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Abstract 

Base-rate neglect is a failure to sufficiently bias decisions toward a priori more likely 

options. Given cognitive and neurocognitive model-based evidence indicating that, in 

speeded choice tasks,  (1) age-related slowing is associated with higher and less flexible 

overall evidence thresholds (response caution) and (2) gains in speed and accuracy in relation 

to base-rate bias require flexible control of choice-specific evidence thresholds (response 

bias), it was hypothesised that base-rate neglect might increase with age due to compromised 

flexibility of response bias. We administered a computer-based perceptual discrimination task 

to 20 healthy older (63–78 years) and 20 younger (18–28 years) adults where base-rate 

direction was either variable or constant over trials and so required more or less flexible bias 

control. Using an evidence accumulation model of response times and accuracy (specifically, 

the Linear Ballistic Accumulator model; Brown & Heathcote, 2008), age-related slowing was 

attributable to higher response caution, and gains in speed and accuracy per base-rate bias 

were attributable to response bias. Both age groups were less biased than required to achieve 

optimal accuracy, and more so when base-rate direction changed frequently. However, bias 

was closer to optimal among older than younger participants, especially when base-rate 

direction was constant. We conclude that older participants performed better than younger 

participants because of their greater emphasis on accuracy, and that, by making greater 

absolute and equivalent relative adjustments of evidence thresholds in relation to base-rate 

bias, flexibility of bias control is at most only slightly compromised with age. 

Keywords 

Age-related slowing, Response bias, Response caution, Optimality, Linear Ballistic 

Accumulator 

  



AGING AND RESPONSE BIAS 

 

 

3 

Binary decisions require making a judgement about the relative likelihood of each 

option. Normatively, uncertain judgements require combining knowledge of the base rates for 

each option (i.e., knowledge about prior probabilities) with the probability of the observed 

evidence given each option (i.e., a likelihood ratio). In both behaviour and the brain, 

judgement and decision making has been conceptualized as a dynamic process (formally, as a 

weighted sum of the logarithm of the prior likelihood and gradually accumulating estimates 

of the logarithm of the likelihood of each option; Carpenter & Williams, 1995; Gold & 

Shadlen, 2001). A tendency to under-weight base rates (often termed the “base-rate fallacy” 

or “base-rate neglect”) is well known in high-level decision making (e.g., Bar-Hillel, 1980; 

Kahneman & Tversky, 1973, 1982). Here we study the extent to which aging affects the 

weighting of prior evidence in simple perceptual decision making. 

It is increasingly understood that older adults make slower decisions between stimulus 

alternatives not exclusively or even ubiquitously because they process less stimulus 

information over time (i.e., have a slower information-processing rate), but because they 

accumulate more information before making a definitive decision about what response to 

make (i.e., have greater response caution). Formal “evidence accumulation” models of 

decision processing conceive of this greater caution as setting a higher threshold of evidence 

for a response. Making use of base-rate bias is also conceived as a matter of threshold setting, 

only requiring lower response-specific thresholds for more likely options. Accordingly, if 

they retain their higher overall thresholds when base rates are unequal, older adults would 

have to make larger absolute changes to their decision thresholds to achieve the same 

facilitatory biasing effect as the less cautious younger adults. Together with neurological 

changes with age that are associated with threshold setting, this could make flexibly adapting 
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thresholds to base-rate information more difficult with age, especially in situations where 

base-rate information changes rapidly. 

In the first part of this report, we review evidence about the effects of aging on the 

setting of evidence thresholds in the context of evidence accumulation models of choice 

responding. We then draw out the implications of this evidence for the way in which normal 

aging affects how response bias is controlled in association with base-rate information. We 

then report of an experiment in which older and younger participants made binary perceptual 

discriminations under two procedures of base-rate biasing—one in which the more likely 

target was constant across a block of trials, the other in which the more likely target randomly 

changed from trial-to-trial. We hypothesised that the need to adjust thresholds quickly and 

flexibly under the latter condition could make it harder for both older and younger 

participants to appropriately bias their response thresholds, and that this limitation could be 

greater in older participants due to a reduced ability to flexibly control threshold setting. We 

also benchmarked the biasing of response thresholds to base-rate information against the 

level of biasing required to optimise accuracy relative to given levels of response caution. 

Response Caution and Age-Related Slowing 

Slowing of choice responses is well known to occur with increasing adult age. 

Although decreased central processing efficiency was for some time the dominant account of 

age-related slowing (e.g., Hartley, 2006; Salthouse, 2016), a long-standing alternative 

account attributes this to increased response caution with age (e.g., Craik, 1969; Welford, 

1977). This hypothesis has received new impetus across the last two decades from analyses 

based on evidence-accumulation models of performance on speeded choice tasks.  

Our analysis focuses on an evidence-accumulation model where accumulation occurs 

independently for each choice option, the Linear Ballistic Accumulator (LBA; Brown & 
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Heathcote, 2008). The racing choice options are referred to as “accumulators”. In an 

elementary binary choice task, the response is determined by the winner of the race between 

two accumulators to their own decision thresholds, and the decision time is determined by the 

finishing time of the winning accumulator. Response time (RT) is the sum of the decision 

time and the duration of non-decision processes (i.e., initial encoding of the stimulus into a 

form from which evidence relevant to the choice can be derived, and the production of a 

response corresponding to the choice once it is made). Modelling usually focuses on two core 

components: the placement of decision thresholds, and the rate at which evidence is 

accumulated. Models differ in how they describe these two components. Greater response 

caution is identified with the persistent use of higher thresholds across the two accumulators 

and slowed information processing is identified with a lower rate of evidence accumulation. 

We also report subsidiary analyses based on another type of evidence accumulation model, 

the Diffusion Decision Model (DDM; Ratcliff & McKoon, 2008), which explains 

information processing rates and response caution in a comparable way. 

