CHAPTER 10

The Stop-Signal Paradigm

DORA MATZKE, FREDERICK VERBRUGGEN, AND GORDON D. LOGAN

INTRODUCTION

Response inhibition is considered to be a
key component of executive control (e.g.,
Aron, Robbins, & Poldrack, 2014; Logan,
1994; Miyake et al., 2000; Ridderinkhof, van
den Wildenberg, Segalowitz, & Carter, 2004;
Verbruggen, McLaren, & Chambers, 2014).
The concept refers to the ability to suppress
responses that are no longer required or
inappropriate, which supports flexible and
goal-directed behavior in ever-changing envi-
ronments. In everyday life, there are many
examples of the importance of response
inhibition, such as stopping yourself from
crossing a street when a car comes around
the corner without noticing you, or with-
holding your reflex to grasp a hot pan
falling from the stove. Furthermore, clini-
cal research suggests that impairments in
response inhibition may contribute to the
development of a range of psychopatho-
logical and impulse-control disorders, such
as attention-deficit/hyperactivity —disorder
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(ADHD), obsessive-compulsive disorder,
substance abuse, pathological gambling,
and eating disorders (e.g., Bechara, Noel, &
Crone, 2006; Crews & Boettiger, 2009; de
Wit, 2009; Fernie et al., 2013; Garavan &
Stout, 2005; Nigg, 2001; Noél, Brevers, &
Bechara, 2013). Response inhibition effi-
ciency also correlates with the treatment
outcome in people with such disorders (e.g.,
Nederkoorn, Jansen, Mulkens, & Jansen,
2007). Thus, response inhibition is crucial for
flexible, adaptive, and goal-directed behavior.

A paradigm that is most suitable for
the investigation of response inhibition
in a laboratory setting is the stop-signal
paradigm (Lappin & Eriksen, 1966; Logan &
Cowan, 1984; Vince, 1948; for reviews, see
Logan, 1994; Verbruggen & Logan, 2008b,
Verbruggen & Logan, 2009a). In the standard
stop-signal paradigm, participants usually
perform a choice response time (RT) task
(i.e., the go task; also referred to as the
primary task), such as responding to the
direction of an arrow (e.g., press a left key
for a left-pointing arrow and a right key for
a right-pointing arrow). Occasionally, the go
stimulus is followed by a stop signal (e.g., an
auditory tone or an additional visual stimu-
lus) after a variable delay (stop-signal-delay;
SSD), instructing subjects to withhold their
response. Figure 10.1 depicts an example
of the trial course of a stop-signal experi-
ment. Typically, participants can inhibit their
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Figure 10.1 Depiction of a trial course in the stop-signal paradigm. In the go task, subjects respond
to the direction of an arrow (the go stimulus; a “left arrow” requires a left response and a “right arrow”
requires a right response). On a minority of the trials, the go stimulus is followed by an auditory stop
signal after a variable stop-signal delay, instructing participants to withhold their response. Participants
can successfully inhibit their response when the stop signal is presented close to the moment of go
stimulus presentation, but they cannot inhibit their response when the stop signal is presented close to

the moment of response execution.

response when the stop signal is presented
close to the moment of go stimulus presen-
tation, but they cannot inhibit their response
when the stop signal is presented close to the
moment of response execution.

The stop-signal paradigm is popular
because it allows researchers to estimate the
covert latency of the stop process: the stop-
signal reaction time (SSRT). For example,
SSRT has been used to explore the cog-
nitive and neural mechanisms of response
inhibition (e.g., Aron & Poldrack, 2006;
Debey, De Schryver, Logan, Suchotzki, &
Verschuere, 2015; Hanes, Patterson, &
Schall, 1998; Logan & Cowan, 1984; van
den Wildenberg, van der Molen, & Logan,
2002; Verbruggen, Stevens, & Chambers,

2014), the development and decline of
inhibitory capacities across the life span
(e.g., Chevalier, Chatham, & Munakata,
2014; Huizinga, Dolan, & van der Molen,
2006; Williams, Ponesse, Schachar, Logan, &
Tannock, 1999), and correlations between
individual differences in stopping and behav-
iors such as substance abuse, risk taking,
and more generally, control of impulses and
urges (e.g., Ersche et al., 2012; Schachar &
Logan, 1990; Whelan et al., 2012). Further-
more, stop-signal studies have shown how
response inhibition can be enhanced or
impaired by a variety of factors, including
motivational incentives, drugs, emotional
stimuli, or neurological disorders (e.g., Aron,
Fletcher, Bullmore, Sahaakian, & Robbins,
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2003; Boehler, Schevernels, Hopf, Stop-
pel, & Krebs, 2014; Fillmore, Rush, & Hays,
2002; Mulvihill, Skilling, & Vogel-Sprott,
1997; Tannock, Schachar, Carr, & Logan,
1989; Tannock, Schachar, & Logan, 1995;
Verbruggen & De Houwer, 2007). These are
just a few examples; for elaborate reviews,
see Bari and Robbins (2013), Chambers,
Garavan, and Bellgrove (2009), Logan
(1994), and Verbruggen and Logan (2008b).

SSRT can be estimated because per-
formance in the stop-signal task can be
formalized as an independent horse race
between a go process, triggered by the pre-
sentation of the go stimulus, and a stop
process, triggered by the presentation of the
stop signal (Logan & Cowan, 1984; Logan,
Van Zandt, Verbruggen, & Wagenmakers,
2014). When the stop process finishes before
the go process, response inhibition is suc-
cessful and no response is emitted; when the
go process finishes before the stop process,
response inhibition is unsuccessful and the
response is incorrectly emitted.

The role of inhibitory processes in many
executive control paradigms is debated (see
e.g., MacLeod, Dodd, Sheard, Wilson, &
Bibi, 2003), but most researchers have agreed
that some kind of inhibition is involved in
deliberately stopping a prepared motor
response. The idea that responses are actively
suppressed on stop-signal trials has received
support from brain stimulation studies. These
studies indicate that intracortical inhibitory
circuits in primary motor cortex are recruited
on stop-signal trials (e.g., Coxon, Stinear, &
Byblow, 2006; van den Wildenberg et al.,
2010). Furthermore, brain stimulation studies
suggest that both task-relevant and irrelevant
muscles are suppressed on stop-signal trials,
indicating that stopping can have global
effects on the motor system (Badry et al.,
2009; Greenhouse, Oldenkamp, & Aron,
2011; Majid, Cai, George, Verbruggen, &
Aron, 2012).

In this chapter, we present a theoretical
review of the independent horse-race model
and related models, and we discuss the most
important measures of inhibitory control
in the stop-signal paradigm. Up until the
section Estimating SSRT Variability, we
focus on the standard independent horse-race
model and related SSRT estimation tech-
niques, and largely follow the structure
and content of previous reviews by Logan
(1994), Verbruggen and Logan (2008b),
and Verbruggen and Logan (2009a). From
the section Estimating SSRT Distributions
onward, we describe the latest developments
in the model-based analysis of stop-signal
data, focusing on the estimation of SSRT
distributions, process models of response
inhibition, and variants of the stop-signal
paradigm. We conclude the chapter with
recommendations on how to run stop-signal
experiments, and how to report and interpret
findings from stop-signal studies.

INDEPENDENT HORSE-RACE
MODEL OF RESPONSE INHIBITION

To formally account for performance in
the stop-signal paradigm, Logan (1981)
and Logan and Cowan (1984) formalized
response inhibition as a horse race between
two independent processes: a go process and
a stop process. In this section, we briefly
describe the precursors of the horse-race idea
and then present the mathematical details of
the independent horse-race model.

For simplicity, we first assume that SSRT
is constant, but later we introduce the com-
plete horse-race model that treats both go
RTs and SSRTs as random variables. We
assume throughout the chapter that the go
process is entirely under the voluntary con-
trol of the participants, without a ballistic
component that must run to completion once
it has been launched, and therefore, cannot
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be inhibited. Although this is likely to be
an unrealistic assumption, the contribution
of ballistic processing to go RTs has been
shown to be very brief and happen only
very late in responding (e.g., de Jong, Coles,
Logan, & Gratton, 1990; Logan & Cowan,
1984; McGarry & Franks, 1997; McGarry,
Inglis, & Franks, 2000; Osman, Kornblum, &
Meyer, 1986). Furthermore,
that the distribution of the stop signals is
random and that stimuli in the go task are
not consistently associated with stopping.
(Note that this assumption is met in most
stop-signal studies.) When the stimulus-stop
mapping is consistent (e.g., when left arrows
are always followed by a stop signal), partic-
ipants can learn stimulus-stop associations
(Verbruggen & Logan, 2008a; for a review,
see Verbruggen, Best, Bowditch, Stevens, &
McLaren, 2014). The retrieval of such asso-
ciations will interfere with going and can
influence SSRT estimates because respond-
ing may be suppressed before the stop signal
is presented.

we€ assume

Early Horse-Race Models

The idea that response inhibition can be
conceptualized as a race between two com-
peting processes has been around well before
Logan and Cowan’s (1984) formal descrip-
tion of the horse-race model. The horse-race
idea was qualitatively present in the work
of Vince (1948) who observed that partici-
pants were unable to stop their responses to
the go stimulus when the stop-signal delay
was longer than 50 ms. Lappin and Eriksen
(1966) used a visual stop-signal task and
found that participant slowed their RT to the
go stimulus in order to keep response rate
constant across the stop-signal delays.
Although these findings suggest that par-
ticipants’ ability to stop is determined by
the relative finishing times of their go and
stop process, the formalization of response

inhibition as a horse race had to await the
work of Ollman (1973), who applied the
stop-signal procedure to a response timing
task, in which participants were asked to
produce a response of a given duration.
Ollman proposed that participants perform
the stop-signal task by setting a subjective
deadline for the go response. If the stop
signal is detected before the deadline, the go
response is successfully inhibited; if the stop
signal is detected after the deadline, the go
response is incorrectly emitted. Ollman’s
model assumed that the finishing times of
the go and the stop process follow a normal
and exponential distribution, respectively.
Although the model with its specific para-
metric assumptions was not supported by
empirical data, Ollman’s work paved the way
for the quantitative description of response
inhibition as a horse race between a go and a
stop process, an idea that has dominated the
literature even since.

Independent Horse-Race Model:
The Basics

As mentioned earlier, the independent horse-
race model (Logan, 1981; Logan & Cowan,
1984) assumes that response inhibition can
be conceptualized as a race between two
independent processes: a go process that
is initiated by the go stimulus, and a stop
process that is triggered by the stop signal.
If the stop process finishes before the go pro-
cess, the response is successfully inhibited;
if the go process finishes before the go pro-
cess, the go response is erroneously emitted.
Thus, the horse-race model posits that the
outcome of response inhibition depends on
the relative finishing times of the go and the
stop process.

Logan and Cowan’s (1984) conceptualiza-
tion of response inhibition as a race between
two competing processes is consistent with
Ollman’s (1973) model. Their horse-race
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model, however, is more general: It makes
predictions about the interplay between
RTs and response rate that do not require
specifying the functional form of the go RT
and SSRT distribution. The generality of the
model and the precise mathematical descrip-
tion of the race allowed Logan and Cowan
to develop distribution-free measures of the
efficiency and the latency of the stop process
(i.e., SSRT). This development has proved to
be a milestone in the quantitative assessment
of response inhibition in various scientific
disciplines within as well as outside of psy-
chology. For example, SSRT has been used
in pharmacological, psychiatry, and neu-
roscience research (see the Supplementary
Information of Verbruggen, Chambers, &
Logan, 2013, for an overview of the different
research areas).

The generality of the horse-race model,
however, comes at a price. The model does
not specify the underlying processes that pro-
duce behavior in the stop-signal paradigm.
Thus, the horse-race model can describe but
cannot explain differences in inhibition per-
formance between individuals, populations
or experimental conditions. Although the
horse-race model cannot give direct insights
into the process of stopping (cf. the section
Process Models of Response Inhibition),
it can be used to test hypotheses about the
nature of response inhibition if predictions
are formulated in terms of the accuracy and
the speed of the stop process and in terms of
factors that affect these. In this respect, the
horse-race model is similar to signal detec-
tion theory, a popular and very general model
for analyzing decision-making processes in
the presence of uncertainty (Green & Swets,
1966; MacMillan & Creelman, 2004).

Independent Horse-Race Model With
Constant SSRT

In its most simple form, the independent
horse-race model assumes that go RT is a

random variable and, conditional on stop-
signal delay, SSRT is constant. Although the
assumption of constant SSRT is implausible,
ignoring variability in SSRT simplifies the
derivation of the model.

