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Individuals diagnosed with schizophrenia have slowed response times (RT). We examined the role of
decision processes in the slowing of simple choice responses. We updated Schatz’s (1998) meta-analysis
of deficits in speed and extend it to systematically examine the effects of schizophrenia on choice
accuracy. We then report an experiment requiring decisions about motion direction, which we analyzed
using an evidence accumulation model of choice, the linear ballistic accumulator (LBA; Brown &
Heathcote, 2008). By simultaneously taking into account all aspects of behavior, the LBA was more
sensitive to deficits than mean RT or accuracy alone. It also identified the 2 underlying causes of slowing:
more cautious decisions (i.e., requiring more evidence before making a decision) and perceptual deficits.
The schizophrenia group displayed strong sequential effects that were captured by the response on the
previous trial affecting the relative amount of evidence required for choice in the LBA. These results
illustrate that evidence accumulation models provide a sensitive tool that can be used to identify the

cognitive mechanisms causing slowing in schizophrenia.

General Scientific Summary

motion discrimination task.

Slowed responding and inaccurate choices are common in people with schizophrenia. We use a
cognitive model of how choices are made to identify the underlying causes of these deficits in a
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Schizophrenia is characterized by disturbances in cognition,
behavior, emotion, and perception (Frangou & Kington, 2004).
Clinical symptoms are both positive (e.g., hallucinations, delu-
sions, disorganized speech and behavior) and negative (e.g., pov-
erty of thought and speech, social withdrawal, blunted and flat
affect, loss of motivation and experience of pleasure) and are
accompanied by cognitive impairments in numerous domains
(Keefe & Harvey, 2012). Cognitive impairments are stronger
predictors of functional outcomes and quality of life than clinical
symptoms (Nuechterlein et al., 2011) and are not simply a result of
clinical symptoms or medication effects (Green, Kern, Braff, &
Mintz, 2000). Green et al. (2004) identified social cognition,
working memory, attention or vigilance, verbal and visual learning
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and memory, reasoning and problem solving, and speed of pro-
cessing as showing the most significant deficits. We focus on the
latter, looking at response time (RT) in tasks requiring a rapid
choice among more than one option.

In particular, we studied deficits in choice RT processes in
schizophrenia using an evidence accumulation model of choice
processing, the linear ballistic accumulator (LBA; Brown &
Heathcote, 2008)." This model provides a specific understanding
of the causes of slowing that is not afforded by traditional psy-
chometric approaches, which separately analyze partial summary
measures such as mean RT and accuracy (e.g., Silverstein, 2008).
In contrast to such traditional approaches, the LBA addresses all
aspects of choice behavior, simultaneously accounting for not only
mean RT and accuracy but also the entire distribution of RT (e.g.,
its variability and positively skewed shape). It is this rich charac-
terization that enables insight into which several potential under-
lying factors cause deficits.

! We also did a parallel analysis with another commonly used evidence

accumulation model, the drift diffusion model (DDM; Ratcliff & McKoon,
2008). These results are presented in the supplementary materials, as the
DDM produced a worse fit to our data than the LBA and was unable to
accommodate key effects that were well explained by the LBA.
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Slowing and Sequential Effects in Schizophrenia

Wells and Kelley (1922) summarized early research showing
markedly slower simple RT (i.e., RT in tasks with only one
response option) in patients with psychosis compared with healthy
participants. Subsequent research found that simple RT slowing in
schizophrenia is associated with poorer prognosis and poorer out-
comes and occurs across many tasks (Nuechterlein, 1977). Other
early work focused on the way in which simple RT is affected by
prior events, particularly a shift in a target’s sensory modality
relative to the last trial (e.g., Mowrer, 1941; Sutton, Hakerem,
Zubin, & Portnoy, 1961). Later research found that heightened
sequential effects—that is, carryover effects of stimuli and re-
sponses from the previous trial on responding in the present
trial—are a pervasive characteristic of schizophrenia in a range of
tasks, particularly a tendency to perseverate (e.g., Abbruzzese,
Ferri, & Scarone, 1996; Lyon & Gerlach, 1988; Lyon, Mejsholm,
& Lyon, 1986; Yogev, Hadar, Gutman, & Sirota, 2003).

Although there are some exceptions, slowing is generally found
to be disproportionally greater for choice than simple RT (Benton,
Jentsch, & Wahler, 1959; Hintze, Bebenek, Kuhn-Dymecka,
Wronska, & Wciorka, 2006; Karras, 1967; Krieger, Lis, & Gall-
hofer, 2001; Krieger, Lis, Cetin, Gallhofer, & Meyer-Lindenberg,
2005; Zahn et al., 1998). Rapid choice paradigms, where RT is
typically less than 2 to 3 s, have been widely used to study
impairment in a range of perceptual and cognitive processes in
schizophrenia because such paradigms are relatively free from the
strategies and multiple-stage higher order judgments required in
more complex decision-making tasks. Schatz (1998) provided a
meta-analysis of mean RT in 196 mainly choice conditions drawn
from 40 papers and found pervasive slowing for schizophrenia
relative to control groups.

In the first part of this paper, we provide the results of a
meta-analysis that updates the work of Schatz (1998). In the
second part of the paper, we applied the LBA to data from a new
experiment. In the experiment, patients with a diagnosis of schizo-
phrenia (hereafter patients) and control participants decided the
direction of motion in random-dot kinematogram (RDK) stimuli—
clouds of mostly randomly moving dots with a proportion that
move coherently either left or right. In light of their pervasive
nature in schizophrenia, we analyzed these data for sequential
effects by using the last choice as a covariate in the LBA analysis.
We also analyzed the data for sequential effects using autocorre-
lations between choices (i.e., correlations between the choice made
on the present trial and the last trial). This analysis does not require
the assumptions made by the LBA model and so provides an
independent test of whether sequential effects differ between pa-
tients and controls. In order to set the stage for the analysis of
sequential effects using the LBA model, we report the results of
the autocorrelation-based test first, along with traditional separate
analyses of RT and accuracy. First, however, we give an overview
of evidence accumulation models.

