rate procedure, one obtains more power, but relinquishes strict control over the Type I
error rate. We encourage researchers to report the results from multiple correction methods: this
allows readers to assess the robustness of the statistical evidence. Of course, the royal road to
obtaining sufficient power is not to choose lenient correction methods; instead, one is best advised
to increase sample size.

In sum, we have shown that multiway ANOVA harbors a multiplicity problem that has been
ignored in empirical practice. The problem can be addressed in a straightforward fashion by var-
ious correction procedures, such as the sequential Bonferroni correction. Another fruitful avenue
to remedy the problem is the pre-registration of the hypotheses and the corresponding statistical
analyses (e.g., Chambers, 2013; Chambers et al., 2013; de Groot, 1969; Goldacre, 2009; Wagen-
makers et al., 2012; Wolfe, 2013). Pre-registration forces researchers to consider beforehand the
exact hypotheses of interest. In doing so, as we have argued earlier, one engages in confirmative
hypothesis testing (i.e., the confirmative multiway ANOVA). “Fishing expeditions”, however, in
which one has no a priori hypotheses, come at a rather high price: one will have to use some sort
of correction procedure to adjust the α level when engaging in an explorative multiway ANOVA.

The view on differential uses of the multiway ANOVA (i.e., explorative vs. confirmative) hinges
on the specific definition of what constitutes a family of hypotheses, and we acknowledge that other
definitions of such a family exist. However, in our view, the intentions of the researcher (explorative
hypothesis formation vs. confirmative hypothesis testing) play a crucial part in determining the
size of the family of hypotheses. It is vital to recognize the multiplicity inherent in the explorative
multiway ANOVA and correct the current unfortunate state of affairs1; the alternative is to accept
that our findings are much less compelling than advertised.

1Fortunately, some prominent psychologists such as Dorothy Bishop, are acutely aware of the multiple comparison
problem in multiway ANOVA and urge their readers to rethink their analysis strategies: http://deevybee.blogspot
.co.uk/2013/06/interpreting-unexpected-significant.html.
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Chapter 13

Summary and Future Directions

In what follows, I will summarize the results and the main conclusions presented in this dissertation,
accompanied by suggestions about avenues for future development.

13.1 The Analysis of Response Time Distributions

Cognitive Interpretation of the Ex-Gaussian and Shifted-Wald Parameters

In Chapter 2, I investigated the cognitive interpretation of parameters of the ex-Gaussian and
shifted Wald distributions. A growing number of researchers use descriptive distributions such as
the ex-Gaussian and the shifted Wald to summarize response time (RT) data for speeded two-
choice tasks. Some of these researchers also assume that the parameters of these distributions
uniquely correspond to specific cognitive processes. We studied the validity of this cognitive inter-
pretation by examining the extent to which the ex-Gaussian and shifted Wald parameters could
be associated with the kind of psychological processes that are hypothesized by the Ratliff diffu-
sion model (Ratcliff, 1978), a successful model whose parameters have a well-established cognitive
interpretation (e.g.,Voss et al., 2004). In a simulation study, we fit the ex-Gaussian and shifted
Wald distributions to data generated from the diffusion model by systematically varying its pa-
rameters across a wide range of plausible values. In an empirical study, we fit the two descriptive
distributions to published data that featured manipulations of task difficulty (i.e., corresponding
to changes in drift rate v), response caution (i.e., boundary separation a), and a priori bias (i.e.,
starting point z; Wagenmakers, Ratcliff, et al., 2008). The results were clear-cut: In the context of
a two-choice task, the ex-Gaussian and shifted Wald parameters cannot be associated uniquely with
the parameters of the diffusion model. We concluded that researchers should resist temptation to
interpret changes in the ex-Gaussian and shifted Wald parameters in terms of cognitive processes.
A possible reason for this unfortunate result may be that the descriptive distributions do not take
response accuracy into account. Without any knowledge of response accuracy, it is very difficult
to distinguish between the effects of task difficulty (or subject ability) and the effects of response
caution.

Bayesian Estimation of Stop-Signal Reaction Time Distributions

In Chapter 3, I introduced a Bayesian parametric approach for the estimation of stopping latencies
in the stop-signal paradigm. The stop-signal paradigm is frequently used to study response inhibi-
tion. In this paradigm, participants perform a two-choice RT task where, on some of the trials, the
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primary task is interrupted by a stop signal that prompts participants to withhold their response.
The dependent variable of interest is the latency of the unobservable stop response (stop-signal
RT or SSRT). Based on the horse race model (Logan & Cowan, 1984), several methods have been
developed to estimate SSRTs. Unfortunately, none of these approaches allow for the accurate es-
timation of the entire distribution of SSRTs. Here we presented a Bayesian parametric approach
(BPA) that addresses this limitation. Our method is based on the assumptions of the horse race
model and rests on the concept of censored distributions. The BPA treats response inhibition as
a censoring mechanism, where the distribution of RTs on the primary task (go RTs) is censored
by the distribution of SSRTs. The method assumes that go RTs and SSRTs are ex-Gaussian
distributed and uses Markov chain Monte Carlo sampling (MCMC; Gamerman & Lopes, 2006;
Gilks et al., 1996) to obtain posterior distributions for the model parameters. The BPA can be
applied to individual as well as hierarchical data structures. We presented the results of a number
of parameter recovery and robustness studies and applied the new approach to published data
from a stop-signal experiment. The WinBUGS (Lunn et al., 2012) and WBDev (Wetzels, Lee, &
Wagenmakers, 2010) codes that implement the BPA are available online.

Releasing the BEESTS

In Chapter 4, I presented BEESTS, an efficient and user-friendly software implementation of the
BPA introduced in Chapter 3. BEESTS comes with an easy-to-use graphical user interface and
provides users with summary statistics of the posterior distribution of the parameters as well various
diagnostic tools to assess the quality of the parameter estimates. The software is open source and
runs on Windows and OS X operating systems. BEESTS relies on Python for parameter estimation
(Patil et al., 2010; Wiecki et al., 2013) and on R (R Core Team, 2012) for the post-processing of
the output. For computational speed, the likelihood functions are coded in Cython (Behnel et
al., 2011). We illustrated the use of the individual and the hierarchical BEESTS analysis with a
published stop-signal data set.

Future Directions

The first part of the dissertation focused on modeling RTs —observed and unobserved— in two-
choice tasks with descriptive RT models, such as the ex-Gaussian and the shifted Wald distri-
butions. First, I showed that the parameters of these descriptive distributions should not be
interpreted in terms of the cognitive processes assumed by the diffusion model. However, the pa-
rameters of the ex-Gaussian and shifted-Wald distributions need not be considered in isolation.
Unlike the individual parameters, certain —possibly nonlinear— combinations of the ex-Gaussian
or shifted Wald parameters might map uniquely onto parameters of the diffusion model. This
possibility awaits further investigation.

Second, I showed that —despite its lack of theoretical underpinning in terms of specific cogni-
tive processes— the ex-Gaussian distribution may be successfully used to describe and model the
distribution of stopping latencies in the stop-signal paradigm. However, if the processes underlying
response inhibition are of interest, cognitive models, such as the interactive race model (Boucher
et al., 2007), the Linear Approach to Threshold with Ergodic Rate (Carpenter, 1981; Carpenter &
Williams, 1995; Hanes & Carpenter, 1999), or a modified version of the linear ballistic accumulator
model (Brown & Heathcote, 2008) are the appropriate choice. For other alternatives, see Logan
et al. (2014). Nevertheless, the ex-Gaussian based BPA is certainly not a redundant tool in the
growing arsenal of techniques targeted at estimating stopping latencies. To the contrary: the BPA
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may be used to aid model development and evaluate the predictions of competing process models
beyond the level of mean SSRT.