Panel A in Figure 10.2 shows a graphical
representation of the model. The go RT
distribution represents the distribution of the
finishing times of the go process. If T}, is a
random variable representing the finishing
times of the go process with continuous
probability density function f,,(7) for 7 > 0,
then the mean and variance of the go RT
distribution equal:

T, = /0 tf o (D)dt (1)

and
2 _ ® N2
Ogo = / (t—Tg,,) fg,,(t)dt, 2)
0

respectively. The vertical dotted line in
Figure 10.2 represents the unobservable
response to the stop signal. On a given
stop-signal delay, the white area to the right
of the vertical line represents go RTs that are
too slow to win the race; the white area under
the curve therefore represents the probability
of inhibiting the go response—Pj,pi(tssp)-
The gray area to the left of the vertical line
represents go RTs that are fast enough to
win the race; the gray area under the curve
therefore represents response rate, that is, the
probability of incorrectly responding to the
go stimulus—Ppg,o,q(fssp)-

Panel B in Figure 10.2 illustrates how
performance in the stop-signal paradigm is
determined by the relative finishing times
of the go and the stop process. The model
assumes that the go response is success-
fully inhibited if 7, > (ty,, + t55p), Where
Iyop and fgg, are constants representing
SSRT and stop-signal delay, respectively.
Stop-signal trials resulting in successful
inhibitions are called signal-inhibit trials.
In contrast, the go response is incorrectly
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Figure 10.2 Graphical representation of the independent horse-race model with constant stop-signal
reaction time. Panel A shows that response rate (i.., Pregonq(tssp)) and the probability of inhibition (i.e.,
Py nivic(tssp)) are determined by the stop-signal delay (SSD), the stop-signal reaction time (SSRT), and
the go RT distribution. Panel B shows that the go response is incorrectly emitted if T,, < (t, + tssp)s
resulting in a signal-respond trial. In contrast, the go response in successfully inhibited if T,, > (t,, +

tggp)s resulting in a signal-inhibit trial.

SOURCE: Adapted from Matzke, Dolan, et al. (2013).

emitted if T, < (fy,, + tssp)- Stop-signal
trials resulting in erroneous go responses are
called signal-respond trials, and the corre-
sponding RTs are called signal-respond RTs.

The model predicts that the probability of
responding on a given stop-signal delay is
given by:

t.rmp +issp
PRespond(tSSD) = / fgo(t)dl. 3)
0

The mean of the signal-respond RTs is
given by:
1

PRespond(tSSD)
I.wop'HSSD
x / oo ()
0

It follows from Equation (4) that mean
signal-respond RT is necessarily faster than
mean go RT. The model also predicts that
mean signal-respond RT increases with
increasing stop-signal delay and approaches
mean go RT in the limit. The relationship

Tsp(tssp) =

between mean signal-respond RT and mean
go RT is also evident from Panel A in
Figure 10.2, where the gray area represents
the signal-respond RT distribution. The mean
of the signal-respond RTs is necessarily
faster than the mean of the go RTs because
mean signal-respond RT only represents
the mean of those responses that were fast
enough to finish before the stop signal (i.e.,
its calculation does not include the slow tail
of the go RT distribution), whereas mean go
RT represents the mean of all go responses.
With increasing stop-signal delay, the stop
response cuts off more of the go RT distribu-
tion (i.e., the vertical line shifts to the right),
resulting in an increase in the gray area and
therefore an increase in mean signal-respond
RT (Logan & Cowan, 1984).

Inhibition Functions

According to the independent horse-race
model, differences in inhibition performance
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can be entirely accounted for by the interplay
between stop-signal delay, SSRT, and the
location and variability of the go RT distri-
bution. The interplay between these factors
is often depicted using inhibition functions,
functions that describe the relationship
between stop-signal delay and response rate.
These functions are important theoretically
because they reflect the outcome of the race
between the go process and the stop process
(Logan and Cowan, 1984). They are impor-
tant empirically because they reflect the
ability to control responses; they can be used
to compare inhibitory control in different
groups, tasks, and conditions.

The effect of stop-signal delay on the
inhibition function is shown in Panel A of
Figure 10.3. The horse-race model posits that
stop-signal delay biases the finishing time of
the stop process relative to the go process. As
stop-signal delay increases, the stop process
is triggered later and later. The stop response,
therefore, cuts off an increasingly larger
portion of the go RT distribution, resulting
in an increase in response rate. Theoreti-
cally, if the stop signal occurs sufficiently
early, participants can always inhibit the
go response, resulting in a response rate of
0 for short stop-signal delays. If the stop
signal occurs sufficiently late, participants
can never inhibit the go response, result-
ing in a response rate of 1 for very long
stop-signal delays. As shown in the right
panel, between these two extremes, response
rate increases monotonically with increasing
stop-signal delay.

The effect of increasing go RT on the
inhibition function is shown in Panel B of
Figure 10.3. The go RT distribution is shifted
to longer RTs (i.e., it is shifted to the right)
relative to the go RT distribution in Panel A.
For the same stop-signal delay and SSRT, the
stop response cuts off a smaller portion of the
go RT distribution, resulting in a decrease in
response rate. As shown in the right panel,

the resulting inhibition function is shifted to
the right relative to the inhibition function in
Panel A (i.e., dashed line). This prediction of
the race model resonates with the empirical
finding that participants can slow their go
RTs in order to keep response rate constant
across the stop-signal delays (Lappin &
Eriksen, 1966).

The effect of go RT variability on the
inhibition function is shown in Panel C of
Figure 10.3. The variance of the go RT
distribution is larger relative to the go RT dis-
tribution in Panel A. For the same stop-signal
delay and SSRT, a smaller portion of the
go RT distribution falls between any two
consecutive stop-signal delays. As shown
in the right panel, the resulting inhibition
function is flatter than the inhibition function
in Panel A.

The effect of SSRT on the inhibition func-
tion is show in Panel D of Figure 10.3. SSRT
is progressively increased relative to SSRT in
Panel A. For the same stop-signal delay and
go RT distribution, the stop response cuts off
a larger portion of the go RT distribution,
resulting in an increase in response rate. As
shown in the right panel, the resulting inhibi-
tion function is shifted to the left relative to
the inhibition function in Panel A.

Diagnosing Deficient Inhibition:
Aligning Inhibition Functions

The goal of the quantitative analysis of
stop-signal data is to detect differences in
inhibition performance between populations,
strategies, tasks, or experimental manipu-
lations. Deficiencies in response inhibition
may result from a slower or more variable
stop process, or from a stop process that is
not triggered reliably by the stop signal. All
these possibilities impair participant’s ability
to stop and result in an increased response
rate. However, an increase in response
rate does not necessarily imply decreased
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Figure 10.3 The effect of stop-signal delay (Panel A), go RT (Panel B), go RT variability (Panel C),
and stop-signal reaction time (Panel D) on the inhibition function. SSD = stop-signal delay, SSRT =
stop-signal reaction time.
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inhibitory ability; for instance, two partici-
pants with similar inhibitory ability can differ
in response rate as a result of differences in
the speed of their go process.

When response rate is plotted against
stop-signal delay, the horse-race model
predicts that an increase in mean go RT
shifts the inhibition function to the right
(Figure 10.3, Panel B), an increase in go RT
variability (Panel C) decreases the slope of
the inhibition function, and an increase in
SSRT shifts the inhibition function to the left
(Panel D). Therefore, inhibitory deficits can
be diagnosed by testing whether inhibition
functions in the different populations or
conditions can be aligned by accounting for
differences in mean go RT, differences in
go RT variability, and differences in SSRT.
Note that the tests are based on visual eval-
uation of the inhibition functions and not
on quantitative assessment of the alignment.
Successful alignment indicates that the same
inhibitory process applies to all populations
or conditions, albeit with differences in go
RT and/or differences in SSRT (Logan, 1994;
Logan & Cowan, 1984).

First, if inhibition functions can be aligned
by plotting response rate against Tgu —tgsps
then differences in response rate between
groups or conditions are only due to differ-
ences in mean go RT (e.g., Logan, Cowan, &
Davis, 1984; Schachar & Logan, 1990).
Note that the same reasoning does not apply
to go RT variability; the horse-race model
does not predict that accounting for go RT
variability by plotting response rate against
(Tgy — tssp)/ 0y, should bring the inhibi-
tion functions into alignment (e.g., Logan
et al., 1984). Second, if inhibition functions
can be aligned by plotting response rate
against (Tg(, — Issp — Lyop)/ O, (the so-called
ZRFT transformation), then differences are
due to differences in go performance as
well as differences in SSRT (e.g., Logan &
Cowan, 1984; Logan et al., 1984; Schachar &

Logan, 1990; van der Schoot, Licht, Hors-
ley, & Sergeant, 2000). Thus, differences
in response rate only indicate differences in
response inhibition ability if accounting for
SSRT is necessary to bring the inhibition
functions into alignment.

If inhibition functions cannot be aligned
by these transformations, the independent
horse-race model with constant SSRT cannot
account for the data of one or more pop-
ulations or conditions (Logan & Cowan,
1984). Misalignment is often manifested in
differences in the slope of the transformed
inhibition functions, and may indicate dif-
ferences in the variability of the stop process
or differences in the ability to trigger the
inhibition mechanism (Badcock, Michie,
Johnson, & Combrinck, 2002; Schachar &
Logan, 1990; Tannock et al., 1995). Theoret-
ically, estimates of SSRT variability from the
complete horse-race model (see Estimating
SSRT Variability and Estimating SSRT Dis-
tributions) and estimates of the probability
of trigger failures (see the section How to
Collect Stop-Signal Data) may be used to dis-
entangle the effects of SSRT variability and
triggering deficiencies on the slope of ZRFT
transformed inhibition functions. Band, van
der Molen, & Logan (2003) argued, how-
ever, that differences in ZRFT transformed
inhibition functions could not be uniquely
attributed to differences in the variability of
the stop process or differences in trigger fail-
ures because the ZRFT transformation fails
to account sufficiently for go RT variability.
Therefore, differences in inhibition functions
should be interpreted carefully because it
is not always entirely clear what factors are
causing the misalignment.

The Complete Independent
Horse-Race Model

The complete independent horse-race model
treats go RT, SSRT, and the time required
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for ballistic processes as independent ran-
dom variables. For the formal derivation of
the complete horse-race model, the reader
is referred to Logan and Cowan (1984).
Here we reiterate their main results without
accounting for the ballistic component, and
set the stage for introducing approaches to
SSRT estimation that do not rely on the
oversimplified assumption of constant SSRT.

The complete horse-race model assumes
that both go RT and SSRT are independent
random variables. As shown in Figure 10.4,
the underlying horse-race idea remains the
same, but SSRT—just like go RT—can now
take on a different value on every stop-signal
trial. The model posits that the go response
is successfully inhibited (resulting in a
signal-inhibit trial) if T,, > (T, + tssp).
where T, and 7j,,, are independent random
variables representing the finishing time of
the go and the stop process, respectively, and
tggp 1S a constant representing stop-signal
delay. In contrast, the go response is incor-
rectly emitted (resulting in a signal-respond
trial) if Ty, < (T4, + Lssp)-

Signal-respond RT distribution ——

The model predicts that the probability of
responding on a given stop-signal delay is
given by:

PRespond(tSSD)
=/ Foo®) (1= Fpt = t55p)) dt, ()
0

where F,, (1 —tggp) is the cumulative dis-
tribution function of the finishing times of
the stop process at fggp. It follows from
Equation (5) that increasing stop-signal delay
increases the probability of responding by
decreasing Fy,,(t — fg5p). The distribution
of signal-respond RTs on a given stop-signal
delay is given by:
- Fst()p(l - tSSD)

1
Fsr(tltssp) = foo (D ————— (6)

PRespond(tSSD)

The complete horse-race model predicts
that the signal-respond RT distribution and
the go RT distribution share a common
lower bound. At higher quantiles, however,
the cumulative distribution functions of the
two distributions diverge; the shorter the
stop-signal delay, the steeper the rise of

«—— go RT distribution

, PP
SSD SSRT, P
SSRT, g

—_—>
time

SSRT,

onset
go stimulus

onset
stop signal

<—— SSRT distribution

Figure 10.4 Graphical representation of the complete horse-race model. SSD = stop-signal delay;

SSRT = stop-signal reaction time.

SoURCE: Adapted from Matzke, Dolan, et al. (2013).
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the cumulative distribution function of the
signal-respond RTs. The common lower
bound also implies that mean signal-respond
RT is shorter than mean go RT (Colonius,
Ozyurt, & Arndt, 2001; Osman et al., 1986).

Inhibition Functions

According to the complete horse-race model,
varying stop-signal delay in Equation (5) will
produce the inhibition function. Similar to
the horse-race model with constant SSRT,
the complete model predicts that increasing
mean go RT decreases the probability that
the go process wins the race and results
in a rightward shift in the inhibition func-
tion. In contrast, increasing mean SSRT
decreases the probability that the stop pro-
cess wins the race and results in a leftward
shift in the inhibition function. Increasing
go RT or SSRT variability influences the
slope of the inhibition function (Logan &
Cowan, 1984).

