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A B S T R A C T

A critical constraint on models of item recognition comes from the list strength paradigm, in which a proportion
of items are strengthened to observe the effect on the non-strengthened items. In item recognition, it has been
widely established that increasing list strength does not impair performance, in that performance of a set of items
is unaffected by the strength of the other items on the list. However, to date the effects of list strength ma-
nipulations have not been measured in the source memory task. We conducted three source memory experiments
where items studied in two sources were presented in a pure weak list, where all items were presented once, and
a mixed list, where half of the items in both sources were presented four times. Each experiment varied the
nature of the testing format. In Experiment 1, in which each study list was only tested on one task (item re-
cognition or source memory), a list strength effect was found in source memory while a null effect was found for
item recognition. Experiments 2 and 3 showed robust null list strength effects when either the test phase
(Experiment 2) or the analysis (Experiment 3) was restricted to recognized items. An extension of the Osth and
Dennis (2015) model was able to account for the results in both tasks in all experiments by assuming that
unrecognized items elicit guess responses in the source memory task and that there was low interference among
the studied items. The results were also found to be consistent with a variant of the retrieving effectively from
memory model (REM; Shiffrin & Steyvers, 1997) that uses ensemble representations.

Introduction

A distinction in episodic memory concerns the difference between
information about learned content and the context in which it occurred.
A common memory failure is when one remembers a fact or detail but
has no memory for where he or she learned the information. The re-
lationship between memory for content and context is studied in the
laboratory using the item recognition and source memory paradigms. In
the item recognition paradigm, participants study a list of items and at
test are asked to discriminate between studied items (targets) and un-
studied items (lures). The source memory paradigm presents partici-
pants with a set of items in different sources, such as different font
colors, studied locations, or sensory modalities. At test, participants
judge which source studied items were presented in.

A number of computational models of decision making have been
developed to explain the relations between item and source memory
(e.g.; Banks, 2000; Batchelder & Riefer, 1990; DeCarlo, 2003; Glanzer,
Hilford, & Kim, 2004; Hautus, Macmillan, & Rotello, 2008; Klauer &
Kellen, 2010; Slotnick & Dodson, 2005; Yonelinas, 1999). These models
fall into several frameworks including multivariate signal detection
theory, in which participants make decisions based on continuous

latent strengths (SDT: Banks, 2000), discrete state models (Batchelder &
Riefer, 1990; Klauer & Kellen, 2010), or a combination of continuous
latent strengths and discrete states (Yonelinas, 1999).

While such models yield useful predictions about the shapes of the
receiver operating characteristic (ROC) in each task (Slotnick &
Dodson, 2005) and whether source memory is accurate without item
memory (Starns, Hicks, Brown, & Martin, 2008), they are generally
mute with respect to manipulations that often concern memory re-
searchers, such as the effects of recency (Monsell, 1978), list length
(Dennis, Lee, & Kinnell, 2008; Strong, 1912), list strength (Ratcliff,
Clark, & Shiffrin, 1990), and word frequency (Glanzer & Adams, 1985),
although, as addressed later, the Hautus et al. (2008) model makes one
specific prediction with regard to the list strength paradigm in source
memory. This is because these models define the form of the decision
variable but are agnostic as to the encoding, storage, and retrieval as-
sumptions that give rise to it. In contrast, the class of global matching
models has made such specifications (Clark & Gronlund, 1996). In
global matching models, memory strength is determined by the simi-
larity between the retrieval cues and each stored item in memory; these
similarities are summed (or averaged; Shiffrin & Steyvers, 1997) to
produce a single strength value that can be compared to a response
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criterion to make a decision. Collectively, the current generation of
episodic recognition models have been successful in explaining all of
the aforementioned episodic memory phenomena in item recognition
(e.g.; Dennis & Humphreys, 2001; Nosofsky, Little, Donkin, & Fific,
2011; Osth & Dennis, 2015; Shiffrin & Steyvers, 1997).

Nonetheless, many recent mechanistic models in the episodic
memory literature have often been restricted to a single task and have
rarely provided joint accounts of multiple memory tasks (but see
Lehman & Malmberg, 2013, for a noteworthy exception). Hintzman
(2011) criticized this tendency and argued that this has been leading to
limited conclusions about the nature of memory as a whole. Consistent
with this criticism, current mechanistic models of recognition memory
have experienced little, if any, extension to the source memory para-
digm. The current article attempts to fill this gap by testing one of the
major constraints of episodic memory models, the list strength effect
(LSE), in a source memory paradigm, and further introduce an exten-
sion of the Osth and Dennis (2015) model to provide a joint account of
the results from both item recognition and source memory. The list
strength paradigm asks the question can strengthening a memory cause
forgetting of other memories?

The list strength paradigm: data and model predictions

A prediction of global matching models is that as the number of
items in memory is increased, performance should decrease. In these
models, each item in memory has variation in its similarity to the re-
trieval cues, so that as the number of items in memory is increased, the
number of variance components that contributes to the decision in-
creases and the signal-to-noise ratio is reduced. Ratcliff et al. (1990)
found that the models yielded the same predictions for the case of re-
petitions of the list items; repetitions are treated in the same manner as
increases in the number of studied items and contribute additional
noise at retrieval.

To understand how this prediction is manifested, consider a se-
quence of study list items such as ABCD. Most models would predict
that strengthening A and B via study time and/or repetition should
increase performance on A and B. The counter-intuitive prediction that
emerged from these models is that strengthening A and B should impair
performance on C and D. This prediction can be tested by comparing
lists with different compositions of strengthened and non-strengthened
items, such as a pure weak list where all items are presented once
(ABCD) and a mixed list where half the items are presented once and
half the items are presented four times (AAAABBBBCD). The original
global matching models predicted that performance of the once pre-
sented items (C and D) should be worse in the mixed list than in the
pure weak list due to the extra interference from the repetitions of A
and B. The list with more repeated items would be considered a list with
higher list strength.

A large number of experiments tested and disconfirmed this pre-
diction: increasing the strength of a set of studied items does not impair
performance of the other items on the list for the case of item re-
cognition with word stimuli (Diana & Reder, 2005; Hirshman, 1995;
Kahana, Rizzuto, & Schneider, 2005; Ratcliff et al., 1990; Ratcliff,
McKoon, & Tindall, 1994; Ratcliff, Sheu, & Gronlund, 1992; Shiffrin,
Huber, & Marinelli, 1995; Yonelinas, Hockley, & Murdock, 1992) al-
though small effects of list strength have been found with non-word
stimuli such as faces and fractals (Norman, Tepe, Nyhus, & Curran,
2008; Osth, Dennis, & Kinnell, 2014). One should note that the free
recall task contrasts with recognition memory in that increasing list
strength has been shown to substantially impair performance when
strengthening is achieved via spaced presentations (Tulving & Hastie,
1972) but not when strengthening is achieved via massed presentations
or depth of processing (Malmberg & Shiffrin, 2005). As a consequence
of this failed prediction, amendments to the global matching framework
were proposed that enabled the models to predict a null list strength
effect (LSE) in item recognition. One such modification was the

differentiation hypothesis, in which repetitions accumulate into a single
strong memory trace that is more responsive to its own cue but less
responsive to other cues (Shiffrin, Ratcliff, & Clark, 1990). The latter
component implies that strong memory traces generate less interference
than weak traces, whereas in the older models the opposite was the
case.