Third, I introduced BEESTS, a user-friendly software implementation of the ex-Gaussian based
BPA. In order to assess the absolute goodness-of-fit of the BPA, BEESTS relies on posterior
predictive model checks. To formalize the model checks, BEESTS computes posterior predictive p
values using the median of the observed signal-respond RTs and the median of the signal-respond
RTs predicted by the joint posterior of the model parameters. As I repeatedly stressed throughout
the dissertation, this approach is not ideal; adequate analysis of RT data should not only focus
on the median, but should consider the shape of the entire RT distribution. Accordingly, the
posterior predictive model checks in BEESTS should preferably compare the entire distribution
of observed signal-respond RTs to the distribution of signal-respond RTs predicted by the model.
Unfortunately, this is easier said than done. The assessment of goodness-of-fit using the entire
distribution of signal-respond RTs does not only involve the formal comparison of nonparametric
distributions; it also involves the comparison of a single observed signal-respond RT distribution to
multiple —often thousands of— predicted signal-respond RT distributions. Note also that BEESTS
only allows user to assess the absolute goodness-of-fit of the model. The assessment of the relative
goodness-of-fit of the BPA involves the specification of an alternative model and the application
of formal Bayesian model selection. The improvement of the posterior predictive checks and the
implementation of formal Bayesian model selection methods require further development.

13.2 Multinomial Processing Tree Models

Crossed-Random Effects Multinomial Processing Tree Models

In Chapter 5, I focused on a Bayesian approach that accounts for parameter heterogeneity as a
result of differences between participants as well as items in multinomial processing tree (MPT)
models. MPT models are theoretically motivated stochastic models for the analysis of categorical
data. Traditionally, statistical analysis for MPT models is carried out on aggregated data, assuming
homogeneity in participants and items (Hu & Batchelder, 1994). However, in many applications it
is reasonable to assume that the model parameters differ both between participants and items. We
should then treat both participant and items effects as random and base statistical inference on
unaggregated data. Here we introduced a hierarchical crossed-random effects extension of the pair-
clustering model (Batchelder & Riefer, 1980), one of the most extensively studied MPT models for
the analysis of free recall data. Our approach assumed that participant and item effects combine
additively on the probit scale and postulated multivariate normal distributions for the random
effects. We provided a WinBUGS implementation of the crossed-random effects pair-clustering
model and an application to novel experimental data that featured the manipulation of word
frequency.

Model Comparison for Multinomial Processing Tree Models

In Chapter 6, I discussed various procedures for model comparison in the context of MPT models.
A careful model comparison procedure involves both qualitative and quantitative elements. Im-
portant qualitative elements include, for example, plausibility, consistency with known behavioral
phenomena, and coherence of the underlying assumptions. The single most important quantita-
tive element of model comparison relates to the tradeoff between parsimony and goodness-of-fit
(Pitt & Myung, 2002). The topic of quantitative model comparison has received —and contin-
ues to receive— considerable attention in the field of statistics. Here we focused on two popular
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information criteria, the AIC (“an information criterion”, Akaike, 1973) and the BIC (“Bayesian
information criterion”, G. Schwarz, 1978), on the Fisher information approximation of the mini-
mum description length principle (MDL; Grünwald, 2007), and on Bayes factors as obtained from
importance sampling (Hammersley & Handscomb, 1964). We first provided a general description
of the procedures and then applied them to three competing MPT models of memory interference
(Wagenaar & Boer, 1987). The R codes (R Core Team, 2012) that implement the MDL and Bayes
factor calculations are available online.

Future Directions

The second part of the dissertation focused on parameter estimation and model selection in MPT
models. First, I introduced a hierarchical crossed-random effects extension to MPT models that
assumes the additivity of participant and item effects. Although I focused exclusively on the
pair-clustering model, the crossed-random effects approach may be extended to many other MPT
models. The issue of model identification, however, must be carefully considered. The present
approach deals only with models that are identified for each participant after collapsing across
items and for each item after collapsing across the participants. In paradigms where items are
restricted to certain category systems, model identification remains an issue that requires further
development.

Second, I reviewed a number of procedures for model comparison in MPT models, with special
emphasis on Bayes factors obtained from importance sampling. The chapter exclusively focused
on MPT models that assume homogeneity in participants and items. For (crossed-) random effects
hierarchical MPT models, however, the computation of Bayes factors using importance sampling is
computationally infeasible. The development of more sophisticated model selection methods that
are appropriate for hierarchical models is presently an active area of research; preliminary results
indicate that reversible jump MCMC (Green, 1995) is a promising tool for the computation of
Bayes factors in hierarchical MPT models.

13.3 Correlations, Partial Correlations, and Mediation

Power to Reject the Hypothesis of Perfect Correlation

In Chapter 7, I examined the power to reject the hypothesis of perfect correlation in the context of
higher-order structural equation models (SEM). In higher-order factor models, general intelligence
(g) is often found to correlate perfectly with lower-order common factors, suggesting that g and
some well-defined cognitive ability, such as working memory, may be identical. However, the
results of studies that addressed the equivalence of g and lower-order factors are inconsistent. We
suggested that this inconsistency may partly be attributable to the lack of statistical power to
detect the distinctiveness of the two factors. We therefore investigated the power to reject the
hypothesis that g and a lower-order factor are perfectly correlated using artificial datasets, based
on realistic parameter values and on the results of selected publications. The results of the power
analyses indicated that power was substantially influenced by the effect size and the number and the
reliability of the indicators. The examination of published studies revealed that most case studies
that reported a perfect correlation between g and a lower-order factor were severely underpowered,
with power coefficients rarely exceeding 0.30. We concluded by emphasizing the importance of
considering power in the context of identifying g with lower-order factors. The R code for the
power calculation is available online.
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Bayesian Correction for Attenuated Correlations

In Chapter 8, I discussed a Bayesian method for correcting the correlation coefficient for the un-
certainty of the observations. The Pearson product-moment correlation coefficient can be severely
underestimated when the observations are subject to measurement noise. Various approaches exist
to correct the estimation of the correlation in the presence of measurement error, but none are
routinely applied in psychological research. Here we outlined a Bayesian correction method for the
attenuation of correlations proposed by Behseta et al. (2009) that is conceptually straightforward
and easy to apply. We illustrated the Bayesian correction with two empirical data sets; in each
data set, we first estimated posterior distributions for the uncorrected and corrected correlation
coefficient and then computed Bayes factors to quantify the evidence that the data provided for
the presence of an association. We demonstrated that correcting for measurement error can sub-
stantially increase the correlation between noisy observations. The WinBUGS and R codes that
implement the Bayesian correction method and the Bayes factor calculations are available online.

A Default Bayesian Mediation Test

In Chapter 9, I described a default Bayesian hypothesis test for mediation. In order to quantify the
relationship between multiple variables, researchers often carry out a mediation analysis. In such
an analysis, a mediator (e.g., knowledge of healthy diet) transmits the effect from an independent
variable (e.g., classroom instruction on healthy diet) to a dependent variable (e.g., consumption of
fruits and vegetables). Almost all mediation analyses in psychology use frequentist estimation and
hypothesis testing techniques. A recent exception is Yuan and MacKinnon (2009), who outlined a
Bayesian parameter estimation procedure for mediation analysis. Here we completed the Bayesian
alternative to frequentist mediation analysis by specifying a default Bayesian hypothesis test based
on the Jeffreys-Zellner-Siow approach (Rouder et al., 2009). We further extend the default test
by allowing the computation of directional or one-sided Bayes factors, using MCMC techniques
implemented in JAGS (Plummer, 2009). All Bayesian tests are implemented in the R package
BayesMed.