As reported in over 30 publications comprising about 40 experiments, model-based 

studies have consistently indicated that age-related slowing in speeded choice response is 

primarily due to increased response caution, with a small proportion due to increased non-

decision time. The evidence for this conclusion has come from a large variety of tasks—

including numerosity judgement, letter recognition, lexical decision, sentential inference and 

face evaluation. These slowing effects are model-independent, being replicated with the 

DDM (e.g., Di Rosa, Schiff, Cagnolati, & Mapelli, 2015; Dirk et al., 2017; Kühn et al., 2011; 

Ratcliff & McKoon, 2015; Ratcliff, Thapar, Smith, & McKoon, 2005), the EZ-diffusion 

model (a simplified DDM) (e.g., Dutilh, Forstmann, Vandekerckhove, & Wagenmakers, 

2013; Karayanidis, Whitson, Heathcote, & Michie, 2011; Madden et al., 2008; Whitson et al., 
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2014), and racing accumulator models (Ratcliff et al., 2005), including the LBA (Forstmann 

et al., 2011). Although decreases in processing efficiency with age are consistently found in a 

number of paradigms—for choices requiring discrimination of fine visual detail (e.g., Ratcliff 

et al., 2005; Yang, Bender, & Raz, 2015), strong demands on memory (e.g., Ratcliff, Thapar, 

& McKoon, 2011; Spaniol, Madden, & Voss, 2006) and switching between tasks (e.g., 

Karayanidis et al., 2011; Whitson et al., 2014; but see Schuch, 2016)—even in these cases 

there are large caution effects. It is also interesting to note that accumulation rates can even 

be higher for older than younger adults in association with greater task-relevant ability and 

motivation (Davies, Arnell, Birchenough, Grimmond, & Houlson, 2017; Dirk et al., 2017; 

Ratcliff et al., 2001, Exp. 1; Starns & Ratcliff, 2010, Exp. 2A). 

Increased caution with age has been attributed to both strategically determined 

behavioural causes and obligatory neural causes. An early behavioural explanation held that 

this is a matter of preference, with greater caution applied with age as a risk-avoidant strategy 

even in tasks that do not suffer changes in evidence quality with age (Ratcliff et al., 2001; 

Thapar, Ratcliff, & McKoon, 2003). This proposition has been refined by Starns and Ratcliff 

(2010), who studied threshold setting relative to optimizing the number of correct responses 

in a fixed time interval (“reward rate”, see Bogacz et al., 2006). They found that younger 

participants were closer to the optimal reward rate than older participants, although both set 

higher than optimal thresholds that favoured accuracy over speed. They concluded that the 

two age groups differed in task goals, with younger participants focused on balancing speed 

and accuracy, and older participants focused almost exclusively on accuracy. Starns and 

Ratcliff (2012) acknowledged that reward rate may not have been an appropriate measure of 

optimality as their earlier work did not enforce a fixed time interval or instruct participants to 

maximize reward rate. However, when they did so in a subsequent study, the optimality 
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difference persisted. They suggested that these age differences were not solely due to 

differences in goals “but also the ability to achieve those goals” (Starns & Ratcliff, 2012, p. 

145; see also Smith & Brewer, 1995). 

Age-related changes in the brain provide a potential explanation for this reduced 

ability to achieve the goal of balancing speed and accuracy. In particular, reduced white 

matter integrity in fronto-striatal tracts connecting the pre-Supplementary Motor Area (pre-

SMA) to the striatum has been suggested to reduce flexibility in threshold setting with age. 

Neurocognitive modelling has shown not only a correlation of fronto-striatal activity with 

LBA response caution, but a negative correlation between the white matter integrity of these 

tracts and both age and LBA thresholds (e.g., Forstmann et al., 2011). Building on a range of 

evidence linking degradation of white matter integrity and impairments in memory retrieval 

and cognitive control with age, Forstmann et al. (2011) suggested that “unwillingness of 

older adults to adopt fast speed-accuracy tradeoff settings may not just reflect a strategic 

choice that is entirely under voluntary control … it may also reflect structural limitations: 

age-related decrements in brain connectivity” (p.17242). 

Response Bias and Aging 

In speeded choice tasks, responses are faster and more accurate for options with a 

higher base rate. In the context of the accumulator model described above, the effects of 

biased base rates can be modelled by setting one decision threshold lower than the other, so 

that the corresponding accumulator wins the decision race more frequently and in less time—

so producing greater accuracy and shorter RT for the more likely option. Whether this occurs 

by reducing the threshold associated with the more likely option and/or increasing the 

threshold associated with the less likely option, studies modelling choice performance with 

both the DDM and racing accumulator models such as the LBA have repeatedly confirmed 
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that this effect is well described by response-specific threshold adaptation. These studies have 

mostly involved a block-wise bias where the base rates for each option were held constant 

across a block of trials and might only vary in direction (which target was the more likely 

one) between blocks (e.g., Arnold, Bröder, & Bayen, 2015; Criss, 2010; Leite & Ratcliff, 

2011; Ratcliff, 1985; Ratcliff & McKoon, 2008, Exp. 3; Simen et al., 2009, Exp. 2; Van 

Ravenzwaaij, Mulder, Tuerlinckx, & Wagenmakers, 2012; Van Zandt, Colonius, & Proctor, 

2000; White & Poldrack, 2014). Other studies have involved a trial-wise bias in which there 

were equal base rates across the block but targets were sampled on each trial such that the 

direction of bias could change between trials, the more likely target being cued ahead of each 

stimulus presentation (e.g., Dunovan & Wheeler, 2018; Forstmann, Brown, Dutilh, Neumann, 

& Wagenmakers, 2010; Mulder, Wagenmakers, Ratcliff, Boekel, & Forstmann, 2012). 

It is commonly observed in these studies that, for the more likely option, error 

responses tend to be slower than correct responses, whereas, for the less likely option, error 

responses can be as fast, or faster, than correct responses (see, e.g., Mulder et al., 2012, Fig. 

4). This pattern in the behavioural data is supportive of a relative threshold model of bias 

effects given that, with equal accumulation rates per option, this model predicts that (1) for 

the more likely option, the threshold for a correct response is lower than that for an error 

response, leading to faster correct than error responses, but (2) for the less likely option, the 

threshold for the correct response is higher than that for the error response (i.e., in this case, 

the more likely option), leading to faster errors relative to correct responses. 

Bias in the setting of response thresholds induced by base-rate information has been 

shown to be partly mediated by a fronto-striatal network. However, this network differs 

slightly from that which mediates responses during the speed/accuracy manipulations that 

involve response caution. In particular, Forstmann et al. (2010) found that bias as measured 
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by LBA thresholds was associated with differential fMRI activation in the orbitofrontal 

cortex, hippocampus and the side of the striatal putamen contralateral to the cued direction 

(see also Mulder et al., 2012, for a similar finding using the DDM but with stronger parietal 

involvement; and Forstmann, Ratcliff, & Wagenmakers, 2016, for a review). Given the 

pervasiveness of the association between age-related degradations in white matter integrity 

and impairments in cognitive control, and similarities between networks controlling caution 

and bias, it seems reasonable to hypothesise that the control of thresholds necessary to set an 

appropriate response bias might decline with age. 

Consistent with this hypothesis, there is evidence of limited trial-by-trial adjustment of 

response caution among older adults. Specifically, Karayanidis et al. (2011) found that, in a 

task-switching paradigm, younger adults flexibly adjusted response thresholds on a trial-by-

trial basis so as to maintain greater caution on the harder switch trials relative to easier repeat 

trials (replicating earlier findings), whereas caution was held uniformly high by older 

participants over switch and repeat trials. Also, Forstmann et al. (2011) found larger 

variability in the startpoints of evidence accumulation for older than younger adults in their 

LBA fits of data from a trial-wise caution (speed/accuracy) manipulation, concluding that 

older adults are “less proficient at controlling their bias or response caution settings” (p. 