Another class of models has argued that the null LSE is more in-
dicative of interference stemming from sources other than the studied
items (Dennis & Humphreys, 2001; Murdock & Kahana, 1993a, 1993b;
Osth & Dennis, 2015). While initial models assumed that memory is a
“blank slate” before presentation of the study list,1 these models instead
assume an interference contribution from pre-experimentally learned
memories consisting of prior occurrences of the cue word (context
noise) or from other memories in general (background noise). When
such interference contributions are substantial, interference from the
additional repetitions in a list strength paradigm produces only a neg-
ligible increase in overall interference, allowing the models to predict
null effects of list strength.

To our knowledge, none of these models which have been successful
in addressing benchmark phenomena in item recognition have been
applied to the source memory task. A simple extension of these models
to source memory would involve binding each item to its source at
study; at test the probe item would be cued with each of the studied
sources and the memory strengths of each source cue would be com-
pared. An example is depicted in Fig. 1, where “truck” and “joker” were
studied in source A (red) and “sky” and “phone” in source B (green). At
test, when prompted with a cue such as “truck”, in order to make a
judgment as to which source “truck” was studied in participants could
cue memory with a binding of “truck” in source A and match it to the
contents of memory to obtain the memory strength for source A (sA).
Subsequently (or in parallel), the participant could cue memory with a
binding of “truck” in source B and match it to the contents of memory to
obtain a memory strength for source B (sB). The difference between the
memory strengths for source A and B could be used to make a decision -
if this difference exceeds a decision criterion (ϕsource) source A would be
chosen, otherwise source B would be chosen.

Although this mechanism is similar to item recognition, the re-
presentational structure of the memory set in the source memory task
can lead to different predictions. In item recognition, a word such as
“truck” receives its strongest contribution from its own representation
in memory, while the other items on the list produce much smaller
degrees of match, due to the fact that they bear little resemblance to the
retrieval cue. However, in source memory, half of the items in the list
match the source cue, meaning that source memory can resemble cases
where half of the representations in memory bear a high similarity to
the retrieval cues.

We found this higher similarity in the task was sufficient to induce
an LSE in the original version of the retrieving effectively from memory
model (REM: Shiffrin & Steyvers, 1997); these simulations are detailed
later in the General Discussion. This was somewhat surprising because
in REM strengthening items produces differentiation of the memory
traces, which should reduce the interference contribution from strong
memory traces and produce a null LSE. However, differentiation only
reduces interference when the similarity between the trace and the cue
is relatively low. When the similarity is high, which is the case when
50% of traces match the source cue, interference increases with
strength (Criss, 2006). However, later formulations of REM allow ad-
ditional ensemble features that are unique to a binding between items
or features (Criss & Shiffrin, 2005). Interestingly, ensemble features

1 A reviewer pointed out that the central commitment of such models is not
that there are no memories, but that any interference from prior memories is
negligible. Another possibility is that interference from prior memories is
eliminated because the context of the study list is sufficiently isolated from
prior memories.
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mitigate the interfering effect of the matching source features and a null
LSE is predicted.

The Osth and Dennis (2015) model makes predictions that closely
align with the ensemble version of REM when interference among the
items is minimal. In item recognition, Osth and Dennis demonstrated
that predictions for list strength in the model depend on the magnitude
of the interference between the studied items. As the interference be-
tween items approaches zero, the strength of the other memories
cannot influence performance and no effect of list strength is predicted.
Osth and Dennis accounted for the null LSE with word stimuli because
the interference between words was relatively small.

In the source memory extension of the model, the similarity of each
memory to the retrieval cues is a multiplication of the similarity to the
item cue and the similarity to the source cue. Because of this multi-
plicative combination, when the similarity to the item cue is very low,
the overall match from the memory is low even if its source information
matches the source cue. As an example, consider if memory is cued with
“truck in source A” in a list where “monkey” was studied in source A
four times and “cup” was studied in source B once. As the similarity
between the cue “truck” and each studied word (“monkey” and “cup”)
approaches zero, the overall match for each memory should approach
zero even though “monkey” has a strong match to the source features.
As the similarity between “truck” and the studied words increases, there
should be more interference from the word “monkey” due to its
stronger match on the item features. We have postponed a mathema-
tical description of the model until later in the article, where we de-
monstrate that the model predicts a null LSE in both item recognition
and source memory under a variety of different parameters when the
interference among the items is very low, which is what would be ex-
pected here given that prior investigations with the model have found
low interference among words (Osth & Dennis, 2015; Osth, Jansson,
Dennis, & Heathcote, 2018).

There are additionally some well specified dual process models that

predict a dissociation between item recognition and source memory
with regards to the LSE. In dual process models, recognition decisions
are based on either familiarity or recollection. In the source of activa-
tion confusion (SAC) model (Reder et al., 2000), the recollection
component is composed of items being bound to an episode node. Items
compete for activation from the episode node and strengthened items
receive episodic activation at the expense of the weaker items on the
list. Familiarity is a non-competitive baseline strength that is in-
cremented upon study presentation and is thus unaffected by increases
in list strength but contains no contextual or source information. In
SAC, a null LSE is predicted in item recognition because the recollection
deficit is compensated by relying more on familiarity in conditions of
higher list strength, but an LSE is predicted in tasks that rely heavily on
recollection, and source memory is one such example (Diana & Reder,
2005). In addition, the Norman and O’Reilly (2003) neural network
model contains a familiarity-based cortical layer which is unaffected by
list strength, as well as a hippocampal network that is necessary for
tasks such as source memory or plurality discrimination that is im-
paired by increasing list strength. Both models have been argued to be
consistent with the finding that an LSE is observed in the plurality
discrimination task, where participants have to distinguish between
studied items and switched plurality lures (i.e.: rejection the word “cat”
if “cats” was studied), a task presumed to require recollection.

The current investigation

To our knowledge, the effects of list strength on source memory
performance have not been investigated. A number of researchers have
investigated the effects of strengthening a single source on the slope
(e.g.; repeating source A items but not source B items) of the z-trans-
formed ROC (Starns & Ksander, 2016; Starns, Pazzaglia, Rotello,
Hautus, & Macmillan, 2013; Yonelinas & Parks, 2007) but these studies
did not explore the extent to which the strength manipulation impaired

Fig. 1. A global matching account of the source memory task. The probe word “truck” is cued with the source A context (red, upper left) and matched against each of
the study list items, each of which was bound to either the source A or source B (green) context, to measure the strength of the source A context sA. In addition,
“truck” is cued with the source B context to measure the strength of the source B context sB. Source A is chosen if the difference between sA and sB exceeds a decision
criterion Φsource. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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memory for the items that were not strengthened, which is the focus of
the list strength design.