Future Directions

The third part of the dissertation focused on estimating and testing observed and unobserved
(partial) correlations. First, I showed that the majority of studies that use SEM to evaluate
the hypothesis of perfect correlation between g and a lower-order factor are underpowered. In
contrast to previous chapters, here I relied on classical p value-based hypothesis testing. Second, I
moved back to the domain of Bayesian inference, and described a method for correcting observed
correlations for the uncertainty of the observations. Moreover, I illustrated a straightforward
Bayesian procedure for testing the presence of a correlation using Bayes factors obtained with the
Savage-Dickey density ratio method (Dickey & Lientz, 1970). The Bayesian correction method
can be viewed as a simple Bayesian structural equation model with two latent variables, each with
a single indicator. Third, I stayed within the Bayesian framework but moved away from latent
variables, and described a default Bayesian hypothesis test for mediation. The mediation analysis
relies on default Bayes factors for correlations and partial correlations (Wetzels & Wagenmakers,
2012).

Possible extensions for the techniques presented above are straightforward. Hypothesis test for
assessing (perfect) correlations in SEMs may be implemented in a Bayesian setting. The simple
Bayesian attenuation correction may be extended to (higher-order) SEMs featuring multiple latent
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factors and indicators. The Bayesian mediation test may be adapted to handle latent variables.
These extensions all rely on Bayesian parameter estimation and model selection in SEMs.

Bayesian parameter estimation can be easily implemented in standard statistical software, such
as WinBUGS. Also, recent versions of Mplus (i.e, popular software for fitting and testing SEMs;
Muthén & Asparouhov, 2012) support Bayesian parameter estimation and posterior predictive
assessment of goodness-of-fit. Formal Bayesian model selection methods are also available for
SEMs. The computation of Bayes factors, however, relies on sophisticated sampling methods, such
as path sampling (S.-Y. Lee, 2007; Song & Lee, 2012) and reversible jump MCMC (Lopes & West,
2004), and is not yet implemented in standard statistical software. Hence it is all but impossible for
most research psychologists to take advantage of the Bayesian developments. A notable exception is
the work of van de Schoot, Hoijtink, and Deković (2010) that uses Mplus output to compute Bayes
factors for inequality-constrained hypotheses. The development and implementation of Bayesian
model selection in SEMs is an active and exciting area of research.

13.4 Improving Research Practice

A Preregistered Adversarial Collaboration

In Chapter 10, I introduced a novel variant of proponent-skeptic collaboration that focused on the
association between horizontal eye movements and episodic memory. A growing body of research
suggests that horizontal saccadic eye movements facilitate the retrieval of episodic memories in free
recall and recognition memory tasks. Nevertheless, a minority of studies have failed to replicate
this effect. Here we attempted to resolve the inconsistent results by introducing a novel variant
of proponent-skeptic joint research. The proposed approach combined the features of adversarial
collaboration (Kahneman, 2003) and purely confirmatory preregistered research (Wagenmakers
et al., 2012). Prior to data collection, the adversaries reached consensus on an optimal research
design, formulated their expectations, and agreed to submit the findings to an academic journal
regardless of the outcome. To increase transparency and to secure the purely confirmatory nature
of the investigation, the two parties set up a publicly available adversarial collaboration agreement
that detailed the proposed design and all foreseeable aspects of the data analysis. As anticipated
by the skeptics, a series of Bayesian hypothesis tests indicated that horizontal eye movements did
not improve free recall performance. The skeptics suggested that the non-replication may partly
reflect the use of suboptimal and questionable research practices in earlier eye movement studies.
The proponents countered this suggestion and used a p-curve analysis to argue that the effect
of horizontal eye movements on explicit memory does not merely reflect selective reporting. The
preregistered adversarial collaboration agreement and the data are available on the Open Science
Framework.

Bayes Factors, p Values, and Effect Sizes

In Chapter 11, I presented a comparison of the statistical evidence provided by p values, effect
sizes, and default Bayes factors. Statistical inference in psychology has traditionally relied heavily
on p value significance testing. This approach to drawing conclusions from data, however, has
been widely criticized, and two types of remedies have been advocated. The first proposal is to
supplement p values with complementary measures of evidence such as effect sizes. The second
is to replace inference with Bayesian measures of evidence such as the Bayes factor. Here we
provided a practical comparison of p values, effect sizes, and default Bayes factors as measures of
statistical evidence, using 855 recently published t tests in psychology. The comparison yielded
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two main results. First, although p values and default Bayes factors almost always agreed about
what hypothesis is better supported by the data, the measures often disagreed about the strength
of this support; 70% of the p values that fell between .01 and .05 correspond to Bayes factors that
indicate that the data are no more than three times more likely under the alternative hypothesis
than under the null hypothesis. Second, effect sizes can provide additional evidence to p values
and default Bayes factors. We concluded that the Bayesian approach is comparatively prudent,
preventing researchers from overestimating the evidence in favor of an effect.

Sequential Bonferroni Correction for Multiple Comparisons

In the twelfth and final chapter, I focused on the sequential Bonferroni correction in multiway
analysis of variance (ANOVA). Many empirical researchers do not realize that the common mul-
tiway ANOVA harbors a multiple comparison problem. In the case of two factors, three separate
null hypotheses are subject to test (i.e., two main effects and one interaction). Consequently, the
probability of a Type I error is 14% rather than 5%. Here we described the multiple comparison
problem and demonstrated that researchers seldom correct for it. We then illustrated the use of
the sequential Bonferroni (Hartley, 1955) correction —one of several correction procedures— and
showed that its application alters at least one of the substantive conclusions in 45 out of 60 articles
considered. We argued that preregistration of the hypotheses provides an alternative method to
combat the multiplicity problem in multiway ANOVA.

Future Directions

The fourth and final part of the dissertation focused on suboptimal research practices in psychology.
First, I focused on questionable research practices and the replication crisis in psychology, and
advocated the use of preregistered adversarial collaborations for scientific conflict resolution. I
described a proponent-skeptic collaboration on the beneficial effects of horizontal eye movement
on memory performance and illustrated how the Bayes factor can be used to quantify evidence in

favor of the null hypothesis. Second, I showed that although p values and Bayes factors almost
always agree about which hypothesis is better supported by the data, p values often overestimate
evidence against the null hypothesis. Third, I revisited the frequentist approach, and described a
hidden multiplicity problem in multiway ANOVAs and showed that the application of sequential
Bonferroni correction often alters conclusions drawn from ANOVA designs.