Logan and Cowan (1984) showed that
treating the inhibition function as a cumu-
lative distribution allows one to express its
mean and variance in terms of the mean
and variance of the go RTs and SSRTs. In
particular, the mean of the inhibition function
equals the difference between mean go RT
and mean SSRT:

TSSD = Tgo - Tstop‘ (7

The variance of the inhibition function
equals the sum of the variances of the go RTs
and SSRTs:

6§SD = 0'§0 + 0'S2mp. (8)

As we show in the section Estimating
Summary Measures of SSRT, Equation (7)
suggests an easy to use method to estimate
mean SSRT that does not rely on the unlikely
assumption of constant stopping latencies.
The complete horse-race model is not lim-
ited to estimating the central tendency of

the finishing time distribution of the stop
process; the model enables the estimation
of limits on the moments of the distribution
of the stop process and the ballistic com-
ponent. However, nonparametric estimation
of moments of SSRT distributions higher
than the first degree requires data quality that
is often unavailable in typical stop-signal
studies (Logan, 1994; Matzke, Dolan, Logan,
Brown, & Wagenmakers, 2013).

Independence Assumptions

In order to simplify the derivation of the
horse-race model, Logan and Cowan (1984)
assumed that the go process and the stop
process are independent of one another.
The independence assumption allows one to
treat the go RT distribution on go trials (i.e.,
trials without stop signal) as the underlying
distribution of go RTs on stop-signal trials.
The horse-race model relies on two types
of independence: stochastic independence
and context independence. According to
the stochastic independence assumption, on
a given trial, the finishing time of the go
process is independent of the finishing time

of the stop process: for all 7,, and z,,,

P(Tgo <lg N Tsmp < tsmp)

= P(Tgo < tgo) X P(Tmp < t_m,,,). 9)

According to the context independence (or
signal independence) assumption, the distri-
bution of the finishing times of the go process
is the same on go trials and stop-signal trials:
for all 7,,, and fgg)),

P(T,, <ty,) = P(Ty, <tgltssp).  (10)

Importantly, the horse-race model does
not assume functional independence between
the go and the stop process. Functional inde-
pendence means that factors that influence
the finishing time distribution of the go
process do not influence the finishing time
distribution of the stop process, and vice
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versa. In fact, several neuropsychological
and behavioral studies have shown that the
go and the stop process are not function-
ally independent, for example, when the go
task requires response selection (Logan et al.,
1984; Szmalec, Demanet, Vandierendonck, &
Verbruggen, 2009) or Stroop-like interfer-
ence control (Chambers et al., 2007; Kramer,
Humphrey, Larish, Logan, & Strayer,
1994; Ridderinkhof, Band, & Logan, 1999;
Verbruggen, Liefooghe, & Vandierendonck,
2004, 2006). In contrast, other studies have
provided evidence for the functional inde-
pendence of the go and the stop process,
for instance, for situations in which the pri-
mary task involves interference due to task
switching or dual-task interference due to
multiple response alternatives (Logan et al.,
2014; Verbruggen, Liefooghe, Szmalec, &
Vandierendonck, 2005).

STOP-SIGNAL REACTION TIMES

The stop-signal paradigm owes its popular-
ity to the underlying horse-race model that
enables researchers to estimate the latency
of the stop process. SSRTs play a pivotal
role in diagnosing deficient response inhibi-
tion in clinical populations and in assessing
participants’ stopping ability across dif-
ferent tasks and experimental conditions.
Various methods are available to estimate
SSRTs. The most popular methods focus
exclusively on obtaining summary measures
of the latency of stopping (see Estimating
Summary Measures of SSRT), but the com-
plete horse-race model also allows for the
estimation of SSRT variability (see Estimat-
ing SSRT Variability). More recent methods
provide researchers with the possibility to
estimate the entire distribution of SSRTs
(see Estimating SSRT Distributions), to
estimate the parameters of the underlying
stop (and go) process (see Process Models

of Response Inhibitions), and to quantify
the relative contribution of trigger failures
to stop-signal performance (How to Collect
Stop-Signal Data).

Estimating Summary Measures
of SSRT

Various methods are available to estimate
summary measures, such as the mean, of
the latency of the stop response. The meth-
ods differ in whether they treat SSRT as a
constant or as a random variable. Which esti-
mation method is most suitable also depends
on how stop-signal delay is set. There are
two procedures for setting stop-signal delay:
(1) using some number of fixed stop-signal
delays (i.e., the fixed-SSDs procedure) or
(2) adjusting stop-signal delays dynam-
ically (i.e., the tracking procedure). The
most common tracking procedure involves
adjusting stop-signal delay after every
trial (i.e., the one-up/one down procedure;
see Logan, Schachar, & Tannock, 1997;
Verbruggen & Logan, 2009a; Verbruggen
et al., 2013): At the beginning of the exper-
iment, stop-signal delay is set to a specific
value (e.g., 250 ms) and is then constantly
adjusted after stop-signal trials, depending
on the outcome of the race. When inhibition
is successful, stop-signal delay increases
(e.g., by 50 ms); when inhibition is unsuc-
cessful, stop-signal delay decreases (e.g.,
by 50 ms). This one-up/one-down track-
ing procedure typically results in overall
Prespona = 0.50, which means that the race
between the stop process and the go process
is tied.

Fixed Stop-Signal Delays

The integration method is the most popular
method when fixed stop-signal delays are
used (Logan & Cowan, 1984). The integra-
tion method assumes that SSRT is constant



and allows for the estimation of SSRT
for each stop-signal delay separately. For
any given stop-signal delay, the integration
method involves finding the value of 7, in
the upper limit of the integral in Equation (3)
for which the area of the go RT distribution
equals Pg,,onq(tssp)- In practice, go RTs are
rank ordered and the n go RT is selected,
where n is the number of go RTs multi-
plied by Pregona(tssp)- Stop-signal delay
is then subtracted to arrive at an estimate
of SSRT.

SSRTs estimated with the integration
method decrease with increasing stop-signal
delay (Logan & Burkell, 1986; Logan &
Cowan, 1984). Estimates from different
stop-signal delays are therefore averaged to
arrive at a single SSRT estimate for each par-
ticipant. Note that the decrease in estimated
SSRT as a function of stop-signal delay is
not necessarily at odds with the indepen-
dence assumption but can be explained by
variability in SSRT. Suppose that SSRTs
have a constant mean and nonzero variance.
At short stop-signal delays, a large por-
tion of the SSRT distribution will produce
successful response inhibition; estimated
SSRT therefore closely approximates the
mean of the entire SSRT distribution.
At long stop-signal delays, only a small
portion of the SSRT distribution will pro-
duce successful inhibition; estimated SSRT
is therefore lower than the mean of the
entire SSRT distribution (de Jong et al.,
1990; Logan & Burkell, 1986; Logan &
Cowan, 1984).

Contrary to the integration method, the
mean method assumes that SSRT is a ran-
dom variable. As shown in Equation (7),
mean SSRT can be computed by subtract-
ing the mean of the inhibition function
from mean go RT (Logan & Cowan, 1984).
In the unlikely scenario that the observed
inhibition function ranges from O to 1, the
mean of the inhibition function can be
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computed using the values of the i,
stop-signal delays and the
corresponding response rates:

i=2,...,n,

n
Tssp = Z tssp, (P RespondIssp,)
i

(1)

- PRespond(tSSDi_l )> .

In case of truncated inhibition functions,
the right side of Equation (11) must be
divided by (PRewmd

max

truncated inhibition functions lose

- PRespondmm)' How-
ever,
information about the tails of the distribution,
which may affect estimates of the mean,
particularly when the distribution is skewed.

If the inhibition function is symmetri-
cal, the mean of the inhibition function in
Equation (7) may be replaced by the median
(Logan & Cowan, 1984). The use of the
median is motivated by its ease of computa-
tion: The median of the inhibition function is
the stop-signal delay where Ppg,g,,,, = 0.50.
In principle, two stop-signal delays are suffi-
cient to estimate the median of the inhibition
function, one with Pg,g,,,, < 0.50 and one
with Pp,,onq > 0.50. The median can be then
obtained by interpolation. If one is willing to
assume a parametric form for the inhibition
function, the median may be also obtained
by fitting a Weibull or logistic function to
the observed inhibition function (Chambers
et al., 2006; Hanes & Schall, 1995). Note that
the Weibull function is not always symmetric,
in which case the median cannot replace the
mean. A related method entails subtracting
the median of the inhibition function from
the median of the go RTs. This method is
not justified by the mathematics of the race
model unless the mean equals the median.
As opposed to the integration method, the
mean and the median methods do not provide
SSRT estimates for each stop-signal delay
separately.

The integration method and the mean
method both produce reliable SSRT estimates
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in combination with fixed stop-signal delays,
provided that the mean of the inhibition
function (Equation (11)) is estimated accu-
rately. The use of fixed stop-signal delays,
however, requires a relatively large number
of observations. For instance, Band et al.
(2003) advised researchers to present par-
ticipants with at least 900 go trials and 60
stop-signal trials on five different stop-signal
delays to obtain reliable estimates using the
integration method.

Tracking Procedure

The mean method is the most popular method
for estimating SSRTs when the tracking pro-
cedure is used to set stop-signal delays
(Logan & Cowan, 1984; Logan, Schachar, &
Tannock, 1997). When tracking results in
an overall Pg,,,,q 0of 0.50, the mean of the
inhibition function is given by the mean
of the stop-signal delays, provided that the
inhibition function is symmetrical. Once
the mean of the inhibition function is com-
puted, mean SSRT can be obtained using
Equation (7). Due to its simplicity, the mean
method has become the dominant method for
estimating SSRTs (Verbruggen et al., 2013)
and has been implemented in the popular
STOP-IT software (Verbruggen, Logan, &
Stevens, 2008).

The integration method in combination
with tracking entails selecting the n” go
RT, where n equals the number of RTs in
the go RT distribution multiplied by the
overall Pr,o,,,g- SSRT is then obtained by
subtracting mean stop-signal delay from
the nth go RT (e.g., Ridderinkhof et al.,
1999; Verbruggen et al., 2004; Verbruggen,
Stevens et al., 2014). The median method
entails subtracting mean stop-signal delay
from the median of the go RTs (e.g., Aron &
Poldrack, 2006); however, there is no justi-
fication for the median method in the race

model. The race model makes predictions
about mean RT and the mean of the inhibi-
tion function (Logan & Cowan, 1984). The
relationship in Equation (7) does not hold
for medians.

Methods relying on tracking require
fewer observations for accurate and reliable
SSRT estimation than methods that use
fixed stop-signal delays (Band et al., 2003;
Congdon et al., 2012; Williams et al., 1999).
Researchers are recommended to present
participants with approximately 120-150
go trials and 40-50 stop-signal trials in
combination with the tracking procedure
(Verbruggen & Logan, 2009a). Verbruggen
et al. (2013) showed, however, that the
mean method overestimates SSRTs when
go RTs are right-skewed or when partici-
pants gradually slow their responses over the
course of the experiment. The integration
method is less sensitive to the skewness of
the go RT distribution, but it underestimates
SSRTs in the presence of response slowing.
The bias as a result of response slowing
disappears when the integration method is
applied to smaller blocks of trials as opposed
to the entire experiment. Verbruggen and
colleagues therefore recommended that
researchers use the block-wise integration
method to estimate SSRTs in combination
with the tracking procedure.

Estimating SSRT Variability

Two populations or experimental groups
may not only differ in mean SSRT, but may
also differ in the variability of the latency
of the stop response. Logan and Cowan’s
(1984) treatment of the inhibition func-
tion as a cumulative distribution function
provides a method for estimating SSRT vari-
ability. They observed that, in symmetrical
distributions, the variance is proportional
to the slope of the cumulative distribution



function at the median. For instance, if we
assume a normal distribution, the slope
of the inhibition function at the median is
given by:

1
Bys =

OssD 2r

(12)

SSRT variability can be obtained by solv-
ing Equation (12) for ogg, and substituting
the solution in Equation (8):

2
2 1 2
Ostop = — Ogp- (13)
g (30.5 vV 27[) ‘

Note that the computation of SSRT
variability using Equations (12) and (13)
assumes a particular parametric form for the
inhibition function. This approach is there-
fore less general than Logan and Cowan’s
(1984) nonparametric method for deriving
the limit on the second moment of the SSRT
distribution (see Inhibition Functions). More-
over, reliability studies have shown that the
parametric method overestimates the true
variability in stopping latencies when inhi-
bition functions are not symmetrical (Band
et al., 2003).

Estimating SSRT Distributions

It is well known in the response-time-
modeling literature that relying on mea-
sures of central tendency, such as the mean,
may miss important features of the data
(e.g., Heathcote, Popiel, & Mewhort, 1991;
Matzke & Wagenmakers, 2009). Likewise,
using only summary measures of SSRT may
mask crucial aspects of stop-signal data
and may lead to erroneous conclusions about
response inhibition. For instance, two clinical
populations may have the same mean SSRT,
but their SSRT distributions may follow
markedly different shapes. The development
of methods that enable researchers to esti-
mate the entire distribution of SSRTs has
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been an important advance in the stop-signal
literature.

Nonparametric Estimation

Colonius (1990) and de Jong et al. (1990)
developed a general approach for estimat-
ing the entire distribution of SSRTs. They
showed that the survival distribution of
SSRTs on a given stop-signal delay is given
by (see also Equation (6)):

1- Fxtop(t - tSSD)
Fsr(tltssp)

Jao(®

In line with the generality of the horse-race
model, this method does not hinge on the
specific parametric form assumed for the
finishing times of the go and the stop process;
all that is required are nonparametric density
estimates for f,, () and fgg(7|75sp). Once the
survival distribution of SSRTSs is obtained,
the quantiles of the SSRT distribution can be
easily derived.