In each of our experiments, participants studied a list of 32 items,
where half the items were presented in the lower left corner of the
screen in a colored font (source A) and the other half of the items were
studied in the upper right corner in a different colored font (source B).
Participants rated words for pleasantness while viewing the words,
which has been shown to increase performance in both item recognition
and source memory tasks (Glanzer et al., 2004). In the pure weak (PW)
condition each item was presented once (1×) while in the mixed
condition half the items were presented once and the other half were
presented four times (4×) with each repetition spaced throughout the
study list. An equal number of source A and source B items were
strengthened, and each repetition was always presented in the same
source. Participants were tested on item recognition and source
memory in each experiment. We additionally manipulated word fre-
quency in our experiments to place extra constraint on the computa-
tional model. Several prior investigations have found source memory
advantages for low frequency words (Glanzer et al., 2004; Guttentag &
Carroll, 1994, 1997; Marsh, Cook, & Hicks, 2006; Mulligan & Osborn,
2009), just as in item recognition.

Unlike the traditional Ratcliff et al. (1990) design, we did not in-
clude a pure strong condition composed entirely of strong items. This is
because recently it has been discovered that the decrease in perfor-
mance through the course of recognition memory testing (e.g., Peixotto,
1947) is sensitive to the list composition of the test list, with pure strong
lists showing a lesser rate of decline in performance than strong items
on mixed lists (Kiliç, Criss, Malmberg, & Shiffrin, 2017). Given that this
factor selectively harms mixed strong items, it can artifactually induce
an LSE (Mixed strong ′d > pure strong ′d ). In our design, weak items in
the mixed lists and pure weak lists are matched on both retention in-
terval and test position. In addition, the strong items are not tested until
after the weak items on the mixed list, such that the block of weak items
on the mixed list has an identical strength composition to the weak
items on the pure weak list. As we will demonstrate later in the text, the
models under consideration do not make different qualitative predic-
tions for pure weak vs. mixed weak items and mixed strong vs. pure
strong items. Under conditions where an LSE is predicted, the models
predict PW ′>d MW ′d and MS ′>d PS ′d , and likewise when a null LSE is
predicted, the models predict PW ′d =MW ′d and MS ′d =PS ′d .

We hypothesized item recognition should show a null LSE
( ′ = ′d ditem PW item mixed, , ), because the null LSE in item recognition has been
replicated quite extensively in the literature, even in cases that have
used a strength ratio of 4:1 or greater where strength is manipulated by
the number of presentations (Diana & Reder, 2005; Kahana et al., 2005;
Ratcliff et al., 1990). Our model predicts a null LSE in both item re-
cognition and source memory when interference among items is low,
which is expected to be the case with word stimuli based on prior in-
vestigations. Nonetheless, dual process models such as the SAC and
Norman and O’Reilly (2003) models predict an LSE in source memory
while predicting a null LSE in item recognition. In addition, we will
demonstrate later in the article that the basic version of the REM model
predicts an LSE in source memory under conditions where it predicts a
null LSE in item recognition, although a version with ensemble re-
presentations (Criss & Shiffrin, 2005) predicts no LSE in source
memory. Thus, there are some models that predict that source memory
should be susceptible to an LSE while item recognition should yield a
null LSE.

Although participants were tested on item recognition and source
memory for both conditions in each of the experiments, the specific
details of the testing varied somewhat across experiments. In
Experiment 1, participants were tested on either item recognition or
source memory for each studied list, but not both. After completing
each study list, they were post-cued on the task to be performed at test.
This experiment found a positive LSE in source memory
( ′ < ′d dsource PW source mixed, , ) but not in item recognition. Although this result

is contrary to the predictions of the Osth and Dennis model, the model
of Hautus et al. (2008) provides an alternative explanation in terms of
decision processes. In their model, source memory judgments are only
elicited for recognized items, while guesses are elicited by unrecognized
items because participants do not attempt source retrieval on items they
do not recognize. A number of experiments have established that par-
ticipants adopt higher decision criteria in conditions of higher list
strength (e.g., Hirshman, 1995; Starns, White, & Ratcliff, 2010; Stretch
& Wixted, 1998); our experiments were no exception, with HR for once
presented items and FAR being lower in the mixed list. Under the
Hautus et al. (2008) model, a higher decision criterion in the mixed list
results in a greater proportion of unrecognized items, and thus more
items where source retrieval is not attempted, producing an LSE
( ′ < ′d dsource PW source mixed, , ) for reasons that are unrelated to interference or
retrieval.

The Hautus et al. (2008) model predicts that if the source memory test
was restricted only to items that were recognized by the participants, the
LSE in source memory should be reduced or eliminated. Experiments 2
and 3 directly test this possibility. Experiment 2 was nearly identical to
Experiment 1 with the exception that it used a conditionalized source
memory procedure. During the test phase, for each item, participants
were initially tested on their item recognition; if they gave a “yes” re-
sponse to an item, they were then immediately prompted for a source
memory judgment. Items that were not recognized did not receive source
memory judgments. Experiment 3 tested both tasks for each studied item,
but in separate phases. Participants were given an item recognition test
after the study list and then were subsequently given a source memory
test on all the studied items in a separate block. In addition, while Ex-
periments 1 and 2 used two choice tests (“yes” vs. “no” for item re-
cognition, “source A” vs. “source B” for source memory tests), Experiment
3 used six point confidence ratings. This procedure enabled a post hoc
conditionalization of the source memory data based on the confidence in
the recognition responses. No LSE in source memory was observed in
Experiments 2 and 3.

In each experiment we aimed to collect around 80–90 participants
to be consistent with previous sample sizes we have employed in list
strength designs (Osth et al., 2014; Osth & Dennis, 2014). This is in part
due to the fact that observed LSEs are often quite small in recognition
tasks (Buratto & Lamberts, 2008; Osth et al., 2014), and thus we wanted
ample sample sizes to have the power to detect such effects if they’re
present. An exception was Experiment 3, where we collected additional
participants beyond our goal, as the conditionalization of source
memory data on item confidence results in the omission of a significant
proportion of responses. Data from each experiment are posted online
at https://osf.io/578xj/.

Following description of the three experiments and their theoretical
implications, we present the source memory extension of the Osth and
Dennis (2015) model, and describe its application to all three experi-
ments using hierarchical Bayesian techniques, which enables fitting of
the individual participants while allowing for group-level constraints
across each of the experiments.

Experiment 1

In Experiment 1, we tested both item recognition and source
memory for the presence of a list strength effect. Following each study
list, participants were tested on either item recognition or source
memory for that study list.

Participants

Participants were 81 first-year psychology students at the University
of Melbourne who received course credit. We did not screen for the age
or gender of the participants, intact colour vision, or whether partici-
pants were native English speakers in this experiment or in subsequent
experiments.
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Materials

A set of high (N =252, CELEX frequency 100–560 occurrences per
million) and low (N =341, CELEX frequency 1–2 occurrences per
million) frequency words were used for this experiment. These sets
were drawn from the MRC Psycholinguistic Database and ranged from 5
to 9 letters and 1 to 2 syllables in length. All plurals or derivational
variants of words were excluded. We attempted to equate for the mean
number of neighbors using N-Watch (Davis, 2005). The number of
neighbors ranged from 0 to 12 for the high frequency words
(M =1.988) and from 0 to 8 for the low frequency words (M =0.968).
While this was significantly higher for HF words ( = <Z p4.87, 0.001),
the means were less than one SD apart ( = =SD SD2.40, 1.42HF LF ).