My main goal was to highlight the advantages of adopting the Bayesian approach in original as
well as replication research. Bayesian inference —as opposed to frequentist inference— does not
depend on the intention with which the data were collected, it can be used to quantify evidence
in favor of the null hypothesis, and enables researchers to assess what they would like to know in
the first place when they engage in hypothesis testing, that is, the probability of the data under
one hypothesis relative to the other. Various user-friendly default Bayesian procedures are now
available for t tests (Rouder et al., 2009; Wetzels et al., 2009), ANOVAs (Masson, 2011; Wetzels
et al., 2012), correlations and partial correlations, (Wetzels & Wagenmakers, 2012), mediation
(Nuijten, Wetzels, Matzke, Dolan, & Wagenmakers, submitted) and regression analyses (Liang et
al., 2008; Rouder & Morey, 2012). Despite considerable progress over the past decade, the user-
friendly Bayesian implementation of many popular techniques, such as structural equation models
and contingency tables, awaits further development. Similarly, the further development and the
implementation of Bayesian correction methods for multiple comparison (e.g., Berry & Hochberg,
1999; Marchini, Howie, Myers, McVean, & Donnelly, 2007; Scott & Berger, 2006, 2010) are exciting
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research areas that will hopefully receive due attention from the statistical community in the near
future.
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Appendix A

Appendix to Chapter 2: “Psychological

Interpretation of the Ex–Gaussian and

Shifted Wald Parameters: A Diffusion

Model Analysis”

A.1 The Distribution of the Diffusion Model Parameter Values

Figure A.1 presents histograms of the best–fitting diffusion model parameter values and the cor-
responding z/a and sz/a ratios found in 23 applications of the diffusion model. The histograms
are based on the the parameter values reported for each experimental condition of the 23 arti-
cles. The exact parameter values, including references, are available as supplemental materials at
http://dora.erbe-matzke.com/publications.html.

A.2 Results for the Diffusion Model Trial–to–Trial Variability
Parameters

This appendix shows how the ex–Gaussian and shifted Wald parameters change as a function
of the manipulation of the trial–to–trial variability in drift rate η, the trial–to–trial variability in
starting point sz, and the trial–to–trial variability in nondecision time st parameters of the diffusion
model. Table A.1 gives a summary of the associations between the ex–Gaussian and shifted Wald
parameter and the diffusion model variability parameters. Figure A.2 and Figure A.3 then show
the detailed changes in the ex–Gaussian and shifted Wald parameters as a function of changes in
the diffusion model variability parameters.

Ex–Gaussian Parameters

With respect to trial–to–trial variability in drift rate η, Figure A.2a shows that both µ and σ
decrease as η increases. In contrast, τ increases for low values of η and decreases for high values
of η. However, the changes in the three ex–Gaussian parameters are all extremely small. Turning
to trial–to–trial variability in starting point sz, Figure A.2b shows that both σ and τ increase as
sz increases, but in contrast, µ decreases with increasing sz. However, the changes in the three
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Figure A.1 Histograms of the diffusion model parameter values.

ex–Gaussian parameters are all negligible. With respect to trial–to–trial variability in nondecision
time st, Figure A.2c shows that both σ and τ parameters as st increases, whereas µ decreases with
increasing st. Note that σ is the only parameter that is substantially influenced by st. In fact,
σ changes substantially more as function of st than as a function of any other diffusion model
parameter.

To summarize, these results further support the conclusion that the two most important pa-
rameters of the ex–Gaussian distribution, µ and τ , do not correspond uniquely to parameters of
the diffusion model. Neither of these ex–Gaussian parameters is influenced substantially by any of
the variability parameters of the diffusion model. In contrast, σ seems to be uniquely associated
with st, the parameter for trial–to–trial variability in nondecision time.

Shifted Wald Parameters

With respect to trial–to–trial variability in drift rate η, Figure A.3a shows that both α and γ
decrease as η increases, but in contrast, θ increases with increasing η. However, the changes in
the three shifted Wald parameters are all extremely small. Turning to trial–to–trial variability in
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Figure A.2 Changes in the ex–Gaussian parameters µ, σ, and τ as a function of systematic changes
in the diffusion model parameters trial–to–trial variability in drift rate η (panel a), trial–to–trial
variability in starting point sz (panel b), and trial–to–trial variability in nondecision time st (panel
c). The left-hand figures in each panel plot the results on scales ranging from the minimum to
the maximum values of the ex–Gaussian parameters found across all simulations. The right-hand
figures in each panel plot the same results on scales ranging from the minimum to the maximum
values of the ex–Gaussian parameters found for the manipulation of the given diffusion model
parameter. 247
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Table A.1 The Associations Between the Parameters of the Ex–Gaussian and Shifted Wald Distri-
butions and the Variability Parameters of the Diffusion Model.

Diffusion model parameters
η sz st

Ex–Gaussian
µ – – –
σ – + ++
τ +/– + +

Shifted Wald
α – + ++/– –
θ + – – –
γ – × +/–

Note. ++, substantial positive association; +, weak positive association; – –, substantial negative association; –,
weak negative association; ×, no association; η, variability in drift rate; sz, variability in starting point; st, variability
in nondecision time.

starting point sz, Figure A.3b shows that γ is unaffected by changes in sz, whereas α increases and
θ decreases with increasing sz. However, the changes in both α and θ are extremely small. With
respect to trial–to–trial variability in nondecision time st, Figure A.3c shows that both α and γ
increase for low and intermediate values of st and then decrease for high values. In contrast, θ
decreases for low and intermediate values of st and equals 0 for high values. Although α changes
more than either θ or γ, the change in θ is also substantial. Note that α changes just as much as
a function of st than as a function of boundary separation a.

To summarize, these results further support the conclusion that the shifted Wald parameters do
not correspond uniquely to parameters of the diffusion model. The γ parameter is not influenced
substantially by any of the variability parameters of the diffusion model. In contrast, both α and θ
are substantially influenced by st, the trial–to–trial variability in nondecision time. In addition to
the influence of the key diffusion model parameters, changes in α and θ can therefore also reflect
the influence of st.
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Figure A.3 Changes in the shifted Wald parameters α, θ, and γ as a function of systematic changes
in the diffusion model parameters trial–to–trial variability in drift rate η (panel a), trial–to–trial
variability in starting point sz (panel b), and trial–to–trial variability in nondecision time st (panel
c). The left-hand figures in each panel plot the results on scales ranging from the minimum to
the maximum values of the shifted Wald parameters found across all simulations. The right-hand
figures in each panel plot the same results on scales ranging from the minimum to the maximum
values of the shifted Wald parameters found for the manipualtion of the given diffusion model
parameter. 249
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B.1 WinBUGS Script

Individual Bayesian Parametric Approach (BPA) Model

The WinBUGS script for the individual BPA is as follows:

model

{

# Priors for parameters

mu_go ~ dunif(1,1000)

sigma_go ~ dunif(1,300)

tau_go ~ dunif(1,300)

mu_stop ~ dunif(1,600)

sigma_stop ~ dunif(1,250)

tau_stop ~ dunif(1,250)

# Go RTs come from an ex-Gaussian distribution

for (g in 1:n.gort){

go_rt[g] ~ ExGaussian(mu_go, sigma_go, tau_go)

}

# Signal respond trials; signal-respond RTs (srrt) at each SSD come from

# a censored ex-Gaussian distribution

# (see first part of Equation 14.)

for (d in 1:end_SR){

for (r in 1:n.srrt[d]){

srrt[d,r] ~ CensoredExGaussian_SR(mu_go, sigma_go, tau_go,

mu_stop, sigma_stop, tau_stop, ssd_SR[d])

}

}

# Signal inhibit trials; Succesful inhibitions come from a censored ex-Gaussian

# distribution (see second part of Equation 14.)

for (h in 1:end_I){
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for (i in 1:n.inhibitions[h]){

zeros[h,i] <- 0

zeros[h,i] ~ dpois(phi[h,i])

phi[h,i] <- - intg[h]

}

# Compute integral in Equation 14 using Simpson’s rule of numerical integration

# The first and the second arguments define the limits of integration,

# and the third argument defines the number of subintervals used for

# computing the integral.

intg[h] <- CensoredExGaussian_I(1, 6000, 2000, mu_go, sigma_go, tau_go,

mu_stop, sigma_stop, tau_stop, ssd_I[h])

}

}

The ExGaussian and CensoredExGaussian SR distributions and the CensoredExGaussian I

function are implemented with the WinBUGS Development Interface (WBDev; Lunn, 2003). For
a WBDev tutorial for social scientists, see Wetzels, Lee, and Wagenmakers (2010). The WinBUGS
and WBDev scripts are available in the supplemental materials at http://dora.erbe-matzke

.com/publications.html. For computational reasons, the indefinite integral in Equation 3.14 is
replaced by a definite integral (i.e., CensoredExGaussian I) with limits of integration well beyond
the range of stop-signal reaction times that may be encountered in the stop-signal paradigm.