Evidence Accumulation Models

The LBA and a number of other similar models (e.g., Ratcliff &
Smith, 2004) share the idea that the process underlying choice is
the accumulation of information (evidence) over time. Response
selection occurs when a threshold amount of evidence favoring a

particular choice has accrued. A core prediction implied by this
mechanism is that choice involves a speed—accuracy trade-off; as
the threshold is increased, choices become more accurate because
they are based on more evidence, but they are also slower because
it takes longer to collect the evidence. Model parameters account-
ing for speed—accuracy trade-offs have been linked to specific
neural structures (Forstmann et al., 2008, 2010; Manstield, Karay-
anidis, Jamadar, Heathcote, & Forstmann, 2011).

Evidence accumulation models are fit to all aspects of choice
behavior simultaneously. That is, they do not separately rely on
summary statistics—such as error rates or the fastest, slowest, or
average RTs—that in isolation provide only a partial and poten-
tially misleading characterization and do not map in any simple
way to underlying cognitive processes. Rather, they account for all
such statistics together, and they do so in terms of the psycholog-
ical causes of primary interest. For example, slowing may be due
to (a) lower quality evidence that accumulates at a slower rate, (b)
requiring more evidence (i.e., a higher threshold), and/or (c) slow-
ing in the nondecision process (e.g., the time to encode the stim-
ulus or produce a response). Evidence accumulation modeling can
determine which of these—either singly or in combination—is
responsible for slowing.

Because evidence accumulation modeling directly addresses
underlying causes rather than the often-complicated constellation
of effects in different statistics summarizing behavior, it has
proven fruitful in understanding a range of deficits. These include
deficits associated with factors ranging from sleep deprivation and
alcohol use (Ratcliff & Van Dongen, 2011; van Ravenzwaaij,
Dutilh, & Wagenmakers, 2012) to depression and anxiety (Ho et
al., 2014; White, Ratcliff, Vasey, & McKoon, 2010a, 2010b). To
our knowledge, however, this type of modeling has not previously
been applied to choice RT deficits in schizophrenia.

Given the key role played by interaction between speed and
accuracy in evidence accumulation models, our update of Schatz’s
(1998) meta-analysis reported in the first part of this paper ad-
dressed accuracy as well as mean RT. Although it has been noted
in individual studies that choice accuracy is generally reduced in
schizophrenia, we are not aware of any systematic and wide-
ranging analysis of this issue. If slowing in schizophrenia is due to
reduced quality of evidence, we would expect accuracy to also be
systematically lower. If it is due to a speed—accuracy trade-off,
then accuracy should be increased. If both factors interplay to
varying degrees across different tasks and conditions, a mixed
pattern may emerge.

Meta-Analysis of Choice RT Studies

In a Brinley plot (Brinley, 1965; Salthouse & Somberg, 1982),
results from two groups are plotted against each other (e.g., in
Figure 1, the schizophrenia group on the abscissa and the control
group on the ordinate). Schatz (1998) adopted Cerella’s (1994)
methods for the analysis of Brinley plots to study slowing in aging
and applied them to slowing in schizophrenia. Although we agree
with Ratcliff, Spieler, and McKoon’s (2000) critique of this anal-
ysis methodology (see the supplementary materials for a detailed
discussion of Ratcliff et al.’s critique), Schatz’s meta-analysis
remains highly informative in the way it systematically demon-
strates the pervasive nature of slowing in schizophrenia across a
broad range of tasks. The Brinley plot is also useful for compactly
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Figure 1. Average response time in seconds (RT) for correct responses and percentage of correct responses for

choice RT tasks. The dotted diagonal line indicates equality between the two groups. Tasks were classified as
inhibition, lexical, or nonlexical. Results for the present experiment are for the 10% coherence condition. In order
to improve the resolution of other results, the RT panel excludes Schneider et al.’s (2011) inhibition task data,
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where SZ = 6.1 s and Control = 4.5 s.

representing results, with slowing being indicated by points falling
above the main diagonal, as shown in the left-hand panel of Figure
1. In the supplementary materials, we describe how we substan-
tially expanded Schatz’s sample (except that we excluded simple
RT) to 83 papers and 317 conditions. The supplementary materials
also provide a detailed analysis of our findings, which we sum-
marize here.

The left-hand panel of Figure 1 shows that slowing is a highly
consistent result, with only 6/314 cases (1.9%) below the main
diagonal (i.e., the dotted line indicating equal results for the two
groups), although in many cases the slowing is only minor. The
right-hand panel of Figure 1 shows that, in general, accuracy
was lower for patients than controls (i.e., points below the main
diagonal), although this effect was not as consistent as for
slowing, with 32/189 cases (17%) above the main diagonal.
This overall pattern of findings is not consistent with slowing
being due to a speed—accuracy trade-off, which predicts in-
creased accuracy.

Although these results do not support a speed—accuracy trade-
off, they also did not reveal the strong positive correlations that
would be expected if patients had deficits in the quality of the
evidence on which they based their decisions, as poor quality
evidence would be expected to both slow decisions and make them
more error prone. A potential reason for the lack of correlation is
that both factors are in play, with patients attempting to compen-
sate for errors caused by lower evidence quality by responding
more cautiously. If they failed to fully compensate, they could still
be less accurate while having an even bigger disadvantage in
speed. The resulting correlation between speed and accuracy dif-
ferences would be reduced or even absent.

These possibilities must remain speculations with respect to
the studies that contributed to the meta-analysis, as we have
reached the limits of the inferences that can be made based on
mean RT and accuracy data. The experiment we performed
enabled us to overcome these limitations. It also allowed us to
address another limitation of most of the studies in the meta-

analysis—accuracy performance near ceiling—which makes it
hard to detect speed—accuracy trade-off effects. Difficulty in
our study was carefully calibrated to avoid both ceiling and
floor effects on accuracy.

Experiment

We measured the RT and accuracy of choices about left-versus-
right motion in RDK stimuli in a group of schizophrenia patients
and matched controls. Overall difficulty, as determined by the
proportion of coherently moving dots, was calibrated for each
participant to avoid floor and ceiling effects in accuracy, which
facilitates better estimation of model parameters. Tailoring diffi-
culty to participants’ abilities also encouraged engagement among
patients which, along with the use of a simple task, aimed to
address motivational factors that could confound comparisons
(Joyce & Huddy, 2004).