Procedure

A diagram of the basic procedure for each experiment can be seen in
Fig. 2. During the study phase of both the pure weak and mixed con-
ditions, participants studied a set of 32 words, where half were high
frequency (HF) and half were low frequency (LF). Each word was
presented on the screen for 2000ms. Presentation of each word was
followed by a blank screen for 250ms. To engage their attention, par-
ticipants were asked to indicate whether the word was pleasant or not
using the “i” and “k” keys, respectively. Half the words were present in
one source (source A) and half were in another (source B). Each source
was composed of two source dimensions: color (green or yellow) and
screen location (bottom left or upper right corner). For each participant,
a color was randomly assigned to one of the screen locations. That is,
either participants were presented with green words in the lower left
corner and yellow words in the upper right corner, or yellow words in
the lower left corner and green words in the upper right corner. Usage
of two correlated source dimensions was intended to increase source
discriminability, as we found it was quite poor when only screen lo-
cation was manipulated for the two sources.

In the pure weak condition, each word was presented once. In the
mixed list condition, after all words were presented once, half of the
words were presented three more times. The repetitions were blocked,
in that each of the strengthened words had to be presented twice before
they were presented on their third time, etc. An advantage of this de-
sign is that participants see all of the words on the mixed list before
they know the words are repeated, which prevents them from differ-
entially rehearsing the strong items at the expense of the weak items
(rehearsal borrowing, e.g., Ratcliff et al., 1990). Of the repeated words
on the mixed list, there were an equal number of HF and LF words and

an equal number of words in source A and source B.
After the study phase, participants underwent a demanding dis-

tracter task in which they played a game where playing cards appeared
on the screen at a rapid pace and they had to periodically make re-
sponses according to a set of rules, such as pressing the space bar when
two cards with the same suit appeared in a row. To encourage parti-
cipation in the task, participants scored points for correct key presses
and lost points for incorrect presses. The card game lasted for 198 s in
the pure weak condition and 90 s for the mixed list condition. The
purpose of the different lengths was to ensure that the retention in-
tervals for weak words were identical in both conditions.

During the test phase for a given list, participants were tested on
either item recognition or source memory for a given study list.
Participants were post-cued with which task they would perform; they
were not told until the instructions prior to the test phase. In all item
recognition tests, participants were presented with test lists of which
half of the items were targets and half were lures. For both targets and
lures, half of the items were LF and half HF words and for targets, half
the items were studied in source A and half in source B. Participants
were instructed that they were to press the “1” key to indicate that they
recognized studied items and “0” to indicate that they did not recognize
the item. Source memory test lists were similar with the exception that
there were no lures present on the study lists, making the test lists half
as long as the item recognition test lists. During the source memory
tests, participants were instructed to respond “1” to items in the lower
left corner and “0” to items in the upper right corner. Response buttons
were present throughout the test list in both tasks to remind the par-
ticipants of the response keys; in the source memory task these buttons
were in the same color as the studied sources to additionally remind
participants of the color dimension in their source judgment and were
in a similar position as their studied location (e.g., the source A button
was presented on the lower left of the bottom half of the screen while
the source B button was on the upper right of the bottom half of the
screen).

For the test lists of the pure weak condition, participants were tested
on half the studied items. In the mixed list condition, participants were
tested on all of the once presented items before they were tested on the
strong items. This was to ensure that the test position for once presented
items was the same across both conditions, as performance in item
recognition has been found to decline monotonically with increasing
test position (Peixotto, 1947). This also ensures that the strength
composition of the weak item test blocks was the same across both the
pure weak and mixed list conditions. Pure weak test lists were com-
posed of 32 trials for item recognition and trials items in length for

Fig. 2. Diagram of the experimental procedure and how the test phase differs across each experiment. Notes: HF=high frequency, LF= low frequency, T= targets,
L= lures.
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source memory tests, while mixed list test lists were composed of 64
trials for item recognition and 32 trials for source memory.

Participants completed a total of eight study-test cycles, half with
item recognition testing and half with source memory testing. None of
the words were repeated across the study-test cycles. Half of the study-
test cycles were in the pure weak condition while half were in the
mixed list condition, resulting in two iterations for each condition in
each task.

Results

Results from Experiment 1, along with the other two experiments,
can be found in Fig. 3. A weakness of the null hypothesis testing fra-
mework (NHST) is its inability to provide support for the null hy-
pothesis (Wagenmakers, 2007). For this reason, we employed Bayesian
repeated measures ANOVAs and paired t-tests (on means) with JASP

software to calculate the Bayes Factor, which indicates the change
supported by the data of the relative evidence for the alternative hy-
pothesis against the null hypothesis. A >BF 110 indicates increased
evidence for the alternative hypothesis, a <BF 110 indicates greater
evidence for the null hypothesis, while =BF 110 indicates no change.
Assuming both hypotheses are equally likely before observing the data,
by convention, a BF10 that is in the 1–3 range or the 0.33–1 range
provides only “anecdotal” evidence for or against the null hypothesis,
respectively, while BF10 in the 3–10 or 0.1–.33 range provides sub-
stantial evidence, and >BF 1010 or <BF 0.110 provide strong evidence
for or against the null hypothesis (Jeffreys, 1961). All statistical tests
throughout the article were two-tailed and used default priors.

For source memory, a hit was defined as a source A response to an
item studied in source A, while a false alarm was defined as a source A
response to an item studied in source B. HRs and FARs in source
memory are depicted in Fig. 3. Source memory analyses were restricted

Fig. 3. Group averages along with model predictions for Experiments 1 (top row), 2 (middle row), and 3 (bottom row) for the item recognition task (left two
columns) and source memory tasks (right two columns). The posterior predictive distribution of the model is depicted using violin plots. Experiment 3 shows data and
model predictions in the source memory task depending on whether the items were recognized (green) or not recognized (red) in the item recognition task, in
addition to showing all of the data/predictions (blue). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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to ′d , while for item recognition C , HR, and FAR were analyzed in ad-
dition to ′d to analyze bias effects in response to list strength. To avoid
infinite values of ′d , hit and false alarm rates were transformed by
adding 0.5 to the hit and false alarm counts and 1 to the number of
targets and lures before calculating ′d (Snodgrass & Corwin, 1988). This
was done only for the calculation of ′d ; all analyses on HR and FAR
throughout the paper are on the raw, untransformed rates.

The item recognition results replicated the findings from the list
strength paradigm that have been previously reported in the literature.
There was no list strength effect, in that ′ditem did not differ between the
pure weak (M =2.06, SD =0.84) and mixed (M =2.03, SD =0.77),

=BF 0.13610 , lists. In accordance with previous results (e.g.; Hirshman,
1995), participants were more conservative with increasing list
strength, indicated by a higher criterion Citem in the mixed list
( = = = =M M SD SD0.00, 0.16, 0.36, 0.36PW M PW M ), =BF 6492.5010 .
This was reflected in lower HR in the mixed ( = =M SD0.79, 0.14) than
the pure weak ( = =M SD0.84, 0.13), =BF 95.0310 condition along with
lower FAR in the mixed ( = =M SD0.125, 0.09) than the pure weak
condition ( = =M SD0.164, 0.12), =BF 8.3010 .