Hierarchical Bayesian Parametric Approach (BPA) Model

The WinBUGS script for the hierarchical BPA is as follows:

model

{

# Priors for the group-level parameters

# The I(0,) construct denotes distributional censoring, with a lower bound of 0,

# and an upper bound of infinity

mu_mu_go ~ dnorm(500,0.0001)I(0,)

lambda_mu_go <- 1/pow(sigma_mu_go,2)

sigma_mu_go ~ dunif(0,300)

mu_sigma_go ~ dnorm(100,0.001)I(0,)

lambda_sigma_go <- 1/pow(sigma_sigma_go,2)

sigma_sigma_go ~ dunif(0,200)

mu_tau_go ~ dnorm(80,0.001)I(0,)

lambda_tau_go <- 1/pow(sigma_tau_go,2)

sigma_tau_go ~ dunif(0,200)

mu_mu_stop ~ dnorm(200,0.0001)I(0,)

lambda_mu_stop <- 1/pow(sigma_mu_stop,2)

sigma_mu_stop ~ dunif(0,200)

mu_sigma_stop ~ dnorm(40,0.001)I(0,)

lambda_sigma_stop <- 1/pow(sigma_sigma_stop,2)

sigma_sigma_stop ~ dunif(0,100)

mu_tau_stop ~ dnorm(30,0.001)I(0,)

lambda_tau_stop <- 1/pow(sigma_tau_stop ,2)

sigma_tau_stop ~ dunif(0,100)

# C has to be large enough so that all phi[s,k,n] are positive

# C <- 10000
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# Participant loop

for (j in 1:n.subjects){

# Go RTs come from an ex-Gaussian distribution

for (g in 1:n.gort){

go_rt[g,j] ~ ExGaussian(mu_go[j], sigma_go[j], tau_go[j])

}

# Signal respond trials; signal-respond RTs (srrt) at each SSD come from

# a censored ex-Gaussian distribution

# (see first part of Equation 14.)

for (d in 1:end_SR[j]){

for (r in 1:n.srrt[d,j]){

srrt[d,r,j] ~ CensoredExGaussian_SR(mu_go[j], sigma_go[j], tau_go[j],

mu_stop[j], sigma_stop[j], tau_stop[j], ssd_SR[d,j])

}

}

# Signal inhibit trials; Succesful inhibitions come from a censored ex-Gaussian

# distribution (see second part of Equation 14.)

# The following code implements the zeros trick (see WinBUGS manual)

# Because phi[s,k,n] is a Poisson mean, it should always be positive.

# As a result, we may need to add constant C to ensure that all phi[s,k,n]

# are positive

for (h in 1:end_I[j]){

for (i in 1:n.inhibitions[h,j]){

zeros[h,i,j] <- 0

zeros[h,i,j] ~ dpois(phi[h,i,j])

phi[h,i,j] <- - intg[h,j] #+C

}

# Compute integral in Equation 14 using Simpson’s rule of numerical

# integration. The first and the second arguments define the limits

# of integration, and the third argument defines the number of

# subintervals used for computing the integral.

intg[h,j] <- CensoredExGaussian_I(1, 3000, 1000, mu_go[j], sigma_go[j],

tau_go[j], mu_stop[j], sigma_stop[j],

tau_stop[j], ssd_I[h,j])

}

# Individual parameters come from truncated normal distributions

# The third argument specifies the truncation point

mu_go[j] ~ TruncatedNormal(mu_mu_go, lambda_mu_go,0)

sigma_go[j] ~ TruncatedNormal(mu_sigma_go,lambda_sigma_go,1)

tau_go[j] ~ TruncatedNormal(mu_tau_go,lambda_tau_go,1)

mu_stop[j]~ TruncatedNormal(mu_mu_stop, lambda_mu_stop,0)

sigma_stop[j] ~ TruncatedNormal(mu_sigma_stop,lambda_sigma_stop,1)

tau_stop[j] ~ TruncatedNormal(mu_tau_stop,lambda_tau_stop,1)

}

}

The TruncatedNormal distribution is implemented with WBDev and is available in the sup-
plemental materials.
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Appendix to Chapter 4: “Release the

BEESTS: Bayesian Estimation of

Ex-Gaussian Stop-Signal Reaction Time

Distributions”

C.1 Prior Distribution of the Model Parameters

This appendix presents the prior distributions of the model parameters in the BEESTS implemen-
tation of the Bayesian parametric approach (BPA). The name of each parameter as shown in the
BEESTS output is in brackets.

Individual BPA

The priors for the go and stop parameters are uniform distributions, spanning a plausible but wide
range of values. BEESTS relies on slightly more diffuse priors than the WinBUGS implementation
of the BPA (see Matzke et al., 2013):

µgo (mu go) ∼Uniform(0.001, 1000)

σgo (sigma go) ∼Uniform(1, 500)

τgo (tau go) ∼Uniform(1, 500)

µstop (mu stop) ∼Uniform(0.001, 600)

σstop (sigma stop) ∼Uniform(1, 350)

τstop (tau stop) ∼Uniform(1, 350).

(C.1)

Hierarchical BPA

Individual Parameters

The hierarchical BPA assumes that the µgo, σgo, τgo, µstop, σstop, and τstop parameters of each
participant j = 1, ..., J come from truncated normal group-level distributions. The group-level
distributions are themselves characterized by a group mean (µ) and a group standard deviation
(σ) parameter. The WinBUGS implementation relies on normal group-level distributions that are
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truncated only at the lower end, whereas BEESTS uses normal distributions that are truncated at
the lower and the upper ends:

µgoj (mu go.subj) ∼Normal(µµgo , σµgo)[0.001, 1000]

σgoj (sigma go.subj) ∼Normal(µσgo , σσgo)[1, 500]

τgoj (tau go.subj) ∼Normal(µτgo , στgo)[1, 500]

µstopj (mu stop.subj) ∼Normal(µµstop , σµstop)[0.001, 600]

σstopj (sigma stop.subj) ∼Normal(µσstop , σσstop)[1, 350]

τstopj (tau stop.subj) ∼Normal(µτstop , στstop)[1, 350].

(C.2)

Group-Level Parameters

The priors for the group mean and group standard deviations are uniform distributions. Note that
the WinBUGS implementation uses censored normal priors for the group-level means and relies on
slightly less diffuse priors for the group-level standard deviations than BEESTS:

µµgo (mu go) ∼Uniform(0.001, 1000)

σµgo (mu go var) ∼Uniform(0.01, 300)

µσgo (sigma go) ∼Uniform(1, 500)

σσgo (sigma go var) ∼Uniform(0.01, 200)

µτgo (tau go) ∼Uniform(1, 500)

στgo (tau go var) ∼Uniform(0.01, 200)

µµstop (mu stop) ∼Uniform(0.001, 600)

σµstop (mu stop var) ∼Uniform(0.01, 300)

µσstop (sigma stop) ∼Uniform(1, 350)

σσstop (sigma stop var) ∼Uniform(0.01, 200)

µτstop (tau stop) ∼Uniform(1, 350)

στstop (tau stop var) ∼Uniform(0.01, 200).