We also manipulated the difficulty of the task (the degree of
coherence of moving dots), with participants experiencing two
types of randomly intermixed trials: easier (i.e., higher coherence)
trials and harder (i.e., lower coherence) trials. This was done to test
the construct validity of the LBA model. Previous research (e.g.,
Forstmann et al., 2008) has found that coherence manipulations
selectively influence parameters related to the rate of evidence
accumulation. Thus, if the LBA model is valid, it should provide
a good fit to the data when only its rate parameters (and not other
parameters, such as evidence thresholds) are allowed to vary as a
function of the difficulty.

Method

Participants

Informed consent was obtained prior to commencement of
the study. Exclusion criteria for patients were a history of
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neurological trauma, a diagnosis of intellectual disability, or
current drug or alcohol dependence. For controls, the same
exclusion criteria were applied, as well as exclusion based on a
diagnosis of a mental illness. Twenty-six participants with
schizophrenia or schizoaffective disorder were recruited from a
clozapine clinic and paid AU$55 for their participation, which
included an extra session completing a stop signal task that is
not reported here. The treating psychiatrist made diagnoses
according to the Diagnostic and Statistical Manual of Mental
Disorders (4th ed.; DSM-IV; American Psychiatric Associa-
tion, 1994), the current version at the time of testing. The
treating clinician or case manager confirmed the participant’s
diagnosis, his or her ability to provide informed consent, and
whether the study would be suitable for him or her.

One patient was excluded because he or she declined to com-
plete the clinical interview and six due to accuracy not signifi-
cantly greater than chance overall in the choice task. Table 1
summarizes the remaining patients’ demographics and medication
taken at the time of testing as well as the characteristics of
excluded participants. A brief interview was undertaken to assess
exclusion criteria for potential controls, and 19 were recruited to
match the patients on age and gender. Controls were recruited from
three sources: an undergraduate student pool, the Hunter Medical
Research Institute volunteer register, and the local community. Of
those who passed the exclusion criteria, four were from a student

Table 1
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pool and were awarded course credit for their participation. A
further six were from the volunteer register, and nine were from
the local community; they all received reimbursement of $40 to
cover their costs.

Experimental Apparatus and Stimuli

The RDK stimuli were presented on a personal computer in a
quiet room. They consisted of 40 dots that moved randomly within
a circular area 50 mm in diameter, being redrawn 30 times per
second, except for a proportion that moved coherently 45° either to
the top left or top right. Participants were instructed to judge the
direction of the movement by pressing the Z key with their left
hand for left movement or the slash key with their right hand for
right movement (these keys appear at the lower left and lower
right, respectively, of the standard U.S. keyboard).

To avoid floor and ceiling effects, participants were assigned a
harder pair of motion coherence levels (5% and 10%) or an easier
pair (10% and 20%). The assignment was based on their perfor-
mance during practice trials at the beginning of the session, with
less able participants assigned to the easier pair and more able
participants assigned to the harder pair. In this way, we aimed to
avoid the near-ceiling performance in accuracy reported in many
previous studies.

Characteristics of Participants Whose Data Were Included in Analyses

Patients with

schizophrenia Controls
(n =19) (n=19) Parametric test
Characteristics Mean SD  Mean SD  tvalue p value
Age (years) 37.6 6.5 38.8 9.0 5 .6
Education® 2.8 1.4 5 .8 6.1 <.001
Weschler Test of Adult Reading (WTAR) scaled score 94 154 1094 247 2.3 .03
Letter Number Sequence (LNS) scaled score 8.1 2.5 11.5 3.7 3.4 .002
Positive symptoms (SAPS) 3.4 35
Negative symptoms (SANS) 10.2 32
Disorganization symptoms 2.4 2.3
n % n %

Gender

Male 16 84.2 16 84.2

Female 3 15.8 3 15.8
Diagnosis

Schizophrenia 17 89.5

Schizoaffective disorder 2 10.5
Medication type

Clozapine 18 94.7

Other atypical antipsychotics 10 52.6

Typical antipsychotics 1 5.3

Antidepressants 7 36.8

Lithium carbonate 1 5.3

Anticonvulsants 3 15.8
Note. Relative to the included patients, the seven excluded patients were slightly older (44.6 years) and had

more negative symptoms (12.5) but had similar positive symptoms (2.8), disorganization (2.3), LNS (7.7),
WTAR (94), and education (2.6) values. SAPS = Scale for the Assessment of Positive Symptoms; SANS =

Scale for the Assessment of Negative Symptoms.

“ Education codes: 0 = below Year 10, 1 = Year 10 or fourth form (school certificate or equivalent), 2 = Year
11 or fifth form (leaving certificate or equivalent), 3 = Year 12 or sixth form (HSC or equivalent), 4 = technical
college or TAFE college, 5 = graduate (bachelor’s degree), 6 = postgraduate (master’s degree or PhD). HSC =
Higher School Certificate; TAFE = Technical and Further Education.
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On each trial, a blank screen preceded each stimulus for 0.25 s
followed by a fixation point for 0.25 s, and the stimulus was
presented for 3 s. The experimental task comprised nine blocks
with 49 trials in each block. In the first block, the coherence of
dots started at 65% and decreased gradually until it reached 20%.
The second and third blocks contained three difficulty levels: 5%,
10%, and 20% coherence. Average accuracy was determined for
the easier pair (10% and 20%) and the harder pair (5% and 10%).
Whichever pair had an average accuracy closer to 75% was used
as the difficulty level for the remaining blocks, which provided the
data that were analyzed. Between blocks, participants were en-
couraged to take a rest as required and continued onto the next
block by pressing the space bar. The task took approximately 20
min to complete.

Participants were encouraged to perform quickly but also to try
to be accurate. For correct responses, participants were provided
with feedback on their RT in order to increase motivation and
reinforce rapid responding. Incorrect choices were followed by
incorrect displayed on the screen and foo slow if participants failed
to respond within 3 s. The latter trials were removed from all
analyses.

Psychometric Measures

Participants completed the Letter Number Sequence (LNS), a
subtest of the Wechsler Adult Intelligence Scale—Third Edition
(WAIS-III; Wechsler, 1997) as a measure of working memory.
Participants also completed the Wechsler Test of Adult Reading
(WTAR; Wechsler, 2001), which assesses premorbid intellectual
functioning in adults.