We observed a word frequency effect; once presented LF words
exhibited higher ′ditem than HF words
( = = = =M M SD SD2.32, 1.77, 0.72, 0.79LF HF LF HF ), = +BF e6.43 1310 .
The locus of the LF advantage was primarily in the FAR, where there
were large differences between LF ( = =M SD0.09, 0.08) and HF
( = =M SD0.20, 0.124) words, = +BF e1.94 1510 , while the HR ad-
vantage for LF words was not as strong
( = = = =M M SD SD0.83, 0.80, 0.12, 0.14LF HF LF HF ), . Item recognition
HRs for words presented in each of the two sources was nearly identical
( = = = =M M SD SD0.82, 0.81, 0.14, 0.12left right left right ), =BF 0.09510 ,
which suggests the two sources were represented with equal strength in
memory.

In the source memory task, a robust LSE was observed, as reflected
in lower dsource in the mixed list ( = =M SD0.94, 0.79) relative to the
pure weak list ( = =M SD1.23, 0.76), =BF 213.4510 . Post hoc tests re-
vealed that this is especially evident for HF words
( = = = =M M SD SD1.07, 0.745, 0.71, 0.65PW M PW M ), =BF 152.4610 .
While a similar trend was evident for LF words
( = = = =M M SD SD1.39, 1.14, 0.77, 0.87PW M PW M ), the Bayes Factor
revealed only very weak evidence in favor of the effect, =BF 1.1410 .
There was also a discriminability advantage for once presented LF
words ( =M 1.27) over HF words ( =M 0.91), =BF 12, 44010 . The LF
advantage also persisted for items that were presented four times
( = = = =M M SD SD2.30, 1.93, 0.75, 1.01LF HF LF HF ), =BF 25.2810 .

Discussion

Experiment 1 found a null LSE in item recognition and a robust
positive LSE in source memory. These results are inconsistent with the
Osth and Dennis (2015) model - although this model can predict an LSE
in source memory when interference among the items is high, it simi-
larly predicts an LSE in item recognition under such conditions, which
was not found here or in the prior literature. In contrast, these results
appear to support the predictions of dual process models such as SAC
and the Norman and O’Reilly model. These models predict a positive
LSE because recollection is impaired by increasing list strength. In ad-
dition, later in the article we will demonstrate that this dissociation is
predicted by the basic version of the REM model but not by a later
version that employs ensemble representations.

However, there remains an additional decision level explanation of
the results of Experiment 1 from the two-dimensional SDT model of
Hautus et al. (2008). In this model, source retrieval is only attempted
for recognized items; source memory judgments for unrecognized items
instead elicit guess responses. This mechanism was motivated by ana-
lyses of the source memory ROC conditioned on different levels of item
confidence. Performance generally decreased as item confidence de-
creased, but when items were unrecognized performance abruptly

dropped to chance performance (Slotnick & Dodson, 2005). The per-
formance drop was so sharp that this result was unable to be accounted
for with other mechanisms, such as correlations between the item and
source dimensions. Other investigations have similarly found source
memory to be at chance for unrecognized items (Bell, Mieth, &
Buchner, 2017; Malejka & Broder, 2016). The psychological inter-
pretation is that participants believe that source retrieval is futile for
items they do not recognize, even though they may be able to retrieve
some source information for such items.

How could such a mechanism explain the LSE in source memory? In
the item recognition data for Experiment 1, HR for once presented items
were significantly lower in the mixed list relative to the pure weak list.
This pattern has been observed in many list strength paradigms and is
often attributed to be the result of participants adopting higher re-
sponse criteria in conditions of higher list strength (Hirshman, 1995;
Starns et al., 2010; Stretch & Wixted, 1998). To understand how a
criterion shift could produce an LSE in source memory, consider the HR
in the pure weak condition (0.84). Because an average of 16% of items
are unrecognized, in the Hautus et al. model we can expect that 16% of
the items will receive guess responses on the source judgment and will
have 50% accuracy. In the mixed list, in contrast, HRs were lower
(M =0.79). This greater proportion of unrecognized items (21%) leads
to more guess responses in this condition, producing poorer source
memory in the mixed list relative to the pure weak list. Thus, in this
model performance would be expected to be poorer in the mixed list
even if there are no underlying differences in source discriminability
between the pure weak and mixed list conditions. This does not pre-
clude the possibility that there are underlying discriminability differ-
ences between the lists in addition to performance differences due to the
decision mechanism. We investigate this possibility in the next ex-
periment by conditionalizing source memory performance on accurate
item recognition.

Experiment 2

The explanation by the Hautus et al. (2008) model of the results of
Experiment 1 can be tested as it predicts that, if source memory per-
formance is conditionalized on item recognition, performance should
be restricted to cases where participants attempted source retrieval and
eliminate guessing based responses. If the positive LSE observed for
source memory in Experiment 1 was solely due to this decision me-
chanism, no LSE should be observed. Experiment 2 affords such a test
because for each item, participants had to give two types of decisions,
first an old/new item recognition judgment, and then immediately after
for items for which this was positive, a source A/source B judgment.

Participants

Participants were 78 first-year psychology students at the University
of Melbourne that participated in exchange for course credit.

Materials

Materials were identical to Experiment 1.

Procedure

The procedure was identical to Experiment 1, with the exception
that during each test list, participants were tested on both item re-
cognition and source memory. For each item, participants were initially
tested on item recognition in the same manner as in Experiment 1. If
participants made an “old” response to any of the items, they were
subsequently prompted for a source memory judgment in the same
manner as Experiment 1. Due to the increased time required to com-
plete the test lists, we reduced the total number of study-test cycles to
six from eight in Experiment 1. Because on each study-test cycle
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participants engaged in both tasks, this results in three iterations of the
pure weak and mixed list conditions for each task (compared to two in
Experiment 1).

Results

Results can be found in the middle row of Fig. 3. The item re-
cognition results are consistent with the results of Experiment 1 and
prior literature. There was a null LSE on ′ditem
( = = = =M M SD SD2.38, 2.34, 0.82, 0.76PW M PW M ), =BF 0.1510 . Parti-
cipants exhibited higher criteria in the mixed list
( = = = =M M SD SD0.24, 0.48, 0.37, 0.35PW M PW M ), =BF 6439.4710 .
This was reflected in a lower HR ( = =M M0.803, 0.731PW M ),

=BF 55, 08710 , and FAR ( = =M M0.084, 0.047PW M ), =BF 382, 18110 in
the mixed list condition. LF words were more discriminable than HF
words ( = = = =M M SD SD2.64, 2.08, 0.75, 0.73LF HF LF HF ), =BF10

+e3.42 18, as LF words exhibited a higher HR than HF words
( = = = =M M SD SD0.82, 0.72, 0.13, 0.16LF HF LF HF ), =BF10 +e4.67 10,
along with lower FAR ( = = =M M SD0.05, 0.08, 0.05,LF HF LF