(C.3)
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Appendix to Chapter 7: “The Issue of

Power in the Identification of ‘g’ with

Lower-Order Factors”

D.1 R Code for Power Calculations

This appendix presents the R code that can be used to calculate power for various sample sizes. The
code takes as inputs the goodness-of-fit statistic of MA (TA), the chosen Type I error probability
(alpha), dfdiff (df), the sample size (N) used to obtain the non-centrality parameter λ, and the
minimum (minN) and maximum (maxN) sample sizes of interest. The output provided by the code
consists of the power coefficients corresponding to sample sizes ranging from the minimum and the
maximum sample size of interest.

#Goodness-of-fit statistic of M_A (i.e., non-centrality parameter lambda)

TA = 7.23

#Type I error probability

alpha = 0.05*2

#Degrees of freedom (i.e., df.diff)

df = 1

#Sample size used to calculate the non-centrality parameter lambda

N = 200

#Critical value

C = qchisq(alpha, df=df, ncp=0, lower.tail=F)

#Minimum sample size of interest

minN = 100

#Maximum sample size of interest

maxN = 2000

power = matrix(0,maxN-minN+1,2)

#Nnew is new sample size of interest

for (Nnew in minN:maxN){

#lambda.new is the value of the non-centrality parameter

#corresponding to the new sample size

lambda.new = (TA/N)*Nnew

#calculate power

power[Nnew-minN+1,1] = pchisq(C, df=df, ncp=lambda.new, lower.tail=F)

power[Nnew-minN+1,2] = Nnew
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}

#power plot

plot(power[,2],power[,1],type=’l’,xlab="Sample size", ylab="Power")

#power for original N

print(power[power[,2]==N,1])
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Appendix to Chapter 8: “Accounting for

Measurement Error and the Attenuation

of Correlation: A Bayesian Approach”

E.1 WinBUGS Script

TheWinBUGS script that implements the Bayesian correction for the attenuation of the correlation
is as follows (see Chapter 8 and Behseta et al., 2009 for details):

# Bayesian correction for the attenuation of correlation as a results of uncertainty in measurement

model {

# Data

for (i in 1:N){

# eta[i,1] = theta[i]; eta[i,2] = beta[i];

# mu[1] = mu_theta; mu[2] = mu_beta;

# ISigma_cov = inverse of Sigma_cov matrix

eta[i,1:2] ~ dmnorm(mu[],ISigma_cov[,])

# observed[i,1] = theta_hat[i]; observed[i,2] = beta_hat[i];

# Isigma_epsilon[i,1] = Inverse of sigma_epsilon^2_theta[i];

# Isigma_epsilon[i,2] = Inverse of sigma_epsilon^2_beta[i]

for (j in 1:2){

observed[i,j] ~ dnorm(eta[i,j],Isigma_epsilon[i,j])

}

}

# Priors

mu[1] ~ dnorm(0,.001)

mu[2] ~ dnorm(0,.001)

# sigma[1] = sigma_theta; sigma[2] = sigma_beta

sigma[1] ~ dunif(0,mysigma_1)

sigma[2] ~ dunif(0,mysigma_2)

rho ~ dunif(-1,1)

# Reparameterization

Sigma_cov[1,1] <- pow(sigma[1],2)

Sigma_cov[1,2] <- rho*sigma[1]*sigma[2]

Sigma_cov[2,1] <- rho*sigma[1]*sigma[2]
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Sigma_cov[2,2] <- pow(sigma[2],2)

ISigma_cov[1:2,1:2] <- inverse(Sigma_cov[1:2,1:2])

}

The R script that calls the WinBUGS script using the R2WinBUGS (Sturtz, Ligges, & Gel-
man, 2005) package is available in the supplemental materials at http://dora.erbe-matzke.com/
publications.html. The R script allows users to adjust the range of the uniform prior distribution
of sigma[1] and sigma[2] by specifying the value of my sigma1 and my sigma2.
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Appendix to Chapter 9: “A Default

Bayesian Hypothesis Test for Mediation”

F.1 JAGS Code

JAGS Code for Correlation

####### Cauchy-prior on alpha #######

model

{

for (i in 1:n)

{

mu[i] <- intercept + alpha*x[i]

y[i] ~ dnorm(mu[i],phi)

}

# uninformative prior on intercept,

# Jeffreys’ prior on precision phi

intercept ~ dnorm(0,.0001)

phi ~ dgamma(.0001,.0001)

# inverse-gamma prior on g:

g <- 1/invg

a.gamma <- 1/2

b.gamma <- n/2

invg ~ dgamma(a.gamma,b.gamma)

# g-prior on beta:

vari <- (g/phi) * invSigma

prec <- 1/vari

alpha ~ dnorm(0, prec)

}

# Explanation---------------------------------

# Prior on g:

# We know that g ~ inverse_gamma(1/2, n/2), with 1/2 the shape

# parameter and n/2 the scale parameter.

# It follows that 1/g ~ gamma(1/2, 2/n).

# However, BUGS/JAGS uses the *rate parameterization* 1/theta instead of the
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# scale parametrization theta. Hence we obtain, in de BUGS/JAGS rate notation:

# 1/g ~ dgamma(1/2, n/2)

#-----------------------------------------

JAGS Code for Partial Correlation

####### Cauchy-prior on beta and tau’ #######

# theta contains beta and tau’

model

{

for (i in 1:n)

{

mu[i] <- intercept + theta[1]*x[i,1] + theta[2]*x[i,2]

y[i] ~ dnorm(mu[i],phi)

}

# uninformative prior on intercept,

# Jeffreys’ prior on precision phi

intercept ~ dnorm(0,.0001)

phi ~ dgamma(.0001,.0001)

# inverse-gamma prior on g:

g <- 1/invg

a.gamma <- 1/2

b.gamma <- n/2

invg ~ dgamma(a.gamma,b.gamma)

# calculation of the inverse matrix of V

inverse.V <- inverse(V)

# calculation of the elements of prior precision matrix

for(i in 1:2)

{

for (j in 1:2)

{

prior.T[i,j] <- inverse.V[i,j] * phi/g

}

}

# multivariate prior for the theta vector

theta[1:2] ~ dmnorm( mu.theta, prior.T )

for(i in 1:2) { mu.theta[i] <- 0 }

}

F.2 Testing the Correctness of Our JAGS Implementation

To assess the correctness of our JAGS implementation, we compared the analytical results for
the two-sided Bayes factor against the Savage-Dickey density ratio results based on the MCMC
samples from JAGS. The distribution that fit the posterior samples best1 is the non-standardized

1We compared the fit of four distributions: a non-standardized t-distribution, a normal distribution, a non-
parametric distribution estimated with the spline interpolation function splinefun in R, and a non-parametric
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t-distribution with the following density:

p(x|ν, µ, σ) = Γ(ν+1
2 )

Γ(ν2 )
√

(πνσ)

(

1 +
1

ν

(

x− µ

σ

)2
)− ν+1

2

, (F.1)

with ν degrees of freedom, location parameter µ, and scale parameter σ. With the samples of the
parameter of interest, we can estimate ν, µ, and σ and thus the exact shape of the distribution
and the exact height of the distribution at the point of interest.
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Figure F.1 Natural logarithm of the Bayes factors for correlation obtained with analytical calcula-
tions (x axis) or obtained with the SD method based on a non-standardized t-distribution (y axis)
for different sample sizes (N). The graphs show fewer points as the samples grow larger, because in
these situations there are more extreme Bayes factors that fall outside the axis limits. We restricted
the graphs, since it is most important that the lower Bayes factors lie on the diagonal: it is not
important whether a Bayes factor is 2000 or 3000, since it is overwhelming evidence in any case.