The nonparametric formulation, however,
comes at a price: The Colonius—de Jong
method requires an unrealistically large
number of observations to accurately capture
the tail of the SSRT distribution (Band et al.,
2003; Logan, 1994; Matzke, Dolan, et al.,
2013). As a result, the method has never been
used with empirical data.

(14)

= PRespond(tSSD)

Parametric Estimation

Process models provide parametric ways of
estimating SSRT distributions, which will be
discussed later in the section Process Mod-
els of Response Inhibition. Matzke, Dolan,
et al. (2013) proposed a purely descriptive
parametric method that allows researchers to
estimate the entire distribution of SSRTs. By
assuming a specific parametric form for the
go RTs and SSRTs, this approach can provide
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accurate estimates of SSRT distributions even
with relatively few observations.

According to the parametric approach,
the likelihood on the r=1, ...,R, signal-
respond trials is given by:

LSR(ego ’ Hstop | L, tssd)

R
=Hfgo(tr|0go) (1 - Fstop(tr - txsdlg.\“top)) >

r=1
(15)

where f,,(1,10,,) is the probability density
function of the finishing time distribution
of the go process with parameters 6,, and
Fop(t, — 1554105, 1s the cumulative distribu-
tion function of the finishing time distribution
of the stop process at f,;, with parameters
Oy0p- The likelihood on the i=1,....1,
signal-inhibit trials is given by:

Ll(gga’ Hstop | L tssd)

! o
= H/(; (1 - Fgo(tilego))

sttop([i - tssdleslop)d[i’

where F,,(#;]0,,) is the cumulative distribu-
tion function of the finishing time distribution
of the go process with parameters 6,, and
Jsiop(ti = 4541040p) 1s the probability density
function of the finishing time distribution of
the stop process at #,,; with parameters 6,,.
Note that the likelihood on signal-inhibit
trials requires integrating over ¢; because RTs
on signal inhibit-trials—the SSRTs—are by
definition unobserved.

Matzke, Dolan, et al.’s (2013) parametric
approach relies on the ex-Gaussian dis-
tribution to quantify the shape of the go
RT and SSRT distribution (e.g., Heathcote
et al., 1991; Matzke & Wagenmakers, 2009).
The ex-Gaussian distribution is a three-
parameter convolution of a Gaussian and
an exponential distribution: the p and o
parameters quantify the mean and the
standard deviation of the Gaussian com-
ponent and reflect the leading edge and

(16)

mode of the distribution; 7 quantifies
the mean of the exponential component
and reflects the slow tail of the distribu-
tion. The model postulates six ex-Gaussian
parameters: three parameters for the go RT
distribution, 9g0 = [pgo, Ggo,‘tgo], and three
parameters for the SSRT distribution, 8, =
[stop> Ostops Tsiopl- Mean go RT is given by
Hgo + Tg, and mean SSRT is given by p,, +
Ty0p- NOte that the ex-Gaussian distribution
may be substituted with other RT distribu-
tions, such as the Wald, the Weibull, or the
lognormal distribution (e.g., Heathcote, 2004;
Heathcote, Brown, & Cousineau, 2004). The
model does not interpret the ex-Gaussian
distribution as a two stage model, as the con-
volution might suggest, nor does the model
interpret u, o, and 7 as parameters of the
underlying processes (Matzke & Wagenmak-
ers, 2009). The model uses the ex-Gaussian
distribution because it is easy to work with
mathematically and computationally.
Parameter estimation may proceed by
means of standard maximum likelihood esti-
mation (e.g., Myung, 2003, Van Zandt, 2000).
However, as the parametric approach was
intended to handle individual as well as hier-
archical data structures, Matzke, Dolan, et al.
(2013) relied on Bayesian parameter esti-
mation instead (e.g., Lee & Wagenmakers,
2013). In the hierarchical approach, rather
than estimating parameters separately for
each participant,
parameters are modeled using truncated
normal population-level distributions. The
population-level distributions act as priors
that adjust—that is, shrink—poorly esti-
mated extreme parameter values to more
moderate ones. As a result, the hierarchical
approach can provide more accurate and less
variable estimates than individual estimation,
especially if only scarce participant-level
data are available (e.g., Farrell & Ludwig,
2008; Gelman & Hill, 2007; Rouder, Sun,
Speckman, Lu, & Zhou, 2003). The posterior

the participant-level



distribution of the model parameters can be
approximated using Markov chain Monte
Carlo sampling (e.g., Gilks, Richardson, &
Spiegelhalter, 1996), which has been imple-
mented in the BEESTS software (Matzke,
Love, et al., 2013).

Regardless of the type of stop-signal delay
setting, the Bayesian parametric approach
requires relatively few observations per
participant to produce reliable estimates of
SSRT distributions. The individual approach
provides accurate and precise parameter
estimates with approximately 250 stop-signal
trials. The hierarchical approach requires a
sample size of approximately 25 participants,
each performing as few as 100 stop-signal
trials (Matzke, Dolan, et al., 2013).

Chevalier et al. (2014) used the Bayesian
parametric approach to examine the effects
of practice on children’s stop-signal perfor-
mance. They found that practice differentially
effected the leading edge and the slow tail
of the SSRT distribution: Practice decreased
the p,, parameter, whereas it increased the
Tyop Parameter. Colzato, Jongkees, Sellaro,
van den Wildenberg and Hommel (2014)
used the Bayesian parametric approach to
show that the administration of tyrosine
(i.e., a precursor of dopamine) selectively
affects the pu,, parameter of the SSRT
distribution, resulting in a decrease in mean
SSRT, but no change in the shape of the
SSRT distribution.

PROCESS MODELS OF RESPONSE
INHIBITION

The independent horse-race model, including
its parametric variants discussed so far, are
purely descriptive; they enable researchers
to quantify the latency of the unobservable
stop response, but they do not specify the
processes that give rise to the finishing time
distribution of the go and the stop process.
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To explain how stopping occurs, one has to
rely on process models of response inhibition.
Process models give direct insights into the
mechanisms that implement going and stop-
ping and explain the effects of experimental
manipulations on stop-signal performance.

In this section, we outline two classes of
process models of response inhibition. The
first class of models—the Hanes-Carpenter
model and the race diffusion model—focuses
on describing the properties of the go and
the stop process in order to explain how the
finishing time distributions arise. The second
class of models—the interactive race model
and blocked input models—does not only
describe the nature of the processes that
race against each other, but also attempts to
explain how responses are stopped.

Describing the Properties of the
Go and Stop Process

The Hanes-Carpenter model and the race
diffusion model conceptualize response inhi-
bition as a race between a set of evidence
accumulators. The two models, however,
differ in the mathematical formulation of
the evidence accumulation process and the
type of go task that they can be applied to.
The Hanes-Carpenter model was developed
to describe how saccades are inhibited and
applies exclusively to simple RT go tasks
(i.e., go task with a single go response).
It does not account for choice errors. The
race diffusion model was developed to
describe stopping of all kinds of responses
in simple and choice RT tasks, accounting
for accuracy as well as RT. Note that most
stop-signal studies have used choice RT tasks
(for reviews, see Logan, 1994; Verbruggen &
Logan, 2008b). Both models can be con-
sidered as special cases of the Logan and
Cowan (1984) independent horse-race model
with specific parameterizations of the go and
Stop processes.
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Hanes-Carpenter Model of
Saccadic Inhibition

The Hanes-Carpenter model (Hanes &
Carpenter, 1999; see also Hanes & Schall,
1995; Hanes et al., 1998) aims to explain
the processes that are involved in a saccadic
version of the stop-signal task. Participants
fixate their gaze at a central fixation point,
and when the fixation point disappears, they
are required to make a saccade to a visual
target that appears in one of two positions
in the periphery. Occasionally, this go task
is interrupted by a visual stop signal (e.g.,
reappearance of the fixation point) that
instructs participants to withhold their eye
movement on that trial. Performance is much
like in stop-signal tasks with other responses,
except that go RTs and SSRTs are shorter
and participants never make choice errors.

The Hanes-Carpenter model is based
on the linear approach to threshold with
ergodic rate (LATER; Carpenter, 1981;
Carpenter & Williams, 1995) approach, a
model that has been successfully used to
describe the processes involved in the initia-
tion of saccades in humans. LATER assumes
that saccade initiation can be conceptual-
ized as a signal that rises linearly toward
a fixed threshold; when the signal reaches
the threshold, the saccade is initiated. The
rate of rise is assumed to vary from trial
to trial according to a normal distribution.
The Hanes-Carpenter model assumes that
the inhibition of saccades can be similarly
formalized as a rise-to-threshold mechanism,
such as the one shown in Figure 10.5, where
the go and the stop process rise linearly
toward their respective thresholds. If the
go process reaches the threshold first, the

* osfop
r stop
Stop process
SO stop
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Go process go
sO go
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onset onset Ostop
go signal stop signal reached

stop-signal delay

Figure 10.5 The Hanes-Carpenter model. The model assumes that the go process raises in a linear
fashion with rate r,, from a predefined starting point s, to a fixed threshold 6,,. Similarly, the stop

process raises in a linear fashion with rate r,,

from a starting point s, to a fixed threshold 6

In the

stop*

illustration, the stop process reaches the threshold before the go process; saccade initiation is therefore

inhibited.



saccade is initiated; if the stop process reaches
the threshold first, saccade initiation is inhib-
ited. The Hanes-Carpenter model is similar
to the Linear Ballistic Accumulator model,
which allows multiple choices and variation
in starting point to account for errors
(Brown & Heathcote, 2008).

Specifically, the Hanes-Carpenter model
assumes that the go process 7,, raises in a
linear fashion with rate r,, from a predefined
starting point s, to a fixed threshold 6,,,:

8040 T T'gol =60 (17)

8080 8o

If r,, is assumed to vary from trial to trial
according to a normal distribution with mean
Mg, and standard deviation o, the probabil-
ity density function of the finishing times of
the go process is given by:

Hgo — S0 g0

Jeo) = ———
¢ O'go\/ﬁlz

ego_ S0g0

2
t _Hé"’>

2
264,

Xexp|— . (18)

Similarly, the stop process 7, is assumed

stop

to increase linearly with rate rg,,

starting point sy, to a fixed threshold 6,,,,,
where the rate of rise is normally distributed
with mean p,, stop*
The probability density function of the fin-
ishing times of the stop process is given by
substituting the stop parameters in Equation
(18). The probability density function of
the signal-respond RTs and the survival
distribution of SSRTs can be obtained by
substituting into Equation (6) and (14),
respectively. The model also features two
fixed parameters that quantify the constant
processing time of the go and the stop signals.
The model parameters may be estimated
with Monte Carlo simulations (Hanes &
Carpenter, 1999) or with maximum likeli-
hood estimation (e.g., Corneil & Elsley, 2005;
Kornylo, Dill, Saenz, & Krauzlis, 2003) using

from a

and standard deviation o
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analytic expressions for the density functions
of the finishing time distributions and the
signal-respond RTs (Colonius et al., 2001).

The Hanes-Carpenter model can be used
to estimate SSRT. The mean finishing time
for the stop process is simply (6., = So4,) /
Tsiop- The distribution of finishing times for
the stop process can be obtained by substitut-
INg 7105 Sosiops AN by, Into Equation (18).
These statistics describe the “parent” distri-
bution of the stop runner in the race. To gen-
erate the distribution of finishing times when
the stop process wins the race, the distribution
from Equation (18) would have to be substi-
tuted into Equation (6).

Hanes and Carpenter (1999) successfully
applied the model to the data of four par-
ticipants and concluded that the process of
saccade inhibition can be described with an
independent race mechanism with a linear
rise to threshold. Colonius et al. (2001)
used the Hanes-Carpenter model to show
that saccade inhibition is more efficient in
response to auditory stop signals than visual
stop signals.

The Race Diffusion Model

The race diffusion model is a specific instan-
tiation of the general independent race model
developed by Logan et al. (2014). As the
name suggests, the general independent race
model is a generalization of the standard inde-
pendent horse-race model that can account
for go and stop performance in (multiple-)
choice RT tasks. The model assumes a race
between a set of stochastically independent
evidence accumulators (Ratcliff & Smith,
2004), one accumulator that corresponds to
the stop response and N accumulators that
correspond to the N possible responses on
the go task. The response and corresponding
RT on a given trial is determined by the first
accumulator that reaches its threshold. The
standard independent horse-race model is a
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special case of the general independent race
model with a single accumulator for the go
process and another one for the stop process.