17246). 

Unlike control of caution, control of bias does not necessarily relate to response speed. 

That is, response bias can be modulated by balancing a reduction in one threshold with an 

increase in the other threshold, leaving no net effect on speed. Furthermore, there is no 

tradeoff between speed and accuracy in bias setting because a lower threshold for the more 

likely option increases both speed and accuracy. Hence, bias control is compatible with older 

adults’ focus on accuracy, which, in turn, could enable them to perform as well as, or better 
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than, younger adults. Consistent with this hypothesis, older adults have shown speed 

facilitation at levels equivalent to, or greater than, younger adults in association with response 

precuing in spatial choice (reviewed in Proctor, Vu, & Pick, 2005) and task-switching (Mayr, 

2001), and with sequential biases over trial history in elementary choice response (e.g., 

Fozard, Thomas, & Waugh, 1976; Melis, Soetens, & van der Molen, 2002; Rabbitt & Vyas, 

1980). These effects are indicative of flexible trial-by-trial adjustments of response-specific 

thresholds, which manifest as greater startpoint variability (Heathcote et al., 2015). As such, 

it is possible that greater startpoint variability among older relative to younger participants is 

indicative of greater trial-wise adjustment of response-specific thresholds to prior 

experimental or incidental cues rather than lack of control of overall threshold setting. 

Experiment 

To investigate age-related differences in bias control, we ran a binary perceptual 

discrimination experiment using both the block-wise and trial-wise biasing procedures 

described above. One response was always correct with a probability of 0.7, and participants 

were reliably cued as to the more likely option ahead of each stimulus presentation. Under 

block-wise biasing, designed to make threshold control relatively easy, the more likely option 

remained the same over a block of trials, whereas, under trial-wise biasing, designed to make 

threshold control relatively hard, the more likely option changed randomly from trial to trial. 

Furthermore, the effect of biased base rates under the block-wise procedure is at least partly 

mediated by sequential contingencies, with more frequent events occurring in longer runs and 

so is reliably facilitated by repetition; sequential effects that are reduced under trial-wise 

biasing, which depends more on learning the base-rate validity of cues (LaBerge, Van Gelder, 

& Yellott, 1970). Altogether, a weaker effect from trial-wise than block-wise biasing was 
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likely, and, to the extent that control of response bias is reduced with age, the difference 

between block-wise and trial-wise biasing might be expected to increase with age. 

To measure evidence thresholds while accounting for possible effects on non-

threshold parameters, we fit our data with the LBA (Brown & Heathcote, 2008) using 

Bayesian methods (Heathcote et al., 2018). Just as is the case for RT measurement, where the 

equivalence or otherwise of the effects of a manipulation must be judged relative to baseline 

differences between older and younger participants (Verhaeghen, Steitz, Sliwinski & Cerella, 

2003), higher overall thresholds for the older group raise the question of whether to use an 

additive or multiplicative measure of bias effects. We circumvented this issue, and 

benchmarked the normative performance of both groups, by determining the level of bias that 

optimized accuracy based on the distribution of posterior parameter estimates of the LBA 

model. This afforded us tests of the absolute and relative optimality of older and younger 

participants that take account of both the speed and accuracy of decisions as well all sources 

of uncertainty in our data. 

Given that our choice task did not require discrimination of fine visual detail or task 

switching, and did not make difficult memory demands, we did not expect older participants 

to have accumulation-rate deficits. Indeed, Forstmann et al. (2011) interpreted their LBA rate 

estimates as consistent with older participants engaging more carefully with their dot-motion 

task. In an LBA for a binary-choice task there are two rates, one for the accumulator that 

matches the stimulus and one for the mismatching accumulator, and they found both rates to 

be significantly higher in their older than younger participants. However, there was an 

advantage, albeit non-significant, for the younger participants in terms of the difference 

between matching and mismatching rates, which largely controls accuracy. Forstmann et al. 

also replicated, in their LBA fits, the commonly observed age difference in non-decision 
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time, with younger participants showing a small advantage over older participants (~0.025s). 

Given similarities of task and analysis between our study and that of Forstmann et al., and 

that our sample of older participants was also healthy and highly motivated, we expected 

similar results. 

Several aspects of our design were motivated by minimizing potential confounds that 

occur under bias manipulations, and to improve measurement of LBA parameters. Simply 

responding with the more likely correct or rewarded option as soon as a stimulus is detected 

(fast guessing) occurs with a short response-stimulus interval (Simen et al., 2009) and when 

fast responding is encouraged by instruction (Noorbaloochi, Sharon & McClelland, 2015). 

We therefore used a long response-to-stimulus interval, a fast-guess warning, and a moderate 

base-rate manipulation to minimize fast guessing. Furthermore, base-rate bias can be less 

effective in producing prospective shifts of response thresholds when, with highly practiced 

participants, difficulty varies widely and unpredictably (including choices with no correct 

answer) between trials. Under these conditions, thresholds might nevertheless be 

retrospectively adjusted in relation to base-rate bias on more difficult trials when decision 

time is slow and stimulus evidence is less reliable (Hanks, Mazurek, Kiani, Hopp, & Shadlen, 

2011; Malhotra, Leslie, Ludwig, & Bogacz, 2017; but see Van Ravenzwaaij et al., 2012). In 

this way, as the effect of discrimination difficulty maps to rates (e.g., Voss, Rothermund & 

Voss, 2004), an indirect effect of base-rate bias on accumulation rates is likely. Because we 

were interested in the interaction of age and bias-rate bias on thresholds, we used a moderate 

level of discrimination difficulty under which performance was well above chance without 

requiring extensive practice. This also enabled us to acquire a reasonable level of error trials 

in order to identify model parameters (Heathcote et al., 2018), and to make a selective-

influence assumption that this manipulation was explained only by differences in rate 
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parameters (Voss et al., 2004). To account for effects of base-rate bias on both thresholds and 

accumulation rate, we performed model selection among three LBA parameterizations that 

assumed a selective influence of the bias manipulation on either thresholds or rates alone, or 

on both thresholds and rates. For generalizability across model architectures, we also 

performed a post hoc modelling of the data with the DDM (as encouraged by a reviewer). 