=SD 0.08HF ), =BF 855910 . Item recognition HRs were again found to be
virtually equal between the two sources ( =M 0.76,left

= = =M SD SD0.77, 0.15, 0.13right left right ), =BF10 0.120.
The source memory results contrasted markedly with those from

Experiment 1. There was no effect of list strength on ′dsource
( = = = =M M SD SD1.79, 1.68, 0.88, 0.91PW M PW M ), =BF 0.3610 . There
was no effect of list strength on either HF words
( = = = =M M SD SD1.68, 1.56, 0.97, 0.91PW M PW M ), =BF 0.14410 , or LF
words ( = = = =M M SD SD1.73, 1.64, 0.79, 0.87PW M PW M ), =BF10 0.173.
Surprisingly, there was no effect of word frequency on ′dsource for once
presented words ( = = = =M M SD SD1.77, 1.73, 0.70, 0.83LF HF LF HF ),

=BF 0.18310 , which is contrary to the results of Experiment 1. However,
there was an LF advantage for 4× words ( = =M M2.77, 2.53,LF HF

= =SD SD0.75, 1.00LF HF ), =BF 9.3710 .

Discussion

We conducted Experiment 2 as a test of whether the positive LSE
observed in the source memory task in Experiment 1 was a decision
level phenomenon in which guessing is elicited during source memory
judgments when items are not recognized. This mechanism predicts
poorer performance in conditions of higher list strength because the
higher incidence of unrecognized items in the mixed list should result in
more guessing in that condition. Therefore, in Experiment 2 we con-
ditionalized source memory performance on item recognition by only
allowing participants to make source memory judgments when items
were recognized. Consistent with the mechanism from the (Hautus
et al., 2008) model, we found a null LSE in source memory while
finding a null LSE in item recognition. This lack of dissociation between
the tasks is consistent with a source memory extension of the Osth and
Dennis (2015) model along with a version of the REM model that em-
ploys ensemble representations (Criss & Shiffrin, 2005), but is incon-
sistent with dual process models such as SAC and the Norman and
O’Reilly model, which predict a positive LSE in source memory.

We were somewhat surprised to find no effect of word frequency on
source memory performance for once presented words despite finding
an effect in item recognition. We initially hypothesized that the con-
ditionalized procedure may have eliminated the effect, as the Hautus
et al. decision mechanism could similarly produce a source memory
advantage for LF words on the basis that they receive less guess re-
sponses due to their higher item memorability. However, two pieces of
evidence are contrary to that explanation. The first is that an LF ad-
vantage was found for 4× words in this experiment. The second is that
Glanzer et al. (2004) found an LF advantage in source memory using a
similar conditionalized procedure. Given these inconsistencies, we will
refrain from making strong conclusions about the absence of the word
frequency effect for once presented words in this dataset.

Experiment 3

To further assess the generality of the results from Experiment 2, we
conducted an additional experiment where each item receives both an
item recognition judgment and a source memory judgment. However,
in contrast to Experiment 2 where the two judgments were made in
immediate succession, participants made the judgments in separate
blocks. Specifically, participants engaged in an item recognition test list
before beginning a source memory test list. In addition, six point con-
fidence ratings were collected, which allows the conditionalization of
source memory data on high confidence recognition responses in the
item recognition task (Slotnick & Dodson, 2005). Because con-
ditionalization can result in the omission of a significant proportion of
data, we collected more participants in this experiment than in prior
experiments.

Participants

Participants were 112 volunteers who were paid $10 for their par-
ticipation in the study. They were recruited using online advertisements
and printed flyers.

Materials

Materials were identical to Experiment 1 and 2.

Procedure

The procedure was similar to Experiments 1 and 2. Upon comple-
tion of the study phase, participants completed an item recognition test
on 16 once presented targets and 16 lures. Unlike Experiment 1 and 2,
the strong items were not tested in the mixed list condition. This is
because the item recognition test list was followed by the source
memory test, where they were tested for their source memory of the 16
once presented targets in a randomized order. If participants were
tested on the strong targets in the item recognition test, it would in-
crease the retention interval for the source memory test in the mixed list
and potentially reduce performance.

Unlike Experiments 1 and 2, participants gave responses using a 6
point confidence scale. In the item recognition test, they were presented
with buttons on the screen to remind them of the confidence keys,
which included “1= SURE OLD”, “2=PROB. OLD”, “3=UNSURE
OLD”, “8=UNSURE NEW”, “9=PROB. NEW”, “0= SURE NEW”. The
source memory test used the same keys and confidence labels, but in-
stead referred to the left and right sources, and the edges of the boxes
corresponding to each source were colored in the same source as the
studied sources.

Just as in Experiment 2, participants engaged in six study-test cycles
(three iterations of each list strength condition).

Results

Our initial analysis of the results collapsed across confidence rat-
ings; a response to a target was considered a hit, and a response to a
lure was considered a false alarm, if the response was an “old” response,
regardless of the confidence in the decision; the same assumptions were
applied to the source memory responses. Three participants were ex-
cluded from all analyses and modeling for having extremely poor per-
formance on the item recognition task ( ′ <d 0.15item ); two of these par-
ticipants had similarly poor performance on the source memory task.

The results can be found in the bottom row of Fig. 3. The item re-
cognition results replicate those of Experiments 1 and 2 and prior re-
sults in the literature. There was no LSE on ′ditem ( =M 2.01,PW

= = =M SD SD1.96, 0.97, 0.84M PW M ), =BF 0.15610 . Participants em-
ployed higher criteria in the mixed list condition
( = − = = =M M SD SD.06, 0.20, 0.35, 0.36PW M PW M ), = +BF e3.77 1810 .
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This was reflected in lower HR ( = =M M0.839, 0.771,PW M
= =SD SD0.12, 0.13PW M ), = +BF e0.87 1010 , and FAR ( =M 0.165,PW

= = =M SD SD0.126, 0.14, 0.12M PW M ), =BF 21, 75710 , in the mixed
condition. Performance was better for LF than HF words
( = = = =M M SD SD2.28, 1.69, 0.87, 0.85LF HF LF HF ), = +BF e2.71 2410 .
LF words exhibited higher HR ( = =M M0.82, 0.79,LF HF

= =SD SD0.13, 0.13LF HF ), =BF 160.9610 , and lower FAR
( = = = =M M SD SD12, 0.23, 0.11, 0.16LF HF LF HF ), = +BF e1.822 1910 ,
than HF words. Item recognition HRs were again virtually equivalent
between the two sources ( = = =M M SD0.80, 0.80, 0.12,left right left

=SD 0.12right ), =BF 0.07510 .
For the source memory data, there was weak evidence for a

null LSE on ′dsource ( = = = =M M SD SD0.86, 0.78, 0.82, 0.77PW M PW ),
=BF 0.40310 . There was a null LSE for HF words

( = = = =M M SD SD0.685, 0.676, 0.74, 0.73PW M PW M ), =BF 0.10710 ,
while LF words showed weak evidence for an LSE
( = = = =M M SD SD1.05, 0.88, 0.86, 0.79PW M PW M ), =BF 1.9710 . There
was a substantial word frequency effect, with LF words exhibiting
higher ′dsource ( = = = =M M SD SD0.967, 0.681, 0.74, 0.83LF HF LF HF ),