The model predicts that the probability of
go response i, i =1, ...N, is given by the
probability that go process i finishes before
all other runners in the race:

[+3] J#i
PRespond,i(tSSD) = / fgoz(t) H gOJ(t)
0 JEN
X (1= Fyp(t = t55p)) dt,
(19)

where f,, ; is the probability density function
of the finishing times of the ith go accumula-
tor and F,,,(f — fggp) is the cumulative distri-
bution function of the finishing times of the
stop accumulator at tgg,. On go trials, t4g,
is set to oo, and Fi,,(f — fg5p) equals 0. The
probability of successful inhibition on a given

stop-signal delay is given by:
Prpivie(tssp) = / Sstop(t = tssp)

<[]0

ieN

— Fp D) di. (20)

The joint probability density function of
RTs given response i is then given by:

J#
Fooi® T (1= Foo )
JEN
f( | ) X (1 - Fstop(t - tSSD))
sP 1 = Ppipir(tssp)
20
On go trials, Fy,,, (t — tgsp) and Py (tssp)

both equal 0. On stop-signal trials, #¢g, << oo,
and Equation (21) gives the probability
density function of signal-respond RTs for
response i. The survival distribution of SSRT's
at a given stop-signal delay can be calculated
with the Colonius-De Jong method by sub-
stituting the probability density function of
the go RTs

JF

fo® =Y foi ] (1-

ieEN JEN

Foi®) (22)

and the probability density function of the
signal-respond RTs

J#i
2o [] (1= Fpp )
ieN JEN
X (1 - Fsmp(t - tSSD))

Tsaltlisso) 1= Ppapipie(tssp)
into Equation (14).

The general independent race model
makes general predictions about the interplay
between response rate and RT distribu-
without specifying the properties
of the accumulators that give rise to the
finishing time distributions.
specify the processes that generate the
finishing time distributions, Logan et al.
(2014) investigated three special independent
race models: the diffusion model (Ratcliff,
Van Zandt, & McKoon, 1999), the Linear
Ballistic Accumulator (Brown & Heath-
cote, 2008), and the Poisson counter model
(van Zandt, & Proctor, 2000).
All three models assume that each runner

tions

In order to

Colonius,

in the race is a stochastic accumulator,
but make different assumptions about the
nature of the evidence accumulation process.
All three models fit the data well, but the
race diffusion model did slightly better.
Here we follow Logan and colleagues and
only consider the race diffusion model in
more detail.

As shown in Figure 10.6, the race diffusion
model assumes that the stop accumulator and
each of the N go accumulators is a Wiener
diffusion process with drift rate &, starting
point 0, and a single threshold z. The model
also assumes a non-decision time @ param-
eter that quantifies the time required for
stimulus encoding and response execution
and a drift coefficient that was set to 1. The
finishing time distribution of each accu-
mulator is a Wald (i.e., inverse Gaussian)
distribution. The probability density func-
tion of the finishing time distribution of
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Figure 10.6 The race diffusion model. In the present illustration, the model assumes a race between
a set of stochastically independent evidence accumulators, one accumulator for the stop response, and
N =2 accumulators that correspond to the two possible responses on the go task (i.e., left or right-pointing
arrow). The model assumes that the accumulators can be described by a Wiener diffusion process with
drift rate &, starting point 0, threshold z, and non-decision time w. The stop accumulator reaches threshold
before either of the go accumulators; the go response is therefore inhibited.

go accumulator i, i=1, .. is thus

given by:

.N,

fi(t) = zi(2nt3)_% exp (—2%(5,1 — Z,-)z)

fort > 0. 24)

The probability density function of the
finishing time distribution of the stop accu-
mulator with support ¢ >t , can be obtained
by substituting (7 —1,,) for t, and &g,
and z for &; and z; in Equation (24).

stop

The finishing time distribution of the winner
of the race is given by the distribution of
the minima of the Wald distributions for all
the runners.

To account for the RTs of fast error
responses, Logan et al. (2014) extended the
model and allowed the threshold parameter
to vary across trials. Threshold was assumed
be a uniform random variable with support
[(z=a), (z + a)]. In the extended model, the
probability density function of the finishing
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time distribution of the ith go accumulator is
given by:

8itl&i, 2 a;
= 5 [#a) - $(8) — (@) ~ DB

for&, >0 and a; > 0, (25)

where ¢(x) and ®(x) are the probability
density and cumulative distribution function
of the standard normal distribution, respec-
tively, and a = _(Z_—“t_@ and f = @
Note that for a = 0, Equation (25) simplifies
to Equation (24). For & = 0, Equation (25)
simplifies to:

giilzna) = 5 [d@) - d(B)] . 6)
4a;

After substituting Equation (25) and
(26) into Equations (19)—(21), the model
parameters can be estimated with maximum
likelihood estimation (Van Zandt, 2000)
using the correct and error go RT distribu-
tions, the signal-respond RT distributions,
and the inhibition functions. The race dif-
fusion model can also be used to estimate
mean SSRT and SSRT distributions. The
parent SSRT distribution can be obtained by
calculating Equation (24) with the best-fitting
stop parameters. The distribution of winning
SSRTs can be obtained using Equation (21)
with the best fitting parameter estimates.
Logan et al. (2014) found that SSRTs cal-
culated from the model agreed well with
SSRTs calculated from the data with the
integration method.

Logan et al. (2014) applied the race
diffusion model to investigate capacity lim-
itations in the go and the stop process. To
test the hypothesis that the go and stop pro-
cesses share capacity, Logan and colleagues
assumed that the threshold parameter is
selectively influenced by strategic factors,
whereas the drift rate parameter is selec-
tively influenced by structural factors and
can therefore be interpreted as a measure of
processing capacity (Ratcliff & Smith, 2004;
Ratcliff et al., 1999). Eight different versions

of the race diffusion model were fit to the
stop-signal data of six participants. Each par-
ticipant performed three series of stop-signal
trials, one with two choice alternatives, one
with four choice alternatives, and one with
six choice alternatives on the go task. The
eight models imposed different combinations
of constraints on the drift rate and threshold
parameters of the go and the stop process as a
function of the number of choice alternatives.
In the best fitting model, the drift rate of the
go process decreased as the number of choice
alternatives increased but the drift rate of the
stop process did not vary with the number of
alternatives. The modeling results led Logan
and colleagues to conclude that (a) the go
process has limited capacity and (b) that the
stop process does not share capacity with the
go process. These findings support the func-
tional independence of the go and the stop
process (see Independence Assumptions).

Describing How Responses Are
Inhibited

The Hanes-Carpenter model and the race dif-
fusion model outlined in the previous section
describe the nature of the go and the stop
process but do not specify how responses
are stopped. The interactive race model and
blocked-input models of saccadic inhibition
address this limitation. The interactive race
model is a neurally plausible instantiation of
the standard independent horse-race model
that assumes that responses are stopped by a
mechanism that directly inhibits the growth
of activation of the go process. In contrast,
blocked-input models assume that stopping
is not a result of inhibiting the growth of
activation in the go process, but rather of
blocking the input to the go process, possibly
by inhibiting the process that generates drift
rates or the process that communicates them
to the response processes.

The interactive race model and blocked-
input models were developed within the
framework of neurally constrained cognitive
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modeling. Within this framework, evaluation contradiction between the results of neu-
of the descriptive accuracy of competing rophysiological and behavioral studies of
models is based on the models’ ability to saccade inhibition. On the neurophysiologi-
simultaneously account for behavioral and calside, itis well established that saccades are
neurophysiological data. This approach produced by inhibitory interactions between
is useful in situations in which compet- gaze-shifting neurons that are involved in
ing cognitive models are indistinguishable  saccade initiation and gaze-holding neurons
on grounds of the predictions they make that are involved in saccade inhibition (for
for behavioral data (i.e., model mimicry; , review, see Munoz & Schall, 2003). In
Logan, 2004; Myung, Pitt, & Kim, 2005; contrast, on the behavioral and modeling

Townsend & Ashby, 1983; Wagenmakers, gide there is substantial evidence for the
Ratcliff, Gomez, & Iverson, 2004). In par-

ticular, the additional constraints provided
by requiring models to account for essential
features of the neurophysiological data can
break model mimicry and can contribute
to a more principled choice among models
(Boucher, Palmeri, Logan, & Schall, 2007;
Logan, Yamaguchi, Schall, & Palmeri, 2015;
Hanes & Schall, 1996; Turner et al., 2013).

independence of the go and the stop pro-
cess. In particular, the standard independent
horse-race model has been repeatedly shown
to provide excellent description of behavior
in the stop-signal paradigm in general (see
the section Testing the Goodness-of-Fit of
the Horse-Race Model) and the saccadic
stop-signal task in particular (e.g., Hanes &
Carpenter, 1999).

To resolve this paradox, Boucher et al.
Interactive Race Model of Saccadic (2007) proposed a simple network shown
Inhibition in Panel A of Figure 10.7 that consists of
The interactive race model (Boucher a go (or move) and a stop (or fixation)
et al,, 2007) is inspired by the apparent unit that may interact via inhibitory links.

N
Panel A: Interactive Race Model Panel B: Blocked Input Model

kmove kﬁx kmove kfIX

ﬂmove @ ﬁmove @
Prix Prix
STOP
J

Figure 10.7 The architecture of the interactive race model and the blocked input model of saccadic
inhibition. Panel A: Interactive race model of saccadic inhibition. The go process is identified with
movement-related neurons and the stop process is identified with fixation-related neurons in frontal eye
fields and superior colliculus. In model fits, f,, is much larger than f,,,. Panel B: Blocked input model
of saccadic inhibition. In the first version of the model g, = f;, = 0. In the second version of the
model g, > 0 and B, > 0 to account for fixation-related activity at the beginning of a trial. Stopping
is accomplished by activating the stop process, which sets y,, . to zero.

SoURCE: Adapted from Logan, Yamaguchi, Schall, and Palmeri (2015), Figure 9.
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The interactive race model conceptualizes
the go unit as a stochastic accumulator that
gathers evidence to a threshold 6. The sac-
cade is initiated when activation in the go unit
reaches threshold. The stop process is for-
malized as a stochastic evidence accumulator
that stops saccade execution by inhibiting the
growth of activation of the go unit and pre-
venting it from reaching threshold. Inhibition
is thus successful if the stop unit becomes
active early enough and strongly enough to
suppress the activation of the go unit before
saccade initiation.

The model assumes constant rates of
rise to threshold with noise terms that are
drawn from zero-centered Gaussian distri-
butions. The following differential equations
(Usher & McClelland, 2001) describe the
change in activation of the go and stop units
within time step dt (% can be set to 1):

dt
damnve(t) = ?(”move - kmove * amove(t)

[ dt
- ﬁﬁx * aﬁx(t)) + ? Emove

27)

dt
daﬁx(t) = ?(uﬁx — kﬁx * aﬁx(t)

[dt
- ﬁmove * amove(t)) + ? 8ﬁx’

(28)

where p,,,, and p; represent the mean
growth rates of the go and the stop units,
respectively, and ¢,,,,, and &5, are Gaussian
noise terms with standard deviation o,,,,,
and o, that reflect the amount of noise
added in each step of the rise. The crucial
ingredient of the model is the inhibitory link
between the go and the stop unit: the g,,,,,
parameter reflects the inhibitory influence of
the go unit on the stop unit; g, reflects the
inhibitory influence of the stop unit on the go
unit. The amount of inhibition is determined
by the activation level a and ag;, at time
point ¢. The leakage parameters k ensure that

move

activation does not increase without bounds.
The model also features three parameters
that quantify the time needed for stimulus
encoding and for the ballistic stage of the go
process, some of which were fixed to values
derived from physiological measurements.
Model parameters can be estimated with
optimizing the fit between observed and
predicted data by minimizing a Pearson y?
statistic (Ratcliff & Tuerlinckx, 2002).

To assess the model’s ability to describe
the behavioral data (also see the section Test-
ing the Goodness-of-Fit of the Horse-Race
Model), Boucher et al. (2007) fit the model
to behavioral data from two monkeys who
performed the saccadic stop-signal task
and found good fits to inhibitions functions
and go RT and signal-respond RT distri-
butions. To assess the model’s ability to
predict the neurophysiological data, Boucher
and colleagues proposed a set of linking
propositions (Schall, 2004) that connects
the model architecture to underlying physi-
ology. In particular, they linked the go unit
to movement-related neurons and the stop
unit to fixation-related neurons in frontal
eye fields and superior colliculus (Hanes &
Schall, 1996; Pouget et al., 2011; Ratcliff,
Cherian, & Segraves, 2003). They suggested
that the inhibitory connections within the
circuit of fixation and movement neurons
were sufficient to explain the inhibition
of responses.

The interactive race model that best sat-
isfied the simultaneous constraints provided
by the neural and behavioral data assumed
that the inhibitory effect of the stop process
on the go process is delayed and very brief.
This result led Boucher et al. (2007) to
conclude that response inhibition consists
of two stages: during the first stage—the
encoding stage—the go and stop process are
independent; during the second stage—the
interruption stage—the stop process potently
inhibits the go process. As the interruption
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stage is very brief, SSRT estimates from
the independent horse-race model are valid
measures of the latency of stopping because
it mostly reflects the encoding stage of
response inhibition.

Blocked-Input Models of Saccadic
Inhibition

Logan etal. (2015) proposed a family of alter-
natives to the interactive race model that pro-
vide different explanations of how saccades
are stopped in the stop-signal task. Logan and
colleagues focused on blocked-input models
that postulate that saccades are not stopped
by directly inhibiting the growth of activation
of the go process, but rather by blocking the
input to the go unit, operationalized as setting
its drift rate to zero (Logan, 1983; Logan &
Cowan, 1984).