Method 

Participants 

All participants were self-screened for any relevant neurological, visual or motor 

deficits, provided prior written consent to participate and to make their de-identified trial-

level data publicly accessible, and were informed that the research procedures were approved 

by the UTAS Human Research Ethics Committee. Two participants (both in the younger age-

group) were replaced given non-compliance that was either self-reported or ostensible in 

performance (e.g., by near-chance response accuracy, and inordinately large proportions of 

both fast guesses (RTs  .2s) and response timeouts). Data collection continued until the 

intended sample size of 40 participants was achieved, half younger than 30 years (range of 

18–28, M = 21.4, SD = 3.2, excepting four participants whose age was verified as less than 30 

but whose date of birth was not obtained, 70% female), and half older than 60 years (range of 

63–76, M = 68.3, SD = 3.7, 65% female). Younger participants were University of Tasmania 

students, 11 of whom were first-year psychology students who received course-credit for 

participation; the remainder received AU$30 in shopping vouchers. Older participants were 

community-dwelling local residents who were recruited from a pool of respondents to 

advertisements for participants in age-related research and received AU$40 in vouchers. 
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Those participating comprised 51% of those in the pool who were approached to participate 

in the current study. 

Design and Stimuli 

All participants completed one session in which bias direction was manipulated in a 

block-wise manner, and one session in which bias direction was manipulated in a trial-wise 

manner, with session order counter-balanced within each age group. Each stimulus colour 

was presented as the more likely (cue-congruent) target and the less likely (cue-incongruent) 

target in equal proportions across blocks under both bias-types, and within blocks under trial-

wise biasing. Within blocks, easy vs. hard target discriminations occurred equally often in a 

random order. 

All displays were presented against a black screen background. Participants were 

seated approximately 50 cm from the monitor such that the centre of the screen was at eye-

level. The choice stimulus subtended approximately 6.2 of visual angle and consisted of a 

square 5.4 cm centre-aligned grid of 20 × 20 cells that were either blue (RGB = 0, 65, 255) or 

orange (RGB = 255, 127, 0); see the inset to Figure 1. Either 216 (54%, easy condition) or 

208 (52%, hard condition) of the cells were filled by the target colour, with the remaining 

cells being filled by the alternative colour. Within each trial, while keeping these proportions 

constant, the blue/orange colour of each cell was pseudo-randomly shuffled every .050s 

or .067s (per technical limits, but subjectively transitioning at a constant rate). This dynamic 

display served to minimize focus on a small subset of cells and counting as the basis of 

responding. 
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Figure 1. Trial sequence and stimulus difficulty samples. Events within each trial are shown 

in their temporal sequence from left to right. The duration of each event is shown below each 

event image (in ms), with the stimulus presentation remaining on-screen until a response was 

made, up to a maximum of 2s. See the text for definition of each event and its elements. 

Elements within each image are not to scale with respect to the enclosing display region or to 

each other; for example, in the experiment, the width of the stimulus grid was only 10% of 

the width of the screen. The inset presents a static sample of the stimulus grid where orange 

(light grey) cells predominate relative to blue (dark grey) cells under both easy (54%) and 

hard (52%) levels of target discrimination difficulty. 

Procedure 

After introductory verbal and on-screen instructions, each session commenced with a 

practice block of 20 trials, all without biasing and with easy discriminations where the target 

colour filled 60% of the cells of the stimulus array. This was followed by 10 blocks of 60 

trials each, the first two blocks of which were designated practice and for which the data were 

not analysed. Participants self-initiated each block by pressing a space-bar. This firstly 

produced an instruction screen that reminded participants of the type of bias for that 

session—specifically, that in the block-wise bias session, 70% of the stimuli across the block 

would be of a specified target colour, and that this would be cued ahead of each trial; and, 

alternatively, that in the trial-wise bias session, there were equal proportions of the target 

colours across the block but there was a 70% chance that the target colour that was cued 
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ahead of each trial would be congruent with that colour. Participants were instructed to try to 

use this information to help them make the response as quickly as possible while being 

correct. The assignment of targets to trials according to these probabilities was made by 

sampling without replacement, where there were always 42 targets of one colour and 18 

targets of the other colour within each block-wise bias block, and 30 targets of each colour 

within each trial-wise bias block. 

Each trial commenced with the bias-cue—the statement “70% blue” or “70% 

orange”—displayed for 0.5s slightly above the central stimulus region. This was followed by 

a blank interval of 0.5s, a small white fixation square in the centre of the screen for 0.5s, a 

blank interval of 0.5s, and then the stimulus. Using a standard USB keyboard, participants 

were instructed to press the ‘z’ or ‘/’ key to indicate the predominant colour within the 

stimulus. The mapping of response keys to target colour was counterbalanced across 

participants. To remind participants about the mapping, the onset of the fixation square 

coincided with the display of single blue and orange squares on the relevant side at the 

bottom of the screen. Responses had to be made within 2s. The stimulus and the mapping 

cues were offset upon registration of a response or on passing of the RT deadline. Onscreen 

feedback was then presented for 0.5s: responses were followed by a “too fast” message if RT 

was less than 0.2s, or by a “too slow” message if no response was made within 2s; otherwise, 

if the response was correct, the RT was presented, or, if the response was incorrect, the word 

“incorrect”. This was followed by a final 0.5s blank interval. Accordingly, the response-

stimulus interval was 3s, including a cue-to-stimulus foreperiod duration of 2s. The entire 

sequence of events in each trial is illustrated in Figure 1. 

At the end of each block, participants received performance feedback with an 

onscreen display of their mean RT in milliseconds for correct, time-valid responses, and their 
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accuracy as a percentage of all trials within that block. Participants were instructed (both 

verbally ahead of the session, and by on-screen text during the session) to take breaks 

between each block. Each session lasted 45–60 minutes. After these blocks, within each 

session, a stop-signal task (not analysed further here), of the same length, was administered. 

Finally, in debriefing, verbal feedback about task performance was elicited and noted. 

Results 

Prior to analysis, response timeouts and implausibly fast responses were removed 

(0.3%, see Supplemental Materials for details). A detailed analysis of observed performance 

measures (correct and error RTs, and error rates) using linear mixed models is reported in 

Supplemental Materials. These results are summarized in the next section along with 

graphical summaries of performance measures, and the subsequent sections define the LBA 

model (Brown & Heathcote, 2008) and report the results of fitting the model and the 

optimality analysis. 