=BF 328, 79910 .
We subsequently restricted the source memory data to items that

were recognized during the item recognition test (targets that received
an “unsure old” response or a higher level of confidence), which ex-
cluded 23.7% of responses. These results are depicted in green in Fig. 3,
while the source memory data for unrecognized items are depicted in
red. This restriction produced stronger evidence for a null LSE
( = = = =M M SD SD0.98, 0.91, 0.87, 0.86PW M PW M ), as evidenced by a
lower BF, =BF 0.17110 . While HF words still exhibited a null LSE
( = = = =M M SD SD0.814, 0.826, 0.83, 0.85PW M PW M ), =BF 0.10710 , LF
words exhibited weak evidence for a null LSE ( = =M M1.14, 1.01,PW M

= =SD SD0.89, 0.86PW M ), =BF 0.42310 . Contrary to Experiment 2’s
results, a word frequency effect persisted after the conditionalization,
although the evidence for the effect is weaker than when the analysis is
unrestricted ( = = = =M M SD SD1.14, 0.820, 0.84, 0.88LF HF LF HF ),

=BF 798.8410 .
We then restricted the source memory data to items that received a

high confidence (“sure old”) response during the item recognition task,
which excluded 31.2% of responses. This restriction produced stronger
evidence for a null LSE on ′ =d BF, 0.107source 10 , and extremely similar

′dsource in the pure weak ( = =M SD1.04, 0.90) and mixed list
( = =M SD1.03, 0.93) conditions. Both HF ( = =M M0.892, 0.951,PW M

= =SD SD0.88, 0.91PW M ), =BF 0.13210 , and LF ( =M 1.18,PW
= = =M SD SD1.12, 0.90, 0.93M PW M ), =BF 0.13010 , words exhibited

strong evidence for a null LSE. The word frequency effect again per-
sisted in this analysis, although evidence for the effect is again weaker
than in the previous analysis ( = = =M M SD1.15, 0.922, 0.90,LF HF LF

=SD 0.92HF ), =BF 182.9610 .
Source memory for unrecognized items. Previous investigations

have found no source memory for unrecognized items under conditions
of unbiased performance (e.g., Malejka & Broder, 2016). While these
investigations have typically evaluated whether percentage correct
exceeded 0.5, a difficulty with percentage correct is that some partici-
pants had more unrecognized items for one source than another, which
can produce percentage correct values greater than 0.5 if there is bias
toward a particular source. For example, consider if a participant re-
cognized more items that were presented in source A (8 trials) than
source B (4 trials), but did not have accurate source memory for any
unrecognized items and defaulted to giving a source A response to these
items. This would result in 8 trials with an accurate source response
(source A items) and 4 trials with an inaccurate source response (source
B items), producing a percentage correct of 66% on unrecognized items
despite having no source discriminability. While there was no under-
lying difference in recognition of the source A and source B items at the
group level, there were differences in the HR to source A and source B
items among the individual participants. An SDT model is robust to this
possibility by separating discriminability from bias for each participant.

Unrecognized items (depicted in red in Fig. 3) showed source
memory performance that was extremely close to chance. Due to a high
proportion of recognized items (76.3%), several participants had in-
sufficient data to calculate ′dsource for each condition. In addition, par-
ticipants varied considerably in their proportion of recognized items,
and participants with very few unrecognized items produced extremely
noisy estimates of ′dsource. To partially ameliorate this problem, we col-
lapsed across conditions while calculating ′dsource. This analysis found
that ′dsource was extremely close to chance for unrecognized items
( =M 0.15) and the Bayes Factor produced only ambiguous evidence of
being above chance ( =BF 1.1310 ).

There is a strong possibility that the varied number of observations
per participant were responsible for the agnostic results. We found that
participants with higher proportions of unrecognized items produced
values of ′dsource that were much closer to zero, while participants with
very low numbers of unrecognized items produced ′dsource values that
could be as extreme as 2 or −2 due to the small numbers of observa-
tions. In our Bayesian t-test, each of these observations are given the
same weight despite the fact that there is much more uncertainty for
participants with lower numbers of unrecognized items.

For this reason, we additionally analyzed our data using hier-
archical Bayesian SDT models applied to the unrecognized items. These
SDT models only made contact with the source memory data; perfor-
mance on the item recognition task was not modeled to avoid imposing
any relationships between the two tasks. For comparison purposes, we
also ran the same models on the recognized items. Hierarchical
Bayesian models are advantageous because they allow for the si-
multaneous estimation of group and participant level parameters. This
allows for better estimation of the participant-level parameters, as they
are constrained by the group level distribution, a phenomenon referred
to as “shrinkage,” which effectively reduces outliers and weights each
persons estimate by its uncertainty. Additionally, a hierarchical
Bayesian model naturally deals with missing observations by relying on
group level information when data are missing. While space precludes a
thorough treatment of hierarchical Bayesian models, interested readers
should consult Lee (2011) and Rouder and Lu (2005).

In all models, we allowed a criterion for each confidence response
and allowed criteria to vary across the list strength conditions, which
accounted for ten parameters in each model. The models varied with
their assumptions about the ′dsource parameter. In the simplest model,

′dsource was fixed to zero (the ′ =d 0 model); only decision criteria were
estimated for this model. The subsequent models allowed for varying
degrees of factoring of the ′dsource parameter, including a single ′dsource
across all conditions, ′dsource varying over word frequency conditions
( ′dsource ∼WF), ′dsource varying over list strength conditions ( ′dsource ∼ LS),
and ′dsource varying over all conditions ( ′dsource ∼ LS, WF). Posterior
sampling was accomplished using differential evolution Markov chain
Monte Carlo (DE-MCMC) sampling, a technique which is robust to
correlations among parameters (Turner, Sederberg, Brown, & Steyvers,
2013). Relatively non-informative prior distributions were employed
for the model parameters; these and other details of the fitting proce-
dure are described in Appendix B.

Each model was compared using the widely applicable information
criterion (WAIC: Watanabe, 2010), a metric which imposes a com-
plexity penalty. In WAIC, model complexity is measured by the varia-
bility in the likelihood of a data point across posterior samples summed
across all data points and is an approximation to leave-out-one cross
validation. Smaller values of WAIC mean that a model gives better out-
of-sample predictions by striking a balance between goodness-of-fit and
simplicity. Because WAIC is on a log likelihood scale, differences be-
tween models by 10 points are conventionally considered large. We
additionally calculated the conditional probability of each model using
the weighting recommended by Wagenmakers and Farrell (2004).
These results can be found in Table 1.

For the unrecognized items, the results strongly reject the ′ =d 0source
model, indicating source memory for unrecognized items. The preferred
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model for both unrecognized and recognized items shows that ′dsource
only varies across HF and LF words but does not vary across the list
strength conditions. The posterior distribution for the group means of

′dsource HF, and ′dsource LF, can be seen in Fig. 4. ′dsource is above chance for
both HF ( =M 0.098, 95% highest density interval, or HDI:
[0.019,0.17]) and LF ( =M 0.208, 95% HDI: [0.089,0.325]) words.
These estimates stand in stark contrast to the ′dsource estimates for re-
cognized items, which are considerably higher for both HF (M =0.82,
95% HDI: [0.70,0.95]) and LF (M =1.16, 95% HDI: [1.03, 1.31])
words. Thus, while source memory appears to be above chance for
unrecognized items, it is nonetheless extremely close to chance, and is
much poorer than source memory for recognized items.