We checked the fit of this distribution and the performance of the SD method in a small
simulation study. We considered the following sample sizes: N = 20, 40, 80, or 160. We simu-

distribution estimated with the R function logspline that also uses splines to estimate the log density. All four
distributions fitted reasonably well: the Bayes factors of the analytical test and the SD method are similar with all
different posterior distributions. All four distributions are therefore included in the R package BayesMed and can be
used when applying the SD method.
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lated correlational data by drawing N values for the X from a standard normal distribution, and
conditional on X we simulated values for Y according to the following equation:

Yi = β0 + τXi + ǫ, (F.2)

where the subscript i denotes subject i and τ represents the relation between X and Y . For each
of the four sample sizes, we generated 100 datasets, each in which τ was drawn from a standard
uniform distribution.

Next, we tested the correlation in each dataset with both the analytical Bayesian correlation
test and the SD method with the non-standardized t-distribution and compared the results. The
results are shown in Figure F.1. The figure shows that the proposed SD method performs well:
the Bayes factors of the analytical test and the SD method are similar for all sample sizes and
correlations.
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Samenvatting

Hoe kunnen we data verkregen uit psychologische experimenten het beste beschrijven? In dit
proefschrift stelde ik dat dit bij uitstek gedaan kan worden met behulp van formele wiskundige
modellen. Het doel van modelleren is om datapatronen te ontdekken en deze te beschrijven
aan de hand van parameters die verschillende statistische of psychologische processen vertegen-
woordigen. Er bestaan veel verschillende typen wiskundige modellen waarvan velen in dit proef-
schrift aan de orde zijn komen: Ik heb me gericht op beschrijvende en procesmodellen voor een-
voudige tweekeuze-responstijdtaken, modellen voor responsinhibitie zoals gemeten in het stopsig-
naalparadigma, multinomiale processing-tree-modellen voor de analyse van categorische data, en
bekende statistische modellen zoals de t-toets, de variantieanalyse, correlaties en partiële corre-
laties, latente-variabelemodellen, en mediatie-analyse.

Nadat we een wiskundig model voor onze data hebben gekozen, moeten we de modelparameters
schatten en nagaan of het gekozen model inderdaad een adequate beschrijving van de data biedt.
Hoe kunnen we het beste psychologische datasets die beschreven zijn met behulp van mathematis-
che modellen analyseren? In dit proefschrift stelde ik dat dit het beste gedaan kan worden door
middel van Bayesiaanse inferentie. Ik heb beweerd dat Bayesiaanse statistiek belangrijke theo-
retische en praktische voordelen biedt ten opzichte van frequentistische statistiek, voordelen die
Bayesiaanse procedures bij uitstek geschikt maken om de problemen uit de dagelijkse werkpraktijk
van psychologisch onderzoek aan te pakken.

In rest van deze samenvatting zal ik een overzicht en een korte beschrijving geven van de
vraagstukken waarmee ik me tijdens mijn promotieproject heb beziggehouden. In dit proefschrift
zijn zeer verschillende onderwerpen verkend; de gemene deler is de toewijding aan mathematisch
modelleren en zorgvuldige statistische inferentie.

Deel I. De Analyse van Responstijdverdelingen

Het eerste deel van dit proefschrift richtte zich op het modelleren van responstijden—zowel geob-
serveerde als niet geobserveerde—met behulp van de ex-Gaussian en shifted Wald-responstijd-
verdelingen.

In het tweede hoofdstuk onderzocht ik de validiteit van de cognitieve interpretatie van de
parameters van de ex-Gaussian en shifted Wald verdelingen. De ex-Gaussian en de shifted Wald
zijn veelgebruikte statistische modellen voor het beschrijven van responstijdverdelingen in snelle
tweekeuzetaken, waarvan de parameters vaak gëınterpreteerd worden in termen van cognitieve
processen. We hebben de validiteit van deze cognitieve interpretatie onderzocht door de parameters
van de ex-Gaussian en shifted Wald-verdelingen te relateren aan de parameters van het Ratcliff-
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diffusiemodel (Ratcliff, 1978), een succesvol procesmodel waarvan de parameters een gegronde
cognitieve interpretatie kennen (e.g.,Voss et al., 2004). De resultaten tonen aan dat de ex-Gaussian
en shifted Wald-parameters niet uniek overeenkomen met de parameters van het diffussiemodel.
De cognitieve interpretatie van de parameters van deze verdelingen wordt daarom afgeraden.

In het derde hoofdstuk introduceerde ik een Bayesiaanse parametrische methode voor het schat-
ten van de tijd die mensen nodig hebben om hun respons af te breken (stopsignaalresponstijd;
SSRT) in het stopsignaalparadigma. Het stopsignaalparadigma is een populair experimentele pro-
cedure die wordt gebruikt om het onderdrukken van responsen op tweekeuzetaken te onderzoeken.
Gebaseerd op het racemodel (Logan & Cowan, 1984) zijn verscheidende methoden ontwikkeld om
SSRT’s te schatten die anders niet geobserveerd zouden kunnen worden. Geen van deze metho-
den is echter in staat om een accurate schatting te maken van de gehele verdeling van SSRT’s,
terwijl responstijdverdelingen juist waardevolle informatie kunnen bevatten voor de onderzoeker
(Heathcote et al., 1991). We introduceerden een Bayesiaanse methode om deze beperking te ver-
helpen. Deze nieuwe aanpak doet de aanname dat SSRT’s een ex-Gaussian-verdeling volgen en
gebruikt Markov chain Monte Carlo (Gamerman & Lopes, 2006; Gilks et al., 1996) sampling om de
posterior-verdeling van de parameters te schatten. We toonden aan dat de Bayesiaanse methode
in staat is de ware waarden van de parameters terug te schatten in datasets van een realistische
omvang. We raadden onderzoekers aan de voorgestelde methode consequent te gebruiken en de
hele verdeling van SSRT’s te beschouwen bij het analyseren van stopsignaaldata.

In het vierde hoofdstuk presenteerde ik BEESTS, een efficiënte en gebruiksvriendelijke software-
implementatie van de Bayesiaanse parametrische methode die gëıntroduceerd werd in hoofdstuk
3. BEEST heeft een eenvoudig te gebruiken grafische gebruikersinterface en voorziet gebruikers
van kengetallen van de posterior-verdeling van de parameters, alsook verschillende diagnostische
middelen om de kwaliteit van de parameterschattingen te beoordelen. We illustreerden het gebruik
van BEESTS aan de hand van gepubliceerde stopsignaaldata. Deze software maakt het schatten
van SSRT verdelingen ook toegankelijk voor de toegepaste wetenschap.

Deel II. Multinomiale Processing-Tree-Modellen

Het tweede deel van dit proefschrift richtte zich op modelselectie en het schatten van parame-
ters voor multinomiale processing-tree (MPT) modellen. MPT-modellen zijn theoretisch gemo-
tiveerde stochastische modellen voor categorische data. Als gevolg van hun eenvoud worden MPT-
modellen frequent en in veel verschillende gebieden toegepast binnen de cognitieve psychologie
(e.g., Batchelder & Riefer, 1999).