Patients were administered the Scale for the Assessment of
Positive and Negative Symptoms (SAPS/SANS; Andreasen, 1983,
1984), which took 45-60 min to administer, depending on the
extent of the symptoms. The SAPS/SANS has been found to have
good interrater reliability, modest internal consistency, and strong
construct validity (Peralta & Cuesta, 1994). Positive symptoms
(SAPS score) consisted of the combined global scores for hallu-
cinations and delusions; disorganization symptoms were com-
posed of global scores for bizarre behavior and positive formal
thought disorder; and negative symptoms (SANS score) combined
the global scores for affective flattening, alogia, avolition or apa-
thy, and anhedonia or asociality (Andreasen, Arndt, Alliger,
Miller, & Flaum, 1995). Scores on the attention subscale of the
SAPS/SANS were omitted, as this is not considered to be a core
component of negative symptomology (Blanchard & Cohen,
2006).

Procedure

The experiment took place over two separate sessions, typi-
cally a week, and at a minimum of 24 hr apart. The average time
between the first and second sessions was 8.8 days (SD = 3.1)
for patients and 9.4 days (SD = 6.5) for controls. In the first
session, all participants completed a demographic question-
naire, the choice RDK task, the LNS, and the WTAR. In the
second session, all participants completed a stop signal task
(not reported here); patients also completed the clinical inter-
view.

Results

We first separately analyzed RT for correct responses and
accuracy using analyses of variance (ANOVAs) with factors for
current stimulus (left vs. right motion), last response (left vs.
right), difficulty (higher vs. lower coherence), and group (patients
vs. controls). We report all effects significant at the 0.05 level. We
then examined autocorrelations in order to compare sequential
effects in patients and controls.

Mean RT was significantly slower for the lower (1.1 s) than the
higher (0.93 s) coherence stimuli, F(1, 36) = 92.5, p < .001, 0> =
0.46. The same was true for median RT (0.99 s vs. 0.86 s), F(1,
36) = 85.8, p < .001, n* = 0.44. RT standard deviation was also
greater for lower (0.38 s) than higher (0.3 s) coherence stimuli,
F(1, 36) = 74.4, p < .001, 1]2 = (.37, and this effect interacted
with group, F(1, 36) = 9.5, p = .003, n2 = 0.07, due to a larger
effect in the controls. Accuracy was lower for low (71%) than high
(84%) coherence stimuli, F(1, 36) = 69.3, p < .001, lower for left
(75%) than right (80%) stimuli, F(1, 36) = 4.9, p = .03, n*> =
0.52, and lower for the patients (72%) than controls (82%), F(1,
36) = 9.7, p = .003, v*> = 0.21.

We also examined the probability of making a left-versus-right
response to check for response bias. There was a relatively small
but highly significant bias in favor of right responses, p(left) = .47,
t(37) = 3.7, p < .001, r = .51. An ANOVA did not find any
significant main effects of group or last response on bias.

The tests just described involving the group factor are con-
founded by our difficulty calibration procedure, which assigned
higher coherence (10% and 20%)—and hence easier—pairs more
often to the patients (16/19) than controls (11/19). Hence, we
repeated the tests with only data from the 10% coherence condition
common to all participants.

Mean RT was slower in the schizophrenia (1 s) than the control
(0.93 s) group, but the difference was not significant, F(1, 36) =
1.0, p = .32, > = 0.026. The same was true for the median (0.93
s vs. 0.85 s), F(1, 36) = 1.2, p = .27, 1]2 = 0.033. RT standard
deviation was greater in the schizophrenia (0.36 s) than the control
(0.32 s) group, but the difference was not significant, F(1, 36) =
1.0, p = .32, n* = 0.027. Accuracy was lower in the patients
(78%) than controls (83%), but again the difference was not
significant, F(1,36) = 1.8, p = .18, > = 0.049. The same pattern
of results about response bias found with all of the data held for
data from only the 10% coherence conditions.

In order to examine sequential effects, we fit an autoregres-
sive model® of order 1 to each participant’s binary response
choices (i.e., left or right) for each of the six experimental
blocks. This yielded estimates of the proportion of variance in
the current choice explained by the previous choice (i.e., lag 1
squared correlation). In an ANOVA on autocorrelation esti-
mates with block and group as factors, there was a significantly
greater squared autocorrelation for patients (0.16) than controls
(0.11), F(1, 36) = 6.4, p = .016, 1]2 = (.15, but no main effect
of block or interaction between block and group. When we fit
higher order autoregressive models (i.e., models allowing for
lag 2 and higher autocorrelations), the same pattern of results

2We used the R (R Core Team, 2014) ar function with the default
Yule-Walker method.
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was found for lag 1 autocorrelations, and no significant effects
were found for higher order autocorrelations. On average, the
lag 1 correlation was positive for the patient group (0.03),
indicating a tendency to repeat responses (i.e., perseverance),
whereas in the control group it was negative (—0.03), indicating
a tendency to alternate responses.

Discussion

Although there were trends for both slower and less accurate
responding in the patients than controls for 10% coherent stimuli,
neither difference was significant, and corresponding effect sizes
were small (n?> = 0.027 and 0.049, respectively). As shown in
Figure 1, such small affects are by no means unusual, despite the
fact that slowing of RT is often accepted as a universal character-
istic of patients with schizophrenia. We return to the reasons why
this is the case in the General Discussion.

In contrast to the speed and accuracy results, we found a
significant group difference in sequential effects (n* = 0.15). The
analysis of lag 1 squared autocorrelations indicated a stable ten-
dency throughout the experiment for patients’ responses to be
more influenced by the immediate past response than controls’
responses. These sequential effects in patients mainly manifested
as a tendency to repeat the last response, consistent with the
tendency to perseverate found in a range of other tasks. The
heightened sequential effect that we observed in patients—a find-
ing that, to our knowledge, is novel in rapid RT tasks (both of the
simple and choice types)—is further investigated in the next sec-
tion.