The blocked input model conceptualizes
the go (move) and the stop (fixation) units
(see Panel B of Figure 10.7) as two stochastic
accumulators that race toward their respec-
tive threshold 0,,,, and 6. The change
in activation of the go and stop unit can
be described with Equations (27) and (28).
According to the model, when the stop unit
activation reaches threshold 0ﬁx, it blocks the
input to the go unit by setting 4,,,,, equal
to 0. As a result, activation of the go unit
will not reach threshold 6,,,,,; go activation
will either hover (if k,,,,,, = 0) or will start to
decay (if k,,,,,, > 0).

Logan et al. (2015) first considered
a blocked input model in which g,
Bji = 0, and found that it fit the behavioral
data as well as the interactive race model.
The blocked input model provided a better
description of the physiological data; the
interactive race model predicted a reduc-
tion in go activation after the stop signal
that was much steeper than observed in the
neural activity. Logan et al. then extended
the models back in time to consider activity

at the start of the trial when the eyes were
fixated. Trials began with the fixation unit
fully activated and inhibiting the go pro-
cess, which had to overcome this inhibition
when a go stimulus appeared. These models
imposed strong constraints on the stop and
go parameters. In particular, fg and pg,
could not be so large that they inhibit all
growth in go activation, or else saccades
would never occur. These constraints led
to equivalent predictions of physiological
data but the blocked input model provided
a better account of the behavioral data than
the interactive race model. This led Logan
et al. to re-evaluate the linking propositions
that connected the stop process with fixation
neurons in frontal eye fields and superior col-
liculus. They concluded that fixation neurons
were not directly linked to the stop process
and instead identified the stop process with
a process outside the network that tips the
balance in favor of stopping or going.

TESTING THE GOODNESS-OF-FIT
OF THE HORSE-RACE MODEL

Conclusions from the model-based analysis
of response inhibition data are only warranted
if the independent horse-race model indeed
provides an adequate description of the
data. Nonparametric methods for assessing
the goodness-of-fit of the horse-race model
focus on evaluating the context independence
assumption by analyzing signal-respond
RTs. Parametric methods for assessing
goodness-of-fit also examine the descriptive
accuracy of the chosen parametrization.

Nonparametric Methods

Nonparametric methods for assessing the
goodness-of-fit of the horse-race model
rely on evaluating the context indepen-
dence assumption. The analyses proceed by
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comparing the mean and the entire distri-
bution of observed signal-respond RTs to
predictions from the independent horse-race
model.

First, as shown in Equation (4) and
Figure 10.2, the independent horse-race
model predicts that mean signal-respond
RT should be faster than mean go RT. As
explained in the section The Complete Inde-
pendent Horse-Race Model, this prediction
should hold regardless whether SSRT is
constant or it is a random variable (Colonius
et al., 2001; Logan & Cowan, 1984). This
prediction has been confirmed in many stud-
ies across a range of different populations
and experimental manipulations (e.g., de
Jong et al., 1990; Hanes & Schall, 1995;
Logan et al. 1984; Osman et al., 1986;
van den Wildenberg & van der Molen, 2004;
Verbruggen et al., 2004; Verbruggen, Stevens,
etal., 2014).

Second, as discussed in the section Inde-
pendent Horse-Race Model with Constant
SSRT, the independent horse-race model
predicts that mean signal-respond RT should
increase with increasing stop-signal delay.
This prediction can only be evaluated if a
large number of stop-signal trials and hence a
large number of signal-respond RTs are avail-
able on each stop-signal delay; with a small
number of stop-signal trials, the estimation of
the mean signal-respond RTs will be unsta-
ble. The increase in mean signal-respond RT
as a function of stop-signal delay has been
confirmed in many studies (de Jong et al.,
1990; Hanes & Schall, 1995; Logan et al.,
1984; Osman et al., 1986). Other studies
have, however, reported violations of this
prediction especially at short stop-signal
delays that typically feature only a small
number of signal-respond RTs (e.g., Logan,
1981, Logan et al., 1984).

Third, the independence assumption is
often tested by comparing the observed
mean signal-respond RTs to the mean

signal-respond RTs predicted by the inde-
pendent horse-race model. Predicted mean
signal-respond RTs can be generated for each
stop-signal delay by rank-ordering the go
RTs and calculating the mean of the n fastest
go RTs, where n is computed by multiplying
the number of go RTs with Pg,,.q(tssp)
(see the section Fixed Stop-Signal Delays).
Several studies have reported only negligible
differences (e.g., de Jong et al., 1990; Hanes
& Schall, 1995; Logan & Cowan, 1984),
whereas others have found substantial dis-
crepancies between observed and predicted
mean signal-respond RTs (e.g., Colonius
et al.,, 2001, van den Wildenberg et al.,
2002; Verbruggen et al., 2004), especially
at short stop-signal delays. However, testing
differences between observed and predicted
mean signal-respond RTs is not a conclusive
test of the independence assumption of the
horse-race model. The method of generating
predicted signal-respond RTs is based on the
unrealistic assumption of constant SSRT. As
a result, signal-respond RTs that are longer
than (Tstop+tSSD) are excluded from the
computation of mean signal-respond RT,
which results in a downward bias for the
predictions. Moreover, Band et al. (2003)
showed that the difference between observed
and predicted mean signal-respond RT is
not only sensitive to violations of context
independence, but is also strongly influenced
by SSRT variability; even if context inde-
pendence holds, increasing SSRT variability
increases the difference between observed
signal-respond RT.
Band and colleagues also showed that the

and predicted mean

difference between observed and predicted
signal-respond RT is not sufficiently sensitive
to violations of the stochastic independence
assumption of the horse-race model.

Lastly, the independent horse-race model
makes specific predictions for the entire dis-
tribution of signal-respond RTs. As discussed
in the section The Complete Independent
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Horse-Race Model, the model predicts that
the signal-respond RT distribution and the go
RT distribution share a common lower bound,
and diverge at higher quantiles. Moreover, the
shorter the stop-signal delay, the steeper the
rise of the cumulative distribution function
of the signal-respond RTs. Although these
predictions have been confirmed by several
studies (e.g., Boucher et al., 2007; Camalier
et al.,, 2007; Osman et al., 1986), others
have reported violations of the distribution
equality test (Colonius et al., 2001).

Parametric Methods

Parametric methods for assessing the
goodness-of-fit of the horse-race model focus
on the adequacy of the chosen architecture
and the descriptive accuracy of the para-
metric form assumed for the finishing time
distribution of the go and the stop process.
Parametric methods proceed by compar-
ing the observed data to data predicted by
the model.

Matzke, Dolan, etal. (2013) used Bayesian
posterior predictive simulations (Gelman,
Meng, & Stern, 1996) to examine the
descriptive accuracy of their ex-Gaussian
distributional approach by comparing predic-
tions based on the joint posterior distribution
of the model parameters to the observed
data. Matzke and colleagues reported that
the model provided an adequate descrip-
tion of the inhibition functions and the
signal-respond RT distributions of most par-
ticipants. Logan et al. (2014) confirmed the
goodness-of-fit of the race diffusion model by
comparing the observed inhibition functions,
error rates, and go RT and signal-respond RT
distributions to model predictions generated
with the maximum likelihood estimates from
the best fitting model. Logan et al. (2015;
see also Boucher et al. 2007) assessed the
descriptive accuracy of the interactive-race
and the blocked-input model by comparing

the observed inhibition functions and the go
RT and signal-respond RT distributions to the
ones predicted by the best fitting parameter
values obtained by minimizing a Pearson y?2
statistic.

Similarly, Hanes and Carpenter (1999)
relied on the comparison between observed
and predicted
signal-respond RT distributions to verify
the goodness-of-fit of their model. How-
ever, Colonius et al. (2001) reported that
the horse-race model in general and the
Hanes-Carpenter model in particular failed
to account for the signal-respond RTs of
one of their three participants, suggesting a
violation of independence.

inhibition functions and

The Independence Assumption
in Practice

Stop-signal data from simple stopping tasks
are mostly consistent with the independence
assumptions of the horse-race model, but
more complex selective stopping tasks have
shown consistent violations of independence
(e.g., Bissett & Logan, 2014; Verbruggen &
Logan, 2015). Logan and Cowan (1984)
introduced the independence assumptions to
simplify the mathematical derivation of the
horse-race model. Violations of the context
and stochastic independence assumptions,
however, should not be taken lightly as they
invalidate calculations based on the race
model. Band et al. (2003) showed that vio-
lations of stochastic independence may bias
SSRT estimates and influence the slope of
the ZRFT transformed inhibition function
(see also de Jong et al., 1990).

Fortunately, traditional SSRT estimation
methods that rely on central stop-signal
delays where Pp,,,,, approximates 0.50 are
relatively unaffected by minor violations of
the independence assumptions (Band et al.,
2003). Hence the mean method, whether used
in combination with fixed stop-signal delays
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or delays resulting from tracking, is robust to
violations of independence (although it may
suffer from other problems, as discussed in
the sections Estimating Summary Measures
of SSRT and How to Analyze Stop-Signal
Data). Similarly, the integration method
results in reliable SSRT estimates as long as
computations are based on the central part of
the inhibition function. The midpoint of the
inhibition function is automatically obtained
with tracking, but can also be approximated
with fixed stop-signal delays that fall in the
central part of the inhibition function (see
e.g., Logan et al., 1984; Logan et al., 2014).
Note, however, that the integration method
assumes that SSRT is constant, an assumption
that is necessarily at odds with the possibility
of a correlated go and stop process. Presently
there are no reliability studies available for
Matzke, Dolan, et al.’s (2013) distributional
approach and the complex process models of
response inhibition discussed in the section
Process Models of Response Inhibition.

VARIANTS OF THE STOP-SIGNAL
TASK

So far, we have focused on performance
in the stop-signal task in which participants
responded to a go stimulus, but withheld their
response whenever a stop signal occurred.
In this section, we will briefly discuss some
variants of the standard stop-signal task.

Stopping in Stop-Change and Selective
Stop Tasks

Two popular variants of the stop-signal task
are the stop-change task and the selective
stop task. In stop-change tasks, subjects
are instructed to stop the originally planned
go response and execute an alternative
“change” response when a signal occurs (for
reviews, see Boecker, Gauggel, & Drueke,

2013; Logan & Burkell, 1986; Verbruggen &
Logan, 2009a). Experimental, computational,
and neuroimaging work suggests that partici-
pants first inhibit the original go response and
then execute the alternative change response
(Boecker et al., 2013; Camalier et al., 2007,
Jha et al., 2015; Verbruggen, Schneider, &
Logan, 2008). In selective stop tasks, subjects
are instructed to stop their response on some
signal trials, but not on others (for a short
review, see Bissett & Logan, 2014). There
are two variants of the selective stop task: In
stimulus selective stop tasks, different signals
can be presented and subjects must stop if
one of them occurs (valid signal), but not if
the others occur (invalid signals); in motor
selective stop tasks, subjects must stop some
of their responses (critical responses) but not
others (non-critical responses).

The independent horse-race model has
been applied to the stop-change task and the
selective stop task to estimate SSRT. Several
studies indicate that going in the primary
go task and stopping are independent in the
stop-change paradigm. For example, Logan
and Burkell (1986) directly compared per-
formance in a stop-change task (with only
valid signals) with performance in a dual-task
paradigm. They found a standard dual-task
effect in the dual-task task: When the delay
between two go stimuli decreased, the latency
of the second response increased (indicating
dual-task interference). A similar dual-task
effect was observed on signal-respond trials
in the stop-change task: When the delay
between the go stimulus and the change
signal decreased, the latency of the change
response increased (indicating dual-task
interference). However, when inhibition of
the first response was successful, stop-change
performance was not affected much by the
delay between the go stimulus and the change
signal (see e.g., Hiibner & Druey, 2006, for
a replication). In another study, Verbruggen,
Schneider, et al. (2008) manipulated the



delay between the stop signal and a signal
indicating which change response had to
be executed. As this delay increased, the
probability of stopping the primary task
response changed very little, which indicates
that the stop process was not influenced by
the selection and execution of the change
response. Combined, these studies indicate
that stopping is largely independent from
going in the primary task and going in the
secondary task in the stop-change paradigm,
which is consistent with the independent
horse-race model.