In het vijfde hoofdstuk introduceerde ik een Bayesiaanse aanpak voor het schatten van pa-
rameters van MPT-modellen. MPT-modellen worden gewoonlijk toegepast op geaggregeerde data,
waarbij de onrealistische aanname wordt gedaan dat er geen heterogeniteit bestaat tussen de pa-
rameters (Hu & Batchelder, 1994). Onze voorgestelde Bayesiaanse aanpak houdt rekening met
de heterogeniteit van de model parameters, die kan ontstaan als gevolg van individuele verschillen
zowel tussen proefpersonen als items. We hebben het gebruik van de nieuwe methode gëıllus-
treerd aan de hand van experimentele data verkregen uit de pair-clustering-taak (Batchelder &
Riefer, 1980), een geheugentaak waarin proefpersonen semantisch gerelateerde woorden moeten
onthouden. We raadden onderzoekers aan om de voorgestelde methode consequent toe te passen
om de vertekening van parametersschattingen als gevolg van parameterheterogeniteit te voorkomen.

In het zesde hoofdstuk presenteerde ik verschillende procedures voor modelselectie voor MPT-
modellen. Het onderwerp van kwantitatieve modelselectie krijgt van oudsher veel aandacht in
de statistiek en tegenwoordig ook in de psychologie (Pitt & Myung, 2002). We richtten ons op
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twee populaire informatiecriteria, namelijk de AIC (“an information criterion”, Akaike, 1973) en
de BIC (“Bayesian information criterion”, G. Schwarz, 1978), het minimum-description-length-
principe (Grünwald, 2007), en de Bayes-factor verkregen met importance sampling (Hammersley
& Handscomb, 1964). Naast de beschrijving van deze methode werd computercode geleverd die de
praktische toepasbaarheid van de besproken modelselectiematen verhoogt.

Deel III. Correlaties, Partiële Correlaties en Mediatie-analyse

Het derde deel van dit proefschrift behandelde het schatten en toetsen van (partiële) correlaties.
In het zevende hoofdstuk onderzocht ik het onderscheidingsvermogen om de hypothese van

perfecte correlatie te verwerpen binnen latente-variabelemodellen. In onderzoek waarbinnen hi-
rarchische latente-variabelenmodellen worden gebruikt, wordt vaak gerapporteerd dat algemene
intelligentie (g) een perfecte correlatie vertoont met lagere orde latente variabelen. Hieruit wordt
vaak geconcludeerd dat g en de lagere orde latente variabele, zoals werkgeheugen, één en hetzelfde
zijn. We hebben op basis van simulaties en gepubliceerde datasets onderzocht wat het onderschei-
dingsvermogen is om de gelijkheid van g en de lagere orde latente variabelen te verwerpen. De
resultaten toonden aan dat het overgrote deel van de studies die een perfecte correlatie rapporteer-
den over onvoldoende onderscheidsvermogen beschikten om aan te tonen dat g en de lagere orde
latente variabelen identiek zijn. We benadrukten het belang van het onderscheidingsvermogen in
onderzoek naar de equivalentie van g en lagere orde latente variabelen.

In het achtste hoofdstuk behandelde ik een Bayesiaanse methode om de correlatiecoëfficiënt
te corrigeren voor de onzekerheid van de observaties. De correlatiecoëfficiënt kan ernstig worden
onderschat wanneer de observaties onderhevig zijn aan meetfouten. Hoewel verschillende meth-
oden ontwikkeld zijn om hiervoor te corrigeren, worden deze amper toegepast in de psychologie.
We richtten ons op een Bayesiaanse correctiemethode, ontwikkeld door Behseta et al. (2009), en
toonden aan dat het toepassen hiervan tot een substantiële verhoging van de correlatie kan leiden
tussen met ruis gemeten observaties. We raadden onderzoekers aan zich bewust te zijn van meet-
fouten en, indien mogelijk, de correlatiecoëfficiënt corrigeren voor de attenuatie die op kan treden
als gevolg van de onzekerheid van de observaties.

In het negende hoofdstuk besprak ik een Bayesiaanse hypothesetoets voor mediatie. Om
de relatie tussen verschillende variabelen te kunnen kwantificeren, voeren onderzoekers vaak een
mediatie-analyse uit. In een dergelijke analyse verstuurt een mediator (zoals kennis van een gezond
dieet) het effect van een onafhankelijke variabele (zoals instructie over een gezond dieet) naar een
afhankelijke variabele (zoals de consumptie van fruit en groente). Vrijwel alle mediatie-analyses
in de psychologie gebruiken frequentistische parameterschattingen en hypothesetoetsing. We on-
twikkelden echter een Bayesiaanse hypothesetoets die gebaseerd is op de Jeffreys-Zellner-Siow prior
(Rouder et al., 2009) en hebben de voordelen daarvan gëıllustreerd aan de hand van gepubliceerde
data.

Deel IV. Verbeteren van de Onderzoekspraktijk

Het vierde en laatste deel van dit proefschrift richtte zich op suboptimale onderzoekspraktijken
binnen de psychologie.

In het tiende hoofdstuk introduceerde ik een nieuwe opzet voor samenwerking tussen voor- en
tegenstanders van een empirische bevinding (adversarial collaboration). Een toenemend aantal
wetenschappers suggereert dat horizontale saccadische oogbewegingen het ophalen van episodische
herinneringen in geheugentaken faciliteren. Een aantal studies heeft dit verband echter niet weten te
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reproduceren. We hebben gepoogd deze inconsistente bevindingen op te lossen door een gezamenlijk
onderzoek uit te voeren met voorstanders en sceptici. Onze aanpak combineerde elementen van een
adversarial collaboration (Kahneman, 2003) en volledig confirmatorisch gepreregistreerd onderzoek
(Wagenmakers et al., 2012). Conform de verwachtingen van de sceptici toonden de resultaten van
Bayesiaanse hypothesetoetsen aan dat horizontale oogbewegingen de prestaties in geheugentaken
niet verbeterden. Het toepassen van deze opzet vermindert de kans op het gebruik van questionable
research practices en heeft de potentie om wetenschappelijk onenigheden op te lossen.

In het elfde hoofdstuk presenteerde ik een vergelijking tussen het statistisch bewijs dat wordt
geleverd door p-waarden, effectgroottes en Bayes-factoren. Hierbij maakten we gebruik van 855
recent gepubliceerde t-toetsen in de psychologie. Hoewel de p-waarde en de Bayes-factor vrijwel
altijd dezelfde hypothese ondersteunden, was er vaak sprake van verschil tussen de kracht van het
geleverde bewijs; 70% van de p-waarden tussen 0.01 en 0.05 correspondeerden met Bayes-factoren
die slechts anekdotisch bewijs leverden voor de alternatieve hypothese. Daarnaast concludeerden
we dat de effectgrootte aanvullend bewijs kan leveren aan de p-waarde en de Bayes-factor.

In het twaalfde en laatste hoofdstuk, behandelde ik de meerweg-variantieanalyse (ANOVA).
Veel onderzoekers realiseren zich niet dat de veelgebruikte meerweg-ANOVA onderhevig is aan
kanskapitalisatie. We hebben het gebruik van sequentiele Bonferroni-correctie (Hartley, 1955)
gëıllustreerd. We lieten zien dat de conclusies die uit een ANOVA-design worden getrokken, vaak
veranderen na toepassing van deze correctie en raadden de consequente toepassing ervan aan.
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