Performance Measures 

Observed RT distributions are presented in Figure 2 for older participants, and in 

Figure 3 for younger participants. Error rates are presented in Figure 4a for older participants, 

and in Figure 4b for younger participants. The figures also represent LBA posterior predicted 

values (described below). 
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Figure 2. Observed and LBA-predicted 10th, 50th and 90th correct RT percentiles 

(corresponding to lower, middle and upper lines respectively) for older participants between 

cue-incongruent (low probability) and cue-congruent (high probability) targets per bias-type, 

discrimination difficulty and response accuracy. Open and line-joined circles represent 

observed data. Filled circles with 95% credible intervals represent LBA predictions. 
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Figure 3. Observed and LBA-predicted 10th, 50th and 90th error RT percentiles (corresponding 

to lower, middle and upper lines respectively) for younger participants between cue-

incongruent (low probability) and cue-congruent (high probability) targets per bias-type, 

discrimination difficulty and response accuracy. Open and line-joined circles represent 

observed data. Filled circles with 95% credible intervals represent LBA predictions. 
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Figure 4. Observed and LBA-predicted error rates (ER) for older and younger participants per 

bias-type and discrimination difficulty. Open and line-joined circles represent observed data. 

Filled circles with 95% credible intervals represent LBA predictions. 
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Older participants had slower overall responses, but slightly greater accuracy, than 

younger participants. Older participants were faster when correct than incorrect, whereas 

younger participants tended to be faster when incorrect than correct. Older participants also 

had fewer errors of omission than did younger participants. These results are consistent with 

increased caution in older relative to younger participants. 

Overall, correct responses were faster, and accuracy was greater, for the more likely 

option. Consistent with a relative-threshold account of this effect, error RTs were, conversely, 

slower for the more likely option. These effects were stronger under block-wise than trial-

wise biasing. These effects of base-rate bias were at least as large for older as for younger 

participants, older participants particularly showing a greater benefit in accuracy for more 

likely options under block-wise biasing. Consistent with our methodological expectations, 

sequential facilitation (speed-up by first-order target repetition) was larger under block-wise 

than trial-wise biasing for both age groups, and it was larger and more reliable on trials 

involving repetition of more likely options. This repetition effect was nevertheless smaller—

and even absent under trial-wise biasing—among younger relative to older participants. 

LBA Modelling 

Figure 5 illustrates the LBA model, with one accumulator for orange responses and 

one accumulator for blue responses. Each accumulator can have different parameters, but we 

begin by describing the simplified case where they are the same. On each trial the starting 

evidence level is sampled independently for each accumulator from a uniform distribution on 

0-A; A  0 is called the startpoint noise parameter. Evidence accrues linearly (the slanting 

dashed lines in Figure 5); the first accumulator to reach its threshold (b) determines the 

response (orange in this case); the time taken to reach the boundary represents the decision 

time (td, Figure 5). The total response time is then calculated as td plus non-decision time (t0), 
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where t0 constitutes stimulus encoding and response production processes. We report 

threshold results in terms of B = b – A, enforcing b  A (i.e., accumulation cannot begin 

above the response threshold) by requiring B  0. 

 

Figure 5. An LBA model that incorrectly makes an orange response when deciding on a blue 

stimulus. Available at https://tinyurl.com/ybpgwn84 under a Creative Commons CC-BY 

license, https://creativecommons.org/licenses/by/2.0/ 

 

The stimulus that is presented on a particular trial determines accumulation rates, 

which are sampled independently for each accumulator on each trial from positive (i.e., 

truncated below at zero, Heathcote & Love, 2012) Gaussian distributions, one for the 

accumulator that matches the stimulus (blue in the case illustrated in Figure 5) and the other 
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for the accumulator that mismatches the stimulus, with each distribution having mean v and 

standard deviation sv. When accuracy is above chance, v is greater for the matching 

accumulator than the mismatching accumulator and so sampled rates tend to be higher for the 

matching accumulator (e.g., the slanting dashed line is steeper for the blue than orange 

accumulator in Figure 5). One accumulator parameter has to be fixed to make the model 

identifiable (Donkin, Brown, & Heathcote, 2009); accordingly, we fixed sv = 1 for the 

mismatching accumulator and estimated it for the matching accumulator. 

In Figure 5, an incorrect orange response is made to a blue stimulus, despite the higher 

rate of the blue accumulator in this example, because startpoint noise gives the orange 

accumulator a “head-start”, which in this example outweighs the higher rate of the blue 

accumulator. If the threshold for the orange response had been set higher (for example, based 

on base-rate bias), the correct blue accumulator might reach threshold first (triggering a 

correct response) because its greater rate might have overcome the head-start for the orange 

accumulator. This illustrates the way in which threshold adjustment can trade off accuracy for 

speed (i.e., higher thresholds slow down responding but increase accuracy). Errors can also 

occur due to noise in rate sampling (i.e., the mismatching accumulator gets a greater rate than 

the matching accumulator). Such errors represent genuine misperceptions and cannot be 

ameliorated by an increased threshold. Critically for the current analysis, bias in the LBA has 

been conventionally assumed to be mediated by the relative levels of the thresholds for each 

accumulator. For example, a lower threshold for the blue than orange accumulator produces a 

bias towards blue responses, speeding blue responses and making them more accurate (e.g., 

in Figure 5, a sufficiently lowered blue threshold would result in a correct response). 

However, in the current experiment, we also investigated whether bias was mediated by 

higher rates for the more likely option (producing faster responses), and/or a larger difference 
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favouring the more likely option between matching and mismatching rates (producing greater 

accuracy). 

 

Model selection 

Model-selection methods were used to determine which model parameters were 

influenced by experimental factors. Candidate models were constructed where bias (i.e., cue 

congruence) could affect (1) only thresholds (i.e., B varied with congruence of cue and 

accumulator); (2) only mean accumulation rate (i.e., v varied with congruence of cue and 

stimulus); or (3) both B and v. In all models both B and v were allowed to vary with bias-

type. Mean accumulation rate was also allowed to vary with discrimination difficulty and 

matching versus mismatching accumulator. Difficulty was not set to affect thresholds (given 

the unpredictability of stimulus identity) or non-decision time (t0) (given that it does not 

affect this parameter in this task; Voss et al., 2004). Further models also explored the effect 

of bias-type on t0, startpoint variability (A) and/or rate variability (sv) for the matching 

accumulator; otherwise, estimates for the latter two parameters were assumed to be the same 

across all within-subject conditions. Because older and younger groups were fit separately, all 

parameters were allowed to vary with age-group in all model fits. 

Model comparison (as detailed in Supplemental Materials) strongly supported the 

bias-on-threshold-only model relative to the bias-on-rate-only model, and the bias-on-

threshold-and-rate model produced implausible parameters estimates. Allowing bias-type to 

affect startpoint variability and non-decision time improved model predictions. Hence, we 

focus on the bias-on-threshold-only model in further analyses. For this model, Figures 2–4 

present posterior-predictive fits of this model. These demonstrate generally good fits that 

captured all the trends evident in the data. Some misfit was evident for slower and incorrect 



AGING AND RESPONSE BIAS 

 

 

25 

responses, particularly those of older participants, as has been observed in other studies, and 

as naturally occurs at ends of the distribution that are subject to less reliable decision 

processing and produce too few observations to appropriately constrain estimation (e.g., 

Ratcliff, Thapar, & McKoon, 2006; Thapar et al., 2003). This was confirmed by measuring 

goodness-of-fit in terms of root mean square deviations (see Supplemental Materials for 

details). These indicated a typical range of error of .02s–.05s for RTs, and less than 20% for 

ERs; better estimation was observed for older than younger participant correct RTs and ERs, 

as well as for error RTs when taking account of variability in the observed data. 