Most researchers in the selective stop
literature also assume that the decision to
stop or not stop does not interact with ongo-
ing go processes. (Note that they have to
make this assumption to estimate SSRT.)
However, Bissett and Logan (2014) found
that signal-respond RT and invalid-signal
RT were sometimes longer than go RT in
stimulus-selective stop tasks. A similar pat-
tern of results was observed by de Jong,
Coles, and Logan (1995) in a motor variant
of the selective stop task: Signal-respond
RTs for critical responses and signal RTs
for non-critical responses were longer than
go RT. These findings suggest that selecting
the appropriate response to the signal may
interact with ongoing go processes (violat-
ing the context independence assumption
of the independence horse-race model; see
earlier). Verbruggen and Logan (2015) tested
the hypothesis that the go and stop process
share capacity in selective stopping tasks by
manipulating the consistency of mapping
between signals and the requirement to stop
or ignore in response to the signal. In consis-
tent mapping conditions, each signal played
the same role throughout the experiment; in
varied mapping conditions, the role changed
repeatedly over the course of the experiment.
Following Shiffrin and Schneider (1977) and
others, they assumed the varied mapping
conditions would demand more capacity than
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the consistent mapping conditions, and so
should produce larger violations of context
independence. That is what they found.
These selective stopping results are inter-
esting in contrast with simple stopping, where
increasing the capacity demands of the go
process has no effect on the stop process (see
the section The Race Diffusion Model). We
propose that this is due to the low selection
demands in standard stop-signal tasks. This
does not imply that capacity sharing can never
occur in these tasks. The stop rate parameters
depend on the discriminability, intensity, and
modality of the stop signal (e.g., van der
Schoot, Licht, Horsley, & Sergeant, 2005),
which could be interpreted as a capacity
limitation (Logan et al., 2014). Furthermore,
competition between visual signals in the
go and the stop tasks can influence stopping
(Verbruggen, Stevens, et al., 2014), which
is consistent with the idea that stimuli have
to compete for limited processing capacity
(e.g., Bundesen, 1990; Desimone & Duncan,
1995). Finally, “functional dependence”
(see the section Independence Assumptions)
could also be interpreted as a capacity lim-
itation. Thus, it seems that under certain
circumstances, capacity sharing may occur
in simple stop-signal and stop-change tasks.

Discrete Versus Continuous Tasks

Most stop-signal tasks involve the execution
and inhibition of discrete key presses. A few
studies have also explored stopping in contin-
uous stop-signal tasks (e.g., Morein-Zamir,
Chua, Franks, Nagelkerke, & Kingstone,
2006; Morein-Zamir, Nagelkerke, Chua,
Franks, & Kingstone, 2004; Morein-Zamir &
Meiran, 2003). In such tasks, a target moves
on the screen and participants are instructed
to track it with a mouse or by pressing a
force sensor. After a variable delay, a stop
signal is presented, instructing the participant
to stop the continuous response as quickly
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as possible. SSRT can be defined as the
moment at which substantial deceleration
(Morein-Zamir & Meiran, 2003) or pressure
offset (Morein-Zamir et al., 2004) occurs.

A main advantage of a continuous stop
task is that the mean and the variabil-
ity of SSRT can be measured directly.
For example, Morein-Zamir, Hommersen,
Johnston, and Kingstone (2008) examined
performance of children with ADHD and
matched control participants in a discrete
(standard) stop-signal task and in a contin-
uous (force-pressure) variant. In both tasks,
SSRT was longer for children with ADHD
than for the control children. This is consis-
tent with other studies (for meta analyses,
see e.g., Oosterlaan, Logan, & Sergeant,
1997; Lipszyc & Schachar, 2010). Further-
more, the continuous variant revealed that
stopping latency was also more variable in
children with ADHD. Thus, stopping seems
both slowed and more variable in children
with ADHD.

The direct measurement of SSRT in
continuous stop-signal tasks brings two
additional advantages. First, fewer trials
may be required to obtain a reliable SSRT
measure. Second, SSRT can be measured
even when the independence assumptions
are violated. As discussed in the section The
Independence Assumption in Practice, in
discrete stop-signal tasks, SSRT estimates
may be unreliable when the assumptions of
the independent horse-race model are vio-
lated. Continuous stop tasks do not require
the independence assumptions to estimate
SSRT. Therefore, they can provide an index
of inhibitory control (broadly defined)
even when going and stopping interact or
share processing capacity (for an alternative
procedure, see Verbruggen & Logan, 2015).

In sum, continuous variants of the stop task
seem to have certain advantages. However,
only a few studies have used these tasks,
and it remains unclear to what extent the

same cognitive and neural mechanisms are
involved in stopping discrete and continuous
responses. Brunamonti, Ferraina, and Paré
(2012) compared stop performance in tasks in
which participants had to press a button with
a finger, move a joystick with their wrists, or
reach to a stimulus with their arms. SSRT was
similar in all tasks, indicating that common
inhibitory control mechanisms were involved
(see also Chen, Scangos, & Stuphorn, 2010).
Furthermore, Morein-Zamir et al. (2004)
found that SSRTs in discrete and continuous
tasks are highly correlated. These findings
indicate an overlap in control mechanisms.
But despite the large overlap, some studies
indicate differences between controlling
continuous and discontinuous movements
(e.g., Spencer, Zelaznik, Diedrichsen, & Ivry,
2003). Furthermore, many processes are
involved in stopping actions (see the section
How to Interpret Stop-Signal Data). Thus,
further research is required to determine
which control processes overlap and which
processes differ.

USERS’ GUIDELINES

The soundness of conclusions from stop-
signal studies depends on the quality of the
data and the validity of the resulting SSRT
estimates. In this section we present a number
of recommendations on how to run, report,
and interpret the results from stop-signal
experiments.

How to Run Stop-Signal Experiments

How to Collect Stop-Signal Data

The stop-signal paradigm is simple and
elegant but conducting experiments is com-
plicated by inherent trade-offs between
stopping and going: Participants succeed at
the go task by going faster but they succeed at
the stop task by going slower. Somehow, they



must balance these demands. Many studies
have shown how the balance they choose can
be influenced by factors in the experimental
design. The most important factor is the
predictability of the stop signal: If the stop
signal is predictable, participants will adjust
their behavior to exploit the predictability.

Recommendation 1: Use a broad range
of stop-signal delays. One important dimen-
sion of stop signal predictability is stop-signal
delay. Participants adapt to the range of
delays in the experiment (Lappin & Eriksen,
1966; Logan, 1981; Ollman, 1973), slowing
go RT to increase the probability of stop-
ping. Best performance is obtained with a
broad range of delays that span the entire
inhibition function (Logan, 1981). Under
those conditions, the occurrence of the stop
signal is maximally unpredictable, so par-
ticipants have no predictability to exploit.
This is easily accomplished by setting fixed
delays and it is usually accomplished by
the tracking procedure, which often pro-
duces bell-shaped distributions of stop-signal
delays. We caution against more sophisti-
cated tracking procedures that reduce the
step size to converge on a single value, as
that would reduce the range of stop-signal
delays and increase the predictability of the
stop signal. It may be better to combine
them with two fixed delays, one so early that
participants can nearly always stop and one
so late that participants can rarely or never
stop (e.g., Janssen, Heslenfeld, van Mourik,
Logan, & Oosterlaan, 2015).

Recommendation 2: Present stop sig-
nals on a minority of trials. Another
important dimension of stop-signal pre-
dictability is the probability that a stop
signal will occur on a given trial. Partici-
pants slow down as stop-signal probability
increases (Logan, 1981; Logan & Burkell,
1986), even in the tracking procedure,
which  keeps  Ppg,g,,q constant at 0.5
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(Bissett & Logan, 2011; Verbruggen &
Logan, 2009b). Stop-signal probability typ-
ically varies between 0.1 and 0.3. Larger
values produce greater slowing that may
reflect strategic changes in the go task. Other
things equal, we recommend choosing a stop
signal probability between 0.1 and 0.3.

Recommendation 3: Take steps to avoid
slowing in anticipation of stop signals.
Participants almost always slow go RT when
stop signals are presented. The slowing
appears to result from a proactive strategy
intended to increase probability of successful
inhibition. It can be elicited by cues indicat-
ing that stop signals may occur on the next
few trials: Slowing occurs on the trial imme-
diately after the cue, before any stop signals
have been presented (Verbruggen & Logan,
2009b). Proactive slowing can be modeled
successfully as an increase in the threshold
for the go response, which is a strategically
controlled parameter in the race diffusion
model (Logan et al., 2014; Verbruggen &
Logan, 2009b). Furthermore, recent find-
ings indicate that participants also adjust
attentional settings when they expect a stop
signal (e.g., Elchlepp, Lavric, Chambers, &
Verbruggen, 2016).

Proactive slowing is ubiquitous but it is
often relatively stable over the experiment.
When it is stable, the race-model calcula-
tions can be applied using the RTs from
no-stop-signal trials to estimate the go RT
distribution. However, some participants
slow progressively over the experiment, as if
they are trying to beat the tracking algorithm.
Progressive challenges
for analysis. It biases estimates of SSRT
(Verbruggen et al., 2013). Sometimes the
bias can be reduced by calculating SSRT
in each block and collapsing across blocks
(Verbruggen et al., 2013). However, some
participants slow so dramatically that the
tracking algorithm cannot keep up with them.

slowing presents
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Their response probabilities on stop trials
do not converge on 0.5; response rates are
usually much lower. Such data sets cannot be
analyzed meaningfully with the race model
and so should be discarded.

What can be done to control proactive
slowing in anticipation of stop signals? The
recommendations in Logan (1994) are still
effective: Introduce the go task first without
the stop task and allow participants some
practice to get a feel for the task. Perhaps
present them with some feedback about their
RT and accuracy at the end of this practice.
Then introduce the stop task and explicitly
instruct participants not to slow their go
RTs. Perhaps allow some practice before
collecting the data for the main experiment.
To control progressive slowing, we have
been giving participants feedback about
go RT and accuracy (number of incorrect
trials and number of missed trials) and the
probability of inhibition at the end of each
block during the experiment (e.g., Bissett &
Logan, 2011; Verbruggen, Stevens, et al.,
2014). We have participants write down the
numbers and give them to us to be sure they
attend to them.

Recommendation 4: Look for trigger
failures and correct for them. Participants
sometimes ignore the stop signal entirely,
responding regardless of whether or not a
stop signal occurs (Logan & Cowan, 1984).
Such trigger failures can bias estimates of
stopping latencies, let these be summary
measures or SSRT distributions, and result
in distorted inhibition functions (Band et.
al., 2003; Matzke, Love, & Heathcote, 2017;
Verbruggen, Stevens, et al., 2014). Failures
to trigger the stop process on a constant
proportion of the stop-signal trials compress
the inhibition function. The lower asymptote
of the compressed inhibition function equals
the probability of a trigger failure. Formally,
for a given trigger failure probability P, the

response rate on a given stop-signal delay is
given by:

PRespond(PTF’ tSSD)
= (1 = Prp)Prespond( tssp) + Prp. (29)

Thus, a lower asymptote greater than
zero is diagnostic of trigger failures. Few
stop-signal studies include enough short
stop-signal delays to estimate the lower
asymptote accurately, however. Alterna-
tively, one may fit a Weibull function to
the inhibition function with the minimum
and maximum point as free parameters; the
estimated minimum point would reflect the
probability of trigger failures (e.g., Hanes
et al., 1998).

Trigger failures also result in signal-
respond RT distributions that are mixtures of
the “true” signal respond RT distribution and
the go RT distribution:

Fse(tltssps Prr)
= Prfoo(D) + (1 = Prp)fsg(tltssp). (30)

Mixture distributions generally have larger
variability than their parents, so inflated
variance in signal-respond RTs may be diag-
nostic of trigger failures. Plots of signal-
respond and go RT distributions may also
be informative. Without trigger failures, the
upper tail of the signal-respond RT distri-
bution (e.g., the 95th percentile) is shorter
than the upper tail of the go RT distribution.
With trigger failures, the upper tail of the
observed signal-respond RT distribution is
also the upper tail of the go RT distribution.
Thus, failures of signal-respond and go RT
distributions to diverge at the upper quantiles
may be diagnostic of trigger failures.

In order to estimate the probability of trig-
ger failures and correct the resulting bias in
SSRT estimates, Matzke et al. (2017) propsed
to parametrize the mixture in Equation (30)
assuming ex-Gaussian distributions for the go
RT and SSRT distributions (see also Matzke,



Dolan, et al., 2013). The Bayesian hierar-
chical implementation of the trigger-failure
model provides accurate and precise param-
eter estimates with relatively scarce data.
Matzke and colleagues reanalyzed two pub-
lished stop-signal data sets (Badcock et al.,
2002; Hughes, Fulham, Johnston, & Michie,
2012) and showed that the trigger-failure
model provided a better description of the
data than the standard ex-Gaussian Bayesian
parametric approach (Matzke, Dolan, et al.,
2013). On average, participants failed to
trigger the stop process on 8%—9% of the
stop-signal trials. Although the probability
of trigger failure was relatively modest,
its presence was shown to severely distort
SSRT estimates.

How to Analyze Stop-Signal Data

Recommendation 1: Fit process models to
the data and interpret the data in terms
of those processes. The process models
described in the section Process Models of
Response Inhibitions provide good accounts
of observed behavior and the underlying
physiology, describing performance as a
stochastic decision (Boucher et al., 2007,
Hanes & Carpenter, 1999; Logan et al., 2014;
Logan et al., 2015). These models estimate
the distribution of SSRTs as well as its mean,
and the distributions may reveal interesting
differences between conditions and groups.
The models interpret performance in terms
of drift rates, starting points, and thresh-
olds. Concepts like strategic slowing, post
stop-signal slowing, and inhibitory deficits
might be better articulated in terms of these
more fundamental properties of the decision
process than simply in terms of mean SSRT.
Stochastic decision models have provided
tremendous insight into go processes and
go RT (Ratcliff, Smith, Brown, & McKoon,
2016). They should provide similar insights
the stop-signal task. Note that
analyzing stop-signal data using process

into
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models requires more data points (and there-
fore longer experiments) than computing
summary measures of SSRT using traditional
estimation methods.