Model-Based Analysis

We fit the LBA using quantile maximum probability estima-
tion (Heathcote & Brown, 2004; Heathcote, Brown, & Me-
whort, 2002), which minimizes a measure of misfit called the
deviance. Deviance was calculated based on RT distribution
quantified by the 10th, 30th, 50th (median), 70th, and 90th
percentiles of the RT data. A set of 256 LBA variants was
generated as described in Donkin, Brown, and Heathcote
(2011). These models were simplifications of a most flexible
“top” model that allowed model parameters to vary with exper-
imental factors and with factors designating the different accu-
mulators (Table 2; see, e.g., Heathcote & Hayes, 2012; Heath-
cote & Love, 2012; Rae, Heathcote, Donkin, Averell, & Brown,
2014, for applications of this method). Fitting begins with the
simplest model, for which it is easy to use heuristics to generate

reasonable guesses from which to start the optimization pro-
cess. The best fit of that model then provides starting guesses
for slightly more complex models and so on, with more com-
plex models being fit from multiple start points, helping to
ensure optimal fits of even quite complex models.

When fitting a model, choices have to be made about how
parameter estimates are influenced by experimental factors. These
decisions are in part based on the meaning of the parameters and
in part on convention. There are also practical considerations;
allowing the parameter specification to be too complex can result
in an unmanageably large number of parameters to estimate and/or
overfitting: small improvements in fit that result in parameter
estimates that vary in meaningless ways in order to accommodate
small random variations in the data. Parameters governing vari-
ability, like the rate standard deviation and level of start-point
noise, are harder to estimate than other parameters, and so con-
ventionally they are allowed to vary with fewer factors (see
Donkin et al., 2011, for more details).

We addressed overfitting using the Akaike information criterion
(AIC; Burnham & Anderson, 2004), which adds to the misfit
measure (deviance) a complexity penalty proportional to the num-
ber of model parameters. Adding parameters must improve model
fit (i.e., reduce deviance), but if the improvement is small it will be
outweighed by the penalty, so AIC will select the simpler model.
The model variant that strikes the best balance between complexity
and fit will have the smallest AIC. A smaller AIC by 10 or more
indicates a strong preference, 3—10 indicates substantial evidence,
and less than 3 indicates an equivocal result (Wagenmakers &
Farrell, 2004). The model selected by AIC indicates which of the
parameters estimated in the top model are important for accom-
modating the variability in data.

Figure 2 describes the LBA model, and Table 3 lists its param-
eters. The RT predicted by the model is the sum of decision
time—the time from when evidence starts accumulating until that
evidence first crosses a threshold—and nondecision time. Nonde-
cision time is the sum of the time to encode the stimulus and the
time to produce the response corresponding to the decision (see
Smith & Ratcliff, 2009). There is an accumulator for each possible
choice. Each independently accumulates evidence favoring its
choice, and a response corresponding to that choice is made if it is
the first to reach its threshold.

Even under identical conditions, human RT varies considerably
from trial to trial (Luce, 1986). In the LBA, RT varies because of
the effects of two kinds of noise. The mean rate of evidence
accumulation varies from trial to trial according to a normal

Table 2
Definitions of Model Factors
Name Type Level
Difficulty (D) Experimental Easy = lower coherence; hard = higher coherence
Stimulus (S) Experimental Left = left motion; right = right motion
Last response (L) Experimental Left = left motion; right = right motion
Response (R) Accumulator Left = left motion; right = right motion
Match (M) Accumulator True = matches stimulus; false = mismatches stimulus

Note. Experimental factors describe the experimental design; accumulator factors differentiate the two accu-
mulators, either according to the response they represent or the match between the stimulus and the response they

represent.
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Figure 2. The linear ballistic accumulator (LBA) model for a left-versus-right decision. U() indicates a uniform
distribution and N() indicates a normal distribution. In this example, the stimulus is leftward motion, so the left
accumulator is the matching accumulator, with a larger mean rate, and the right accumulator is the mismatching
accumulator, with a smaller mean rate. Nondecision time = ¢, =, + t,.

distribution, reflecting factors such as fluctuations in attention or
stimuli between nominally equivalent trials. The starting point
varies from trial to trial according to a uniform distribution, re-
flecting bias caused by factors such as the response made on the
last trial. Accumulating more evidence by setting a higher thresh-
old can reduce errors caused by start-point biases, but errors
caused by rate variability remain, consistent with the fact that often
even quite slow decisions are not perfectly accurate.

Each accumulator has its own parameters for the rate mean and
standard deviation, range of start-point noise, and threshold.
Threshold differences (specified by the response factor in Table 2)
cause response bias, with unbiased responding corresponding to
equal thresholds across accumulators. When accuracy is above
chance, the rate for the matching accumulator (i.e., the left accu-
mulator when viewing a left-moving stimulus or the right accu-
mulator when viewing a right-moving stimulus) is greater than for
the mismatching accumulator. The match factor (see Table 2) is
used to specify such differences. The rate for an accumulator
determines how quickly its corresponding response is made,
whereas differences in rates between accumulators mainly affect

accuracy (i.e., accurate responding occurs when there is a large
rate difference between matching and mismatching accumulators).

To allow for sequential effects, we fit the data broken down by
the last response type (i.e., left or right) and allowed this factor to
bias the LBA threshold. A lower threshold for the accumulator
corresponding to the last response causes a bias toward repeating
responses, whereas a bias in favor of the other accumulator causes
a tendency toward alternating responses.

Table 3 also shows the mappings between experimental factors
and LBA parameters in the top model, which has 29 parameters.
The threshold can vary with the response factor, allowing for
response bias, and the last trial factor, allowing for sequential
effects (2 X 2 = 4 parameters). In parameterizing rates, we used
a match factor that allows for differences between the accumula-
tors that do and do not match the stimulus. For example, if the
stimulus is left motion, the left-response accumulator is the match-
ing accumulator with a higher mean rate, and the right-response
accumulator is the mismatching accumulator with a lower mean
rate (see Figure 2). Better motion discrimination corresponds to a
larger advantage in the mean rate for the matching accumulator
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Table 3
Definition of Linear Ballistic Accumulator (LBA) Parameters (Two Left-Hand Columns)
Symbol Name Top model AIC model
b Response threshold R, L R, L
a Proportional start-point variability range 1 1
v Mean rate of evidence accumulation L,S,D,M D,M
s, Rate standard deviation S, D, M D,M
t Mean nondecision time 1 1

er

Note. AIC = Akaike information criterion; R = response; L = last response; S = stimulus; D = difficulty;
M = match. The variable a = A/b, where A is the range of start-point variability. The “top model” column
indicates that parameter estimates are allowed to vary with the factors (see Table 2) in the top model. An entry
of 1 in the final column indicates that a single value was estimated for all combinations of factor levels. The
number of model variants estimated by Donkin et al.’s (2011) method equals 2" ~ ' = 256, where n = 9 is the
number of factors in the “top model” column. One is subtracted from n because even in the simplest model, the
mean rate varied with M to allow for above-chance responding. The final column specifies factors in the model

selected by the AIC summed over participants.