Parameter tests 

We report parameter estimates, and differences in parameter estimates (denoted d), as 

the medians of posterior samples averaged over participants along with 95% credible 

intervals (CIs). We used Bayesian p-values (e.g., Klauer, 2010) to perform fixed-effects 

inferences about differences in these average parameter estimates1 between conditions and 

groups, and 95% CIs to quantify uncertainty about the values of parameters and differences 

between parameters. The p-values correspond to tail areas in the distributions of differences 

between posterior parameter estimates from different conditions or groups. The 95% CIs 

correspond to the locations of the 2.5 and 97.5 percentiles of the parameter or difference 

                                                 

1 We did not test group level parameters because they do not account for within-subject correlations, 

due to our population model assuming independence. Although a correlated population model would allow 

random effects inference based on group parameters, its estimation is technically difficult and has not yet been 

achieved with evidence accumulation models. Hence, we opted for inference based on averages over differences 

in subjects’ parameters as it allowed us to account for correlations, but we note that this inference does not take 

account of uncertainty related to generalizing to new samples of participants.  
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distributions. These values are directly interpretable as the probability that the true difference 

falls in the tail (e.g., the probability that it is greater or less than zero) or in the interval. For 

ease of interpretation we report p-values corresponding to the smallest of the areas above or 

below a difference of zero. For example, a small p-value for a positive average difference 

indicates the probability that the difference is negative is correspondingly small. Because 

they are of primary interest, we present details of the analysis of threshold parameters below 

but only summaries of the results for other parameters, with details provided in Supplemental 

Materials. 

Thresholds. Table 1 shows that we replicated many previous findings of older 

participants responding with greater caution, as compared with younger participants. This 

was true for both block-wise and trial-wise biasing. For older participants, the average 

threshold under trial-wise biasing was slightly larger than under block-wise biasing [d = 0.07 

(0.01, 0.13), p = .008]. For younger participants, there was no difference in thresholds 

between bias-types [d = 0.01 (–0.02, 0.04), p = .259]. 

Table 1. Caution: B Posterior Parameter Estimates: Medians of means over cue 

conditions, accumulators and participants (and 95% credible intervals). 

Bias-type Older Younger Older – Younger 

Block-wise 1.09 (1.05, 1.13) 0.71 (0.69, 0.72) 0.39 (0.35, 0.43), p < .001 

Trial-wise 1.16 (1.12, 1.21) 0.71 (0.70, 0.73) 0.45 (0.40, 0.50), p < .001 

 

Table 2 shows that the manipulation of bias was successful, with thresholds for the 

cue-congruent accumulator having been set lower than for the cue-incongruent accumulator. 

Furthermore, the difference in thresholds between cue-incongruent and cue-congruent 

accumulators was greater for older as compared to younger participants under both bias-
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types. Between bias-types, the difference between cue-incongruent and cue-congruent 

thresholds (right-most column of Table 2) was greater for block-wise than for trial-wise 

bias—for both older [d = 0.11 (0.08, 0.14), p < .001] and younger [d = 0.09 (0.07, 0.10), p 

< .001] participants. Although, as these descriptives indicate, there was a slightly greater 

effect of block-wise relative to trial-wise biasing on the amount of threshold bias among older 

participants, this age difference was not itself reliable [d = 0.02 (–0.01, 0.06), p = .098]. 

Table 2. Bias: Threshold (B) Posterior Parameter Estimates: Medians of means over 

stimulus and participants (and 95% credible intervals). 

Age-Group Bias-type Cue-incongruent Cue-congruent Incongruent – Congruent 

Older Block-wise 1.22 (1.18, 1.26) 0.96 (0.92, 1.00) 0.26 (0.24, 0.28), p < .001 

 Trial-wise 1.24 (1.19, 1.29) 1.09 (1.04, 1.14) 0.15 (0.13, 0.17), p < .001 

Younger Block-wise 0.79 (0.77, 0.81) 0.62 (0.60, 0.64) 0.17 (0.16, 0.18), p < .001 

 Trial-wise 0.75 (0.73, 0.78)  0.67 (0.65, 0.70) 0.08 (0.07 0.09), p < .001 

 

Threshold change can also be measured as a proportion of the overall level of caution. 

We defined proportional bias as the threshold for the cue-congruent accumulator divided by 

the sum of thresholds for both accumulators: 

𝐵𝐶𝑢𝑒−𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡 (𝐵𝐶𝑢𝑒−𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡 + 𝐵𝐶𝑢𝑒−𝑖𝑛𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡)⁄  (1) 

In this way, values less than 0.5 indicate a successful bias manipulation. Consistent with the 

absolute bias effects in Table 2, relative bias was less than 0.5 in every case (ps < .001). 

Furthermore, results for this proportional measure were almost identical for older and 

younger participants, both under block-wise biasing [older: 0.441 (0.436, 0.445); younger: 

0.439 (0.434, 0.443); d = 0.002 (–0.005, 0.009), p = 0.264] and under trial-wise biasing 

[older: 0.469 (0.464, 0.474); younger: 0.468 (0.464, 0.472); d = 0.001 (–0.006, 0.007), p = 

0.397]. 
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Accumulation rates. Performance in terms of rates was better for older than younger 

participants. Matching rates were higher for older than younger participants for both levels of 

difficulty and bias-type. The difference between matching and mismatching rates (an index of 

the quality of stimulus evaluation) was larger for older than younger participants in all 

conditions. We also calculated a measure of sensitivity that considers the effect of rate 

variability. Sensitivity was better for the older than younger participants for all conditions 

except for hard trials under trial-wise biasing. As expected, the difference between matching 

and mismatching rates was greater for easy than for hard trials in all cases, and this effect was 

larger for older than younger participants under both bias-types. Sensitivity was always better 

for easy than for hard trials, and the sensitivity advantage for easy trials was larger for older 

than younger participants under both bias-types. 

Startpoint noise (A) was larger for older than younger participants under both bias-

types. For older participants, startpoint noise was larger under trial-wise than block-wise 

biasing, whereas for younger participants, startpoint noise was larger under block-wise than 

trial-wise biasing. 