Recommendation 2: Estimate the dis-
tribution of SSRTs. If researchers are not
interested in the details of the underlying
process and are satisfied with measures of
SSRT, we suggest they harness the Bayesian
parametric approach (Matzke, Dolan, et al.,
2013) and its trigger-failure variant (Matzke
et al., 2017) to estimate the distribution of
SSRTs. User friendly software that imple-
ments powerful Bayesian methods is freely
available (BEESTS; Matzke, Love, et al.,
2013), and analyses of distributions may
reveal patterns of data that are obscured in the
means. For example, mean SSRT =y, +
stop 50 ¢ and 7 may differ between condi-
tions that produce equivalent mean SSRTs.
They have different effects on variability
and can be separated by fitting BEESTS
to the data.

T

Recommendation 3: Use the mean
method with caution. The mean method
produces valid, mathematically justified
estimates of mean SSRT if the independence
assumptions hold and the means of the
go distribution and the inhibition function
are estimated accurately (Logan & Cowan,
1984). Unfortunately, few studies estimate
the mean of the inhibition function directly
(e.g., using Equation (11)). Instead, most esti-
mate the median of the inhibition function
with the tracking procedure. If the inhibition
function is asymmetrical, the median will
underestimate the mean, and consequently,
overestimate SSRT (Verbruggen et al., 2013).
Inhibition functions are likely to be asym-
metrical when the go RT distribution is
skewed. This can be seen in Equation (3),
which defines the inhibition function when
SSRT is constant as the integral of the go RT



34 The Stop-Signal Paradigm

distribution from 0 to (fy,, + fgsp). The
inhibition function is simply the go RT
distribution shifted to the right by SSRT.
Any skew in the go RT distribution will
necessarily appear in the inhibition function.
Since most RT distributions are skewed, we
can expect most inhibition functions to be
skewed, and thus, we can expect the median
of most inhibition functions to underestimate
the mean we need for calculating SSRT.
What should researchers do about that?

The simplest possibility is to abandon
the mean method and use the integration
method instead, as Verbruggen et al. (2013)
recommended, but the simplicity of the mean
method is seductive. If researchers succumb
to the seduction, we recommend that they
check for skew in the go RT distributions.
One method for checking skew is to fit the
ex-Gaussian distribution to the go RTs and
examine estimates of 7. Verbruggen et al.
showed that estimation errors occurred pri-
marily with large values of 7, so researchers
might compare their values of 7z with the
values Verbruggen et al. used to determine
whether the skew in the go RTs compromises
estimation of SSRT. Similarly, researchers
could compare 7 between groups to see if
group differences in SSRT might be arti-
facts of differences in skew. However, if
researchers are willing to fit ex-Gaussian
distributions to their go RTs, we recommend
they fit BEESTS to the whole data set and get
estimates of the entire distribution of SSRTs.

We also suggest trying to estimate the
mean of the inhibition function directly,
through Equation (11), and using the mean
to calculate SSRT, as the race model dictates.
This works best when the entire inhibition
function can be estimated, as in experiments
with a broad range of fixed delays. The
effects of skew on the mean depend on
the tails of the distribution, so estimating the
mean of a truncated inhibition function may
underestimate the actual mean. The tracking
procedure typically produces a bell-shaped

distribution of stop-signal delays with sparse
tails that may not extend to the extremes of
the inhibition function (Pggp,,q =0 or 1).
We have not explored this possibility through
simulations, but it would be very informative
to do so.

We recommend against using the median
method, in which the median of the inhibition
function (the mean stop-signal delay in the
tracking procedure) is subtracted from the
median go RT. This solves the problem of
estimating the appropriate parameter of the
inhibition function—the tracking procedure
converges on the median—but the calcu-
lations are not justified in the race model.
The race model calculations are in terms
of means, not medians (Logan & Cowan,
1984). We have not explored the relation
between the mean method and the median
method mathematically or with simulations,
but researchers interested in using the median
method instead of the mean method should
do so.

Recommendation 4: Otherwise, use
the integration method. The integration
method calculated at stop-signal delays
near the middle of the inhibition function
yields accurate, unbiased estimates of SSRT
(Band et al., 2003; Verbruggen et al., 2013).
We recommend the integration method to
researchers who are interested primarily in
mean SSRT. With fixed delays, researchers
should calculate SSRT at each stop-signal
delay and average over stop-signal delays,
as SSRT decreases with stop-signal delay.
Note that SSRT cannot be calculated if
Prespona =1 or 0. Stop-signal delays that
produce Ppg,,,,g = 1 or 0 should be excluded
from analysis. With delays set by the track-
ing procedure, researchers should calculate
SSRT with the integration method, using
the overall Pg,,,,q as the limit of integra-
tion and using the mean stop-signal delay
as the stop-signal delay value. However,
this method is compromised if there is



progressive slowing over the experiment.
If there is evidence of progressive slowing,
integration SSRT should be calculated in
each block and averaged over blocks. This
can correct for progressive slowing if the
slowing is not too extreme (Verbruggen
et al., 2013).

How to Report Stop-Signal Experiments

We recommend that reports of stop-signal
experiments contain sufficient information to
allow an evaluation of the fit of the original
horse-race model, on which most calculations
will rely. We propose that every stop-signal
study should report the following:

1. Report the procedure in enough detail that
it can be evaluated. Report the number of
trials overall, the number of stop-signal
trials (i.e., the probability of a stop signal),
the range and value of stop-signal delays
used, the method used to calculate SSRT,
and the number of observations used in
that calculation.

2. Report mean signal-respond and go RT
and confirm they are significantly dif-
ferent in each experimental condition.
With tracking, this can be done collaps-
ing over delays. With fixed delays, it
should be done at each delay, noting that
signal-respond RT becomes more similar
to go RT as stop-signal delay increases, So
differences need not be significant at the
longest delay.

3. Confirm that signal-respond RT is shorter
than go RT for every participant for
whom SSRT is estimated. SSRT should
not be estimated for participants with
signal-respond RTs longer than go RTs,
as these participants violate the indepen-
dence assumptions of the race model.
The number of participants excluded for
this reason should be reported. The cri-
terion for assessing the difference within
participants is unclear. The simplest
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would be to conduct a ¢ test within each
participant, but that may be too strict
a criterion. The most minimal criterion
would be to subtract signal respond RT
from go RT and conclude signal respond
RT was smaller if the difference was
positive. Despite the ambiguity about the
most appropriate criterion, we believe
researchers should make this comparison
and report it.

4. Report the response rate given a stop
signal in each condition. With fixed
delays, this means reporting the inhibition
function in each condition (i.e., the prob-
ability of responding at each stop-signal
delay). With tracking, the probability of
responding should be calculated for each
condition. Some researchers have reported
inhibition functions from tracking pro-
cedures (e.g., Thakkar, Schall, Boucher,
Logan, & Park, 2011) but they are often
noisy at the tails where there are few
observations so response rate estimates
are unstable.

5. When using the tracking procedure, report
the mean stop-signal delay for each con-
dition so readers know the baseline from
which SSRT was computed.

6. Use an appropriate method to estimate
SSRT. We recommend process models,
then parametric models, and then the inte-
gration method, depending on researchers’
goals and interests. Researchers who use
the mean method with the tracking pro-
cedure (where the mean stop-signal delay
estimates the median of the inhibition
function) should address concerns about
skew compromising their SSRT esti-
mates discussed earlier (Verbruggen et al.,
2013).

How to Interpret Stop-Signal Data

A final note concerns the interpretation of
stop-signal data. In the stop-signal literature,
individual or group differences are often
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attributed to variation in the effectiveness of
a single inhibitory control function. But many
processes contribute to stopping an action.
As discussed in the section Process Models
of Response Inhibition, response inhibition
often requires an interplay between basic
and computationally well-defined reactive
processes, such as signal detection, action
selection, and suppression of motor out-
put or blocking go input. These processes
can be regulated and influenced by sets
of processes that take place on different
timescales: outcome monitoring, advance
preparation (i.e., proactive control), rule
acquisition and maintenance, associative
learning, and development (Verbruggen,
McLaren, et al., 2014).

Thus, it is important to realize that SSRT
is a global concept that describes the chain of
processes involved in an act of control that
results in a response being withheld. More
specifically, SSRT captures the duration
of perceptual, decisional, and (inhibitory)
motor-related processes. For example, pre-
vious behavioral studies and computational
work have highlighted the role of perceptual
processes (see earlier). Successfully stop-
ping a response also depends on decisional
processes, such as response selection and
memory retrieval (e.g., Logan et al., 2014;
van de Laar, van den Wildenberg, van Box-
tel, & van der Molen, 2010; Verbruggen &
Logan, 2015). Finally, when the decision
to stop is reached, motor output or other
ongoing processing has to be suppressed
(e.g., via a fronto-basal-ganglia network) or
go input has to be blocked. Thus, in simple
stop-signal tasks and their many variants,
SSRT reflects more than the duration of a sin-
gle neural inhibitory process, and researchers
should consider at which processing stage(s)
differences between groups or conditions
arise (for a more elaborate discussion of
this issue, see, e.g., Verbruggen, McLaren,
et al., 2014).

CONCLUSION

Response inhibition refers to the ability to
suppress responses that are inappropriate or
no longer required, such as rapidly halting
when the traffic light turns red. Response
inhibition is considered a key component
of executive control and has received—and
continues to receive—considerable attention
in fields as diverse as psychology, pharma-
cology, psychiatry, neurology, and biology
(Verbruggen et al., 2013). In laboratory
settings, response inhibition is typically
investigated with the stop-signal paradigm.
The stop-signal paradigm owes its popularity
to the underlying horse-race model (Logan &
Cowan, 1984) that facilitates the estimation
of the latency of the otherwise unobservable
stop response.

We presented a theoretical review of the
horse-race model and discussed the most
important measures of response inhibition
performance in the stop-signal paradigm.
We first outlined the standard independent
horse-race model and related SSRT esti-
mation techniques, and showed that the
independent race architecture typically offers
an excellent description of stop-signal data
across different populations, tasks, and exper-
imental manipulations. We then described
the latest developments in the model-based
analysis of stop-signal data, focusing on
the simultaneous estimation of SSRT dis-
tributions and trigger failures and variants
of the standard horse-race model that give
direct insights into the mechanisms of stop-
ping. In particular, we discussed two classes
of process models of response inhibition:
models that describe the properties of the
go and the stop process in order to explain
how the finishing time distributions arise and
models that attempt to explain how responses
are stopped. Although these models lack
the generality of the standard independent
horse-race model, they provide fine-grained



insights into the mechanisms of stopping.
We believe that the application of process
models to more complex variants of the
stop-signal task, such as the stop-change and
selective stopping tasks, is a promising area
for future research that may also benefit from
recent developments in Bayesian hierarchi-
cal modeling and related model selection
methods.

DEFINITIONS AND TERMS

Response inhibition The cognitive con-
cept of response inhibition refers to
the ability to suppress responses that
are inappropriate or no longer required,
which supports flexible and goal-directed
behavior in ever-changing environments.
Response inhibition is a key component
of executive control.

Stop-signal paradigm The stop-signal
paradigm is a popular experimental
paradigm to study response inhibition.
The standard stop-signal paradigm con-
sists of a two-choice response time task.
The primary choice task is occasionally
interrupted by a stop signal that instructs
participants to withhold their response on
that trial.

Horse-race model
posits that response inhibition in the
stop-signal paradigm can be concep-
tualized as a horse race between two

The horse-race model

independent processes: a go and a stop
process. If the go process wins the race,
the response in executed; it the stop
process wins the race, the response is
inhibited. According to the horse-race
model, response inhibition is thus deter-
mined by the relative finishing times of
the go and the stop process.

Stop-signal reaction time Stop-signal
reaction time is the latency of the stop
process. Although stop-signal reaction

References 37

time cannot be observed directly, it can
be estimated using the horse-race model.
Stop-signal reaction times play a pivotal
role in diagnosing deficient response
inhibition in clinical populations and in
assessing participants’ stopping ability
across different tasks and experimental
conditions.

Inhibition function Inhibition
describe the relationship between response
rate and the time interval between the
onset of the primary task stimulus and the
onset of the stop-signal (i.e., stop-signal
delay). The horse-race model predicts that
response rate increases with increasing
stop-signal delay. Inhibition functions
reflect the outcome of the race between
the go and the stop process and can be
used to compare inhibitory control across
populations, tasks, or conditions.

functions

LIST OF ABBREVIATIONS

ADHD  attention-deficit/hyperactivity

disorder

LATER linear approach to threshold with
ergodic rate

RT response time

SSRT stop-signal reaction time

SSD stop-signal delay
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