over the mismatching accumulator. The mean rate varied with
stimulus type (left vs. right motion), difficulty (easy vs. hard), the
last response (left vs. right) factor, and the match factor (2 X 2 X
2 X 2 = 16 parameters).

One accumulation process parameter must take a fixed value in
at least one condition in order to identify parameter estimates
(Donkin, Brown, & Heathcote, 2009). The rate standard deviation
was allowed to vary with all of the same factors as the rate mean,
except last response, but is fixed at 1 for one condition [so (2 X
2 X 2) — 1 = 7 parameters]. The same values of the start-point
variability and nondecision time parameters were estimated for all
experimental conditions and accumulators (two parameters). Note
that in Figure 2, A denotes the range of start-point variability. As
shown in Table 3, we estimated the range as a proportion of the
threshold: @ = A/b (note that 0 = A = b, so 0 = a = 1 for both
accumulators), so start-point variability increases in proportion to
the threshold. This proportionality assumption largely held even
when we did not enforce it, so we chose this parameterization to
simplify the model.

Results

Deviance values can be used to test between variants within a
model, where a difference in deviance has a x> distribution with
degrees of freedom equal to the difference in the number of
parameters. These x? tests confirmed the AIC selection, with the
decrease in fit from the top model to the AIC model not being
significant, X2(646) = 383, p = 1. Also, there was clear evidence
of overfitting in the top model, which had a number of implausible
parameter estimates. In light of these findings, we focus on the
AIC-selected model (13 parameters per subject) for further anal-
ysis.

The fit of the AIC-selected model is displayed in Figure 3. The
left-hand panels show the observed and predicted error rates for
controls (top row) and patients (bottom row), and the right-hand
panels show the distribution of correct RT by displaying the 10th
percentile (i.e., reflecting fast responses), the 50th percentile (i.e.,
the median), and the 90th percentile (i.e., reflecting slow re-
sponses). The 30th and 70th percentiles used in fitting showed the
same trends but are omitted for clarity. The AIC-selected model
provides an accurate and detailed description, capturing, for ex-
ample, the positive skew characteristic of RT distributions as

evidenced by a greater gap between the median and the 90th
percentile than between the median and the 10th percentile. The
model also clearly captures the effect of difficulty, validating the
LBA’s explanation of this manipulation in terms of only rate
parameter differences.

We do not display analogous results for error RTs, as errors
were less frequent than correct responses, and consequently error
RT percentiles had quite wide 95% confidence intervals. However,
we note that the model’s predictions mostly fell within these
intervals and that the model captured the general tendency for
slower incorrect than correct responses. Details are provided in the
supplementary materials.

Parameter Analysis

The AIC-selected model displayed a large set of significant
effects, including group effects in both rates and thresholds. We
address the group effects after first discussing the effects common
to both groups. As expected, the rate of the accumulator that
matches the stimulus (1.7) was greater than the rate of the accu-
mulator that does not match the stimulus (—1.2), F(1, 36) = 70,
p < .001, n* = 0.62. The rate standard deviation for the mis-
matching accumulator (1.1) was greater than that for the matching
accumulator (0.8), F(1, 36) = 9.4, p = .004, nz = 0.15, as has
been found in other LBA applications (e.g., Heathcote & Love,
2012; Rae et al., 2014). The difference between matching and
mismatching accumulators was larger for easy (3.7) than hard (2.2)
stimuli, F(1, 36) = 9.4, p = .004, > = 0.094, consistent with
higher quality evidence, and hence greater accuracy, for easy than
hard stimuli.

As evidence quality is also a function of the rate standard
deviation, it is useful to calculate a quantity analogous to the signal
detection theory sensitivity measure (d'). A higher rate standard
deviation will more often cause errors due to increasing the num-
ber of trials on which mismatching evidence exceeds matching
evidence. The d’ measure takes this into account by expressing the
difference between matching and mismatching means in units of
the pooled standard deviation:

d' = (v|match — v|mismatch) / (s% | match + 52| mismatch)/Z
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Figure 3. Error rates (left column) and response time (RT) distribution (10th, 50th, and 90th percentiles for
correct responses (right column) as a function of difficulty and current and last stimulus (left or right motion)
with superimposed linear ballistic accumulator (LBA) model fits. Error bars indicate 95% within-subject

confidence intervals (Morey, 2008).

The d’ for easy stimuli (5.5) was significantly greater than for
hard stimuli (3.6), F(1, 36) = 15.2, p < .001, 7> = 0.44. Finally,
consistent with the overall right-response bias noted earlier, there
was a lower threshold estimate for the right (2.1) than left (2.3)
accumulator, F(1, 36) = 5.1, p = .03, 1% = 0.12.

For group effects,® the matching versus mismatching rate dif-
ference was larger for controls (3.8) than patients (2.1), F(1, 36) =
6.7, p = .014, m* = 0.11. This was mainly due to the mismatching
rate being significantly smaller for controls than patients (—2.3 vs.
0.2), #35.8) = 1.57, p = .01, r = .25. Controls also had a much
larger d’ (6.2) than patients (2.9), F(1, 36) = 8.8, p = .005, 1> =
0.2. Patients had a larger threshold than controls (2.8 vs. 1.6), F(1,
36) = 4.45, p = .04, > = 0.11. Patients and controls did not differ
significantly in nondecision time (0.24 s vs. 0.22 s), F(1, 36) =
0.31, n* = 0.01.