Non-decision (t0) was longer for older than younger participants under both bias-types. 

For older participants, non-decision time was longer under block-wise than trial-wise biasing 

whereas, for younger participants, it was slightly longer under trial-wise than block-wise 

biasing. 

Almost all of these results were replicated in an analysis of the data using the DDM: 

The corresponding bias-on-threshold-only model fitted the data better than a corresponding 

bias-on-rate-only model, and older participants were more cautious overall, were additionally 

cautious under trial-wise biasing, and the block-wise biasing effect was greater among older 

than younger participants (see Supplemental Materials for details). However, the overall 
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goodness-of-fit, and the parameter differences, were weaker for the DDM than the LBA 

model. Consistent with other DDM analyses (e.g., Dirk et al., 2017; Ratcliff et al., 2001; 

Ratcliff et al., 2006; Thapar et al., 2003), there was no age-related difference in startpoint 

noise. Hence, although age-related differences in startpoint noise results are replicable within 

each type of model, they differ between the LBA and DDM. The two models also differed in 

the effect age on drift rates under trial-wise biasing, being better for younger participants in 

the DDM but better for older participants in the LBA. Both models agreed that older 

participants had better rates under block-wise biasing.  

Optimality Analysis 

Bias was defined as in Equation 1, and its optimal level was calculated as a function of 

caution (average B), using simulation methods to determine the level of bias that maximized 

accuracy conditional on the estimated values of the non-threshold parameters while 

maintaining caution at the observed level. An asymptotic level of bias was defined by the 

odds ratio (7:3) that applied for all levels of caution. Preliminary results examining various 

odds ratios (see Supplemental Materials) established that optimality requires more extreme 

biases at lower levels of caution, and that its asymptotic values are an approximately linear 

function of the logarithm of the odds ratios, consistent with the results of Bogacz et al. (2006) 

for the DDM. 

Observed and optimal accuracy rates and response bias are listed in Table 3. Both age 

groups were less accurate than they could have been had they adjusted their response bias 

optimally, but older participants showed a lesser short-fall from optimal accuracy. 

Specifically, under block-wise biasing, older participants could have improved their accuracy 

by 2.2% with an optimal bias setting, which is one third less than the corresponding potential 

improvement by younger participants of 3.3%. Similarly, under trial-wise biasing, the 
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potential accuracy improvement for the older group was 1.9%, about one fifth less than the 

2.4% potential improvement for the younger group. This age difference is notable in that, to 

the extent that older participants achieved greater accuracy than younger participants, further 

improvement (by more optimal bias setting) would be more difficult to attain. 

Table 3. Observed (OBS) and Optimal (OPT) Accuracy (%C), and Observed and 

Optimal Proportional Bias—as defined in Equation (1)—as well as Asymptotic Bias (ASY). 

Age-Group Bias-type %COBS %COPT BiasOBS BiasOPT BiasASY 

Older Block-wise 86.8 89.0 0.443 0.389 0.415 

 Trial-wise 86.0 87.9 0.467 0.382 0.412 

Younger Block-wise 81.5 84.8 0.438 0.353 0.392 

 Trial-wise 83.9 86.3 0.468 0.363 0.399 

Average  86.6 87.2 0.454 0.372 0.406 

 

Calculating optimal and observed response bias for all parameter samples per 

participants, and deriving and testing their difference distributions as for the LBA parameter 

tests, it was found that the difference between observed and optimal bias was smaller for 

older than younger participants, under both block-wise biasing [older: 0.041 (0.037, 0.046); 

younger: 0.075 (0.070, 0.081), d = 0.034 (0.026, 0.042), p < .001] and trial-wise biasing 

[older: 0.076 (0.071, 0.082); younger: 0.093 (0.088, 0.099); d = 0.017 (0.009, 0.025), p 

< .001], this age difference being about twice as large under block-wise than trial-wise 

biasing. 

If older and younger participants had the same optimal bias curves (i.e., optimal bias 

as a function of caution), then given that they had the same proportional bias values, the 

advantage for the older participants might just have been due to them having a higher level of 

caution, and hence a bias curve that was closer to asymptote. However, Figure 6 indicates 
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that the bias curves differed between bias-types and age groups due to differences in the non-

threshold parameters (see also Figure 2 in Supplemental Materials). In particular, the 

asymptotic optimal bias was closer to 0.5 for older participants, but the bias curve for 

younger participants approached asymptote more quickly. This raises the question as to how 

each non-threshold parameter affected the bias curves so as to produce the optimality 

advantage for older participants. 

 

Figure 6. Optimal bias curves (dark lines), asymptotic optimal bias levels (grey horizontal 

lines), and observed bias under block-wise (B) and trial-wise (T) biasing for older and 

younger participants. 

 

The results of an analysis reported in Supplemental Materials indicate that larger 

overall rates and larger differences between matching and mismatching rates improved the 

optimality of bias for the older group by increasing their asymptotic bias. However, the 

asymptotic optimal bias values given in Table indicate that this difference in rates explained 

only a relatively small portion of the bias advantage for older participants. The older group 

was disadvantaged by the slower approach to asymptote, and a shift to the right, of their bias 
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curves, as caused by higher levels of startpoint noise, and it appears that the particularly low 

level of startpoint noise for younger participants in the trial-wise condition was responsible 

for their gain in optimality relative to older participants. However, under both block-wise and 

trial-wise biasing, having greater startpoint noise was more than overcome by older 

participants having a higher level of caution, and hence their bias curves being closer to 

asymptote. 

The DDM analysis replicated most of these results (see Supplemental Materials for 

details), including the findings that both groups were above the optimal curve, and so could, 

theoretically, further bias their responses toward cue-congruent targets so as to increase their 

accuracy and that the difference between observed and optimal bias was smaller for older 

than younger participants under block-wise biasing. However, the latter difference was not as 

strong as for the LBA, and under trial-wise biasing there was a weak tendency for younger 

participants to be closer to optimal than older participants. 

Discussion 

We examined differences between older and younger participants in the way they used 

base-rate information when making simple perceptual decisions. Recent studies of age-

related increase in overall response thresholds suggested that—distinct to earlier theorizing 

about response caution as a preferential and altogether compensatory factor in age-related 

slowing—there are increasing constraints with age on the ability and neural substrates to 

flexibly adjust response thresholds in relation to speed/accuracy goals. Our study was 

designed to examine how this might constrain adjustment of response-specific thresholds to 

cued base-rate biases, and so to selectively increase speed and accuracy for the more likely 

target, while minimising the possible role of non-threshold factors in the biasing process. We 

used the LBA model (Brown & Heathcote, 2008) to measure how much and how well 
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evidence thresholds were set for more and less likely options, benchmarking participants’ 

performance relative to threshold settings that optimize accuracy. 