The top LBA model allowed the last response to potentially
affect both rates and thresholds, but AIC indicated that the last-

response effect was mediated only by threshold. To form a model-
based index of perseverance (i.e., the tendency to repeat the last
response), we first calculated indices of response bias. A bias
toward the left response occurs when the left accumulator has a
lower threshold than the right accumulator, and vice versa for a
right bias. Left-response bias (i.e., b, — b,) when the last response
was left was summed with right bias (i.e., b, — by) when the last
response was right to form a measure of perseverance. For both
components, positive values indicate a response bias toward the
last response, so their sum is the overall strength of the model’s
tendency to be biased toward the last response.

3 The supplementary materials report individual parameter estimates and
follow-up analyses of the group effect, removing potentially outlying
participants. There was no substantive change to conclusions about group
differences, with conclusions in most cases being strengthened.
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Recall that lag 1 autocorrelations are positive when responses
tend to be repeated. In the overall sample, the model-based per-
severance index correlated highly with the lag 1 autocorrelations,
r=.73,136) = 6.4, p < .001. The correlation was almost entirely
due to patients, r = .83, #(17) = 6.1, p < .001, and was nonsig-
nificant in controls, r = .16, #(17) = 0.67, p = .16.

Discussion

The relatively simple 13-parameter AIC-selected LBA model
provided an accurate and detailed description of important aspects
of the data, ranging from large effects like the shape of correct RT
distribution to more subtle effects like those of the last response on
accuracy. AIC model selection confirmed mediation of the diffi-
culty effect by rate mean and variability parameters and of stim-
ulus type (left vs. right motion) effects through response bias (i.e.,
the difference between the left vs. right accumulator thresholds).
Both findings are plausible in terms of past findings and the
meanings conventionally attributed to these parameters (Donkin et
al., 2011), confirming the validity of our application of the LBA
model in the present case. Mediation of the last-response effects
through threshold changes also provides a mechanism that ex-
plains the perseveration seen in patients.

We quantified the combined effects of the rate means and
standard deviations using a d’ measure of sensitivity that in-
dexes the quality of the evidence derived from the stimulus.
That is, a higher value of d’ indicates that this evidence is better
able to support discrimination of the direction of motion. The
group effect on sensitivity was highly significant (> = 0.2).
Indeed, it was actually larger than the analogous difficulty
effect on sensitivity. Difficulty significantly affected accuracy,
and this effect was clear because it was not masked by a change
in the evidence threshold. However, the group effect on sensi-
tivity was not reflected in a significant effect on accuracy
because it was masked by a threshold that was larger for
patients than controls (n*> = 0.11). The higher threshold reduces
the effects of random biases caused by start-point noise and so
increases accuracy, partially countering the deleterious effects
of the patients’ deficits in sensitivity.

The sensitivity deficit in patients was in large part due to a
markedly increased mean rate for the accumulator corresponding
to the incorrect response. For controls, the mean rate was more
than 2 standard deviations below zero, so on most trials, evidence
for the incorrect response decreased over the course of accumula-
tion. For patients, however, the mean was slightly positive, so
evidence for the incorrect response increased over the course of
accumulation, although still at a lesser rate than correct evidence.
This result indicates that patients were more prone to interpreting
random motion in the stimulus as supporting the incorrect re-
sponse, whereas they were about equally good at extracting evi-
dence for the correct response from the coherent motion in the
stimulus.

General Discussion

Slow and error-prone choices in simple tasks are pervasive and
heavily researched features of schizophrenia, but these effects are
quite variable, particularly with respect to accuracy (see Figure 1),
and their underlying psychological causes remain unclear. We

HEATHCOTE ET AL.

used evidence accumulation modeling, particularly the LBA model
(Brown & Heathcote, 2008), to examine the causes. This approach
provides a unified account of all aspects of choice behavior in
terms of the cognitive mechanisms that determine both RT and
accuracy.

We used the LBA to analyze the performance of schizophrenia
patients and matched controls in a motion direction binary (left vs.
right) classification task. Patients were a little slower and a little
more error prone than controls, but neither difference by itself was
significant. We did, however, find significantly stronger sequential
effects in patients, who showed an increased tendency to repeat the
last response. Although perseverance has been identified as a
feature of schizophrenia in complex tasks (e.g., Abbruzzese et al.,
1996), as well as guessing about random sequences (e.g., Lyon &
Gerlach, 1988; Lyon et al., 1986), it has not, to our knowledge,
previously been identified as a feature of responding in simple
choice tasks.

Our LBA analysis provided clear answers about a set of inter-
related causes of slowing, error proneness, and perseverance in the
motion direction classification task. Perseverance had a single
cause: a bias to require less evidence for the response made on the
last trial. Error proneness had two causes: the bias toward the last
response (which also caused perseverance) and deficits in the
quality of perceptual evidence. Slowing also had two underlying
causes: the perceptual deficits (which also affected accuracy) and
patients using a higher evidence threshold (i.e., requiring a greater
quantity of evidence before making a decision) than controls.
Setting a higher threshold was likely a strategy used by patients to
reduce the inaccuracy caused by the lower quality of their percep-
tual evidence (i.e., a speed—accuracy trade-off).

The LBA was not only able to uncover the causes of these
deficits; it also identified what did not cause group differences.
In particular, patients did not display any deficit in the com-
bined time to begin sampling evidence from a stimulus after it
first appeared or the time to produce a response after it was
selected (i.e., nondecision time). The mechanisms uncovered by
the LBA also suggest an explanation for why error proneness is
not always observed in simple choice tasks (see Figure 1):
variability in the degree to which patients used a speed—
accuracy trade-off strategy (e.g., if the speed—accuracy trade-
off was large enough, there would be no accuracy difference,
only slowing).

These findings demonstrate that evidence accumulation mod-
eling has substantial promise for improving the detection of
deficits in choice tasks displayed by people with schizophrenia,
and for explaining their underlying causes, just as it has for
other deficits (e.g., Ho et al., 2014; Ratcliff & Van Dongen,
2011; van Ravenzwaaij et al., 2012; White et al., 2010a, 2010b).
Clearly, however, our work represents only a first step that is
limited to one type of perceptual choice. Much research on
schizophrenia has been based on choice tasks using other types
of perceptual and lexical information, as well as choice para-
digms addressing inhibition and interference phenomena (see
Schatz, 1998, for a taxonomy). Performance in all of these tasks
could also be investigated using the same approach that we
applied to our task. In the following, we discuss the implica-
tions and limitations of our results and identify issues that could
be pursued in future research.
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Limitations and Future Directions

Evidence accumulation rates. Schizophrenia is associated
with sensitivity deficits in a variety of sensory processes (Butler,
Silverstein, & Dakin, 2008), including RDK motion detection
(Chen, Bidwell, & Holzman, 2005), consistent with our findings
about deficits in the quality of perceptual evidence. However,
evidence accumulation rates can also be affected by attentional and
working memory capacity (Eidels, Donkin, Brown, & Heathcote,
2010; Schmiedek, Oberauer, Wilhelm, Sii3, & Wittmann, 2007).
Impairments in these capacities have long been an important
explanatory concept of the cognitive deficits in schizophrenia (e.g.,
Nuechterlein & Dawson, 1984). Hence, further research should
investigate whether these factors also contribute to group differ-
ences in evidence accumulation rates.

In stimulus-response compatibility and flanker paradigms, Kap-
penman et al. (2012) concluded, based on event-related potentials,
that patients failed to activate the correct response rather than
failing to suppress the incorrect response, whereas we found a
failure to suppress evidence for the incorrect response. Further
research will be required to resolve whether task differences are
responsible for these different conclusions.

Nondecision time. Although schizophrenia is associated with
psychomotor slowing in complex sequence production, this is
largely in the planning component (Jogems-Kosterman, Zitman,
Van Hoof, & Hulstijn, 2001; Kim, Lee, Choi, & Goh, 2009). Our
finding of there being no nondecision time deficit is consistent
with planning not being a factor in the simple button-press re-
sponse required in our study. An important limitation of current
evidence accumulation modeling approaches is that they do not
differentiate stimulus encoding time from response production
time, so trade-offs between these components cannot be detected.
A reviewer suggested that encoding time might be slowed in
schizophrenia. If this were the case and production time were also
speeded to an equal degree, our methods would not detect any
effect.

RT variability. As discussed in the supplementary materials,
our meta-analysis found an increased RT standard deviation in
patients (e.g., Fassbender, Scangos, Lesh, & Carter, 2014; Kief-
faber et al., 2006; Rentrop et al., 2010), which is consistent with
the LBA threshold increase we observed, which increases RT
variability. Smyrnis et al. (2009) reported a similar effect in eye
movement times in a simple RT paradigm and fit their data with
the LATER model (Carpenter & Williams, 1995), which corre-
sponds to a single LBA accumulator, except that it has no start-
point noise. They found a significant increase in the evidence
accumulation rate standard deviation for their schizophrenia group,
with no significant difference in the mean rate from controls. In
contrast, our LBA fits revealed no significant group effect on the
rate standard deviation. The divergent pattern of results could be
due to task differences (simple vs. choice RT, saccadic vs. manual
responses). However, it would be interesting to also investigate the
possibility that start-point noise and sequential effects may have a
role to play in the paradigm.

Sequential effects. There is a long history of studies on
healthy participants performing simple choice tasks like the one
used in our experiment that have examined sequential effects
related to stimulus and response repetition and alternation (e.g.,
Bertelson, 1961; Kirby, 1976). They found a small but reliable bias

to repeat responses, or make repeat responses faster, when the
response-to-stimulus interval is less than 0.5 s and a bias to
alternate responses, or make alternate responses faster, when it is
longer (Soetens, Boer, & Hueting, 1985). Our response-to-
stimulus interval was around two seconds on average, so the
general tendency we found in our controls toward an alternation
bias is to be expected.

The early history of the study of slowing in schizophrenia
focused on the effect on simple RT of prior events, with Zubin
(1975) proposing that prior events leave behind facilitatory or
inhibitory neuronal traces that tend to last longer in schizophre-
nia patients. In a description reminiscent of Zubin’s (1975)
explanation, Soetens et al. (1985) attributed repetition effects in
healthy participants— occurring when the gap between trials is
much shorter than in our experiment—to “decaying memory
traces related to the structural pathway of the reaction process”
(p- 598). With a compatible stimulus—response mapping such as
the one we used, repetition effects have been localized to
response-related stages of processing (Soetens, 1998). Thus,
our finding of strong repetition (i.e., perseverance) supports the
decay of memory traces in the response stage being abnormally
slowed in schizophrenia. However, it is also possible that
perseverance was more strategic in nature, with patients delib-
erately setting lower thresholds because they believed that
repetitions are more likely than alternations. Future research
might contrast these explanations by manipulating the response-
to-stimulus interval, as longer intervals are associated with
strategic effects, and shorter intervals are associated with au-
tomatic effects (Soetens et al., 1985).

Sample size, power, and speed-accuracy trade-offs. Our
study consisted of a relatively small sample of treatment-resistant
patients from a clozapine clinic who were chronically ill. These
characteristics, and others specific to our sample (see Table 1;e.g.,
they were predominantly male), may limit the generalizability of
our findings. Although our sample size was relatively small, it was
sufficient to produce a significant group difference in the correla-
tion between choices on successive trials, but group differences in
speed and accuracy failed significance. However, our LBA anal-
ysis was able to reveal underlying differences in evidence quality
and caution because it simultaneously took into account all of the
differences between patient and control performance. Hence, it
was not a lack of power, but rather the trade-off between speed and
accuracy, that resulted in nonsignificant effects in separate analy-
ses of mean RT and accuracy. White, Ratcliff, Vasey, and McK-
oon (2009) also found that their dysphoric and nondysphoric
groups did not differ significantly in mean RT and accuracy but
that there were significant underlying differences in evidence
quality (see also White et al., 2010a, 2010b).

Our results demonstrate the utility of evidence accumulation
model analyses as a sensitive method of identifying the underlying
causes of deficits in choice processes in abnormal populations.
However, a limitation of this approach is that a fairly large number
of trials in each experimental condition have to be collected for
each participant. For future research, it is worth noting that our
design probably represents a lower bound in this regard and that,
if possible, more trials per participant, as well as larger and more
varied samples of patients, are desirable in order to realize the full
benefits of evidence accumulation modeling.
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