In both age groups, our LBA-based analysis found base-rate neglect, but less so in the 

older group, so that they were closer to optimal in their use of bias to maximise accuracy. 

This occurred despite older participants having to make larger absolute adjustments in the 

threshold amount of evidence required to trigger a response (given that they are more 

cautious in making decisions). These results were largely replicated with the DDM, albeit 

with a reduced difference in optimality between the groups. Given that the LBA fit provided 

a better tradeoff between fit and complexity than the DDM, we have focused on the LBA 

results. However, an appropriately cautious conclusion acknowledging uncertainty related to 

the choice of model is that older participants are at least as close to optimal as younger 

participants. 

Our results are perhaps surprising in light of findings of reduced ability of threshold 

setting with age, and of reduced white matter integrity with age in the fronto-striatal tracts 

thought to mediate threshold setting—factors that could potentially make it more difficult for 

older adults to flexibly adapt their evidence thresholds to base rate biases. We did find 

evidence of reduced flexibility in our older adults in that their advantage relative to younger 

adults was reduced when base-rate direction varied from trial to trial, and so when rapid 

threshold-adjustment was required. This condition could also be expected to reduce 

sequential facilitation as—unlike under block-wise biasing—integrating trial history into the 

decision process could compromise optimal use of immediate target cues; but, under trial-

wise biasing, older participants continued to show sequential facilitation (in association with 

cue validity), whereas (replicating LaBerge et al., 1970) it fell away among younger 

participants. Consistent with reduced control of thresholds but persistent integration of trial 
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history, older participants had greater noise in the startpoints of evidence accumulation 

(replicating Forstmann et al., 2011), especially under trial-wise biasing; and this factor 

largely explained how younger participants could make up some of their optimality deficit 

relative to older participants under trial-wise biasing. A more direct test would be afforded by 

a model-based neuroscience approach (Forstmann & Wagenmakers, 2015) that assesses the 

association between white-matter integrity in relevant cortico-striatal tracts and differences in 

bias optimality when base-rate information is provided in a block-wise versus trial-wise 

manner, while also studying how older adults can persist in using sequential information 

when it compromises optimality.  

Our older participants displayed greater processing efficiency in terms of both the 

overall rate of evidence accumulation and the quality of the information they obtained from 

the stimuli as measured by their ability to discriminate between correct and incorrect 

responses. As described above, this result was not unexpected given that loss of efficiency, in 

terms of lower evidence accumulation rates, is only found for tasks with strong perceptual 

and memory retrieval demands. Forstmann et al. (2011) also found an advantage for older 

participants in terms of overall rates but not in terms of discrimination. It is possible that 

these findings were due to greater motivation, and consequently attentional focus, among our 

older than younger participants, but it is important to note that this factor did not explain their 

more optimal bias settings. Rather, it appears that this was associated with their higher level 

of caution, because, at these higher levels, less bias is required in a relative sense to achieve 

optimality. In this way, our results are not inconsistent with evidence that, under some 

conditions, efficiency is lost with age, or even that the effect of bias can be mediated by 

accumulation rates. A more direct test of the role of rate-related factors would be to use a 

choice task where older adults are known to have reduced processing efficiency, such as 
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discrimination of fine visual detail (e.g., Thapar et al., 2003), or demanding memory or 

cognitive control tasks (e.g., Karayanidis et al., 2011, Ratcliff et al., 2011). Under such 

conditions, it might also be seen that accumulation rate has a role in the effect of base-rate 

bias (as per Dunovan & Wheeler, 2018), and, because this could involve a fronto-parietal 

pathway (Mulder et al., 2012), the concept of compensatory neural (parietal) recruitment with 

age (Grady, 2008) could become relevant to interpretation of age-related bias effects. 

A question that arises from our results is why all participants were less biased by base-

rate information than is optimal. One possibility is that our definition of optimality is too 

narrow as it only takes account of accuracy, unlike the reward-rate definition that has been 

used to assess the optimality of caution setting (Bogacz et al., 2006). However, any criterion 

that values speed must predict bias that is greater than optimal, because that results in faster 

responses for the more likely stimulus, and so faster responses overall. A second possibility is 

that participants simply lacked sufficient experience, and that they would have become more 

optimal with practice. Practice has been found to improve the reward-rate optimality of 

caution in younger but not older participants (Starns & Ratcliff, 2010). Future experiments 

might examine how practice, and appropriate guidance (Evans & Brown, 2017), affects the 

superiority of older participants in terms of bias optimality. 

It is also possible that participants were acting optimally, but relative to a base-rate 

estimate that differed from the true base rate. This possibility was suggested by Hanks et al. 

(2011), who also found that participants were less biased than optimal and suggested an 

explanation in terms of the idea put forward by Good (1983) of a “prior on a prior 

probability”. The idea here is that participants treat information about base rates in a 

Bayesian manner, integrating it with their prior beliefs in order to come up with a posterior 
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estimate that is then used as a prior in the task.2 On this logic, by finding the base rate that 

results in the optimal bias that matches the observed bias, we can infer that older participants 

had an effective base rate of 0.62 under block-wise bias and 0.56 under trial-wise bias, 

whereas younger participants used a base rate of 0.55 under both bias-types. 

More generally, Good’s (1983) explanation is related to findings in high-level decision 

making that probability information is not treated veridically (Tversky & Kahneman 1992). 

This link also suggests it would be interesting to contrast the manipulation we used, where 

base-rate information is given by description, with a manipulation where it is learned from 

experience. In higher-level decision making there is a gap between the effects of description 

and experience (Hertwig & Erev, 2009), so it is possible that a different pattern of results may 

be found in the present paradigm with an experience manipulation. 

Finally, the superior performance of older relative to younger adults could have 

applications in the detection of cognitive decline from conditions such as dementia. Because 

most cognitive abilities diminish gradually during the latter part of life in a healthy 

population, it can be difficult to detect the acceleration caused by disease processes. For 

disease processes that impact cognitive control, and in particular the control of thresholds, the 

                                                 

2 For example, suppose participants treated the information about a prior probability of 0.7 as 

equivalent to one of the two stimuli occurring on 7 out of 10 draws from a binomial distribution, and suppose 

they weight a prior belief that each stimulus is equally likely twice as heavily, as equivalent to the stimulus 

occurring on 10 out of 20 previous occasions under a beta prior. Their posterior estimate would then be (7 + 10) 

/ (10 + 20)  0.57, which is shrunk towards unbiased. An optimal bias set on this basis would appear to be less 

than optimal assuming the true base rate of 0.7. 
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preserved and even enhanced ability of healthy older adults to take account of base-rate 

information suggests that measuring bias optimality may provide a sensitive early-onset test. 
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