Discussion

When the source memory data were analyzed across all responses,
regardless of whether the items were recognized, the results showed
only weak evidence for a null LSE in source memory. This stood in
contrast to the results of Experiment 1, which found a positive LSE.
However, when the data were conditioned on recognized items and
again conditioned on high confidence item responses, stronger evidence
for a null LSE in source memory was obtained. This was especially the
case for source memory trials where the items were recognized with
high confidence, which produced virtually identical ′dsource for the pure
weak and mixed list condition. This occurred because source memory
for unrecognized items was extremely close to chance performance and
there were more unrecognized items in the mixed list. Thus, when these
items were removed from the source memory analysis, it equated the
performance across the pure weak and mixed list conditions to a greater
degree than when then unrecognized items were included in the ana-
lysis.

When we applied a hierarchical Bayesian SDT model to our data, we
observed slightly above chance source memory performance for

unrecognized items, which is in somewhat of a contradiction to the
prior literature (e.g.; Malejka & Broder, 2016). Starns et al. (2008)
found above chance source memory for unrecognized items, but only
under conditions of very conservative responding (when participants
were told that only 25% of tested items were new).

Although the above-chance performance for unrecognized items
may appear challenging for the mechanism in the Hautus et al. (2008)
model, the paradigm in Experiment 3 may have introduced some con-
founds. First, presentations of the items in the item recognition test may
have increased their memorability and facilitated their recognition on
the source memory test, making them less likely to elicit guess re-
sponses on the source memory test. The other possibility is that there is
criterion variability in the old-new decision (e.g.; Benjamin, Diaz, &
Wee, 2009), meaning that when participants assess whether an item is
old on the source test, it’s possible that they do so with a different
decision criterion than they employed on the initial item recognition
test. Given some of these difficulties, the results of this analysis should
be interpreted with some caution. In the next section, we evaluate the
feasibility of the source guessing mechanism of the Hautus et al. (2008)
model within a global matching model of item recognition and source
memory.

A global matching model of source memory

Here, an extension of the Osth and Dennis (2015) model to source
memory. Unlike models in the framework of SDT or discrete states, our
model describes the representations that underlie the task and specifies
the retrieval process. Just as with item recognition, source memory is
described as a global matching process, whereby the cues on the test
trial are matched against all of the contents of memory, producing a
summed memory strength that reflects the similarity of the cues to the
contents of memory.

Two factors distinguish source memory from item recognition. First,
each source cue (source A and source B) is employed and the difference
between each source cue’s memory strength is compared to a decision
criterion to produce a decision. Second, the item cue only matches one
representation from the study list, whereas the source cue matches half
the items on the study list, producing additional interference. The
reason why additional interference is produced is that the degree of
interference is proportional to the strength of the match in global
matching models (Osth & Dennis, 2015; Shiffrin et al., 1990).

The Osth and Dennis (2015) item recognition model stored asso-
ciations between items and contexts. The term “context” in episodic
memory models is broad, but tends to refer to a representation that
defines the episode. In episodic recognition tasks, participants are not
asked if they’ve ever seen the items before in general; if they were, the
answer to any familiar item would be “yes.” Instead, participants are
asked whether they’ve seen the item in a particular episode, namely the
study list, which is defined by the context representation.

In our extension of the model to source memory, we describe source
A and source B as source contexts that are separate from the episodic
context corresponding to the study list. The reason for this separation is
that the source manipulations often used in source memory tasks, such
as different font colors, spatial locations on a computer screen, or
modalities of presentation are insufficient by themselves to define an
episode; from the source information alone, one would not be able to
deduce whether or not an item was in the current list or a previously
studied list. In our model, the items (I ), episodic contexts (C), and
source contexts (S) are each defined using separate vectors and are
combined into a conjunctive representation; we have recently found
evidence for such three-way bindings using an A-B A-Br paradigm in
source memory (Yim, Osth, Sloutsky, & Dennis, 2018). We formalize
this conjunctive representation as a mode three tensor, which is a three-
way outer product of the I C, , and S vectors:

Table 1
WAIC values and conditional probabilities for each hierarchical SDT model
applied to the unrecognized and recognized items from Experiment 3.
N =number of parameters per participant.

Model N Unrecognized Recognized

WAIC Prob. WAIC Prob.

′ =d 0source 10 4375 0 11,827 0

Single ′dsource 11 4365 0.003 9714 0

′dsource ∼ LS 12 4372 0 9795 0

′dsource ∼WF 12 4353 0.9997 9653 1.0
′dsource ∼ LS, WF 14 4370 0.0005 9759 0

The winning model is depicted in boldface.

Fig. 4. Posterior distributions of the group means of the ′d parameters from the
′d ∼WF SDT model applied to the unrecognized items from Experiment 3.

A.F. Osth et al. Journal of Memory and Language 103 (2018) 91–113

100



∑= ⊗ ⊗
∈

M r C I S( )
t L

s t a
(1)

where r is a learning rate parameter. The subscript s indicates that the
context vector corresponds to the study episode, subscript t indicates
the item vector is an item from the list, subscript a denotes that the
source context corresponds to source A, and the set L corresponds to the
items on the study list. Memory strength (s) is determined by combining
the context, item, and source cues into a tensor and using it to probe the
memory tensor M :

= ′ ⊗ ′ ⊗ ′s C I S M( ).s t a (2)

where the dashes indicate that the cues employed may not be identical
to the vectors stored at study. Conventional applications of the tensor
model proceeded by generating vectors from sampling distributions
with a finite number of elements. Our model circumvents this approach
by using an approximate analytic solution that specifies the similarities
between the vectors without specifying the content of the vectors. The
derivations of the model and equations for the means and variances of
the memory strength distributions for item recognition and source
memory can be found in Appendix A.

The mathematics of the model are conceptually illustrated in Fig. 5.
The similarity between a cue on a particular dimension (item, context,
or source) and a component in memory is specified as a normal dis-
tribution. Each dimension’s similarity is multiplied by the other di-
mension’s similarities, resulting in a multiplication of the similarity of
the item, context, and source dimensions. This is done for all memories

and the similarities are subsequently summed together. All memories
that are not the target item contribute additional variance to the
memory strength distributions and reduce the signal-to-noise ratio.
Fig. 5 only demonstrates the source A cue; subsequently, the source B
cue is applied and the difference between the two memory strengths is
calculated. Nonetheless, it is similarly possible to accomplish the task
by only using a single source cue (such as the source A cue), where one
could respond with the cued source if memory strength exceeded a
criterion and respond with the other source otherwise. This seems
highly likely when emphasized by the instructions (“Was the word
studied in source A?”). Given that our instructions emphasize usage of
both source cues, we have adopted that assumption here. In addition,
when both source cues are used, there is equal variance between the
source A and source B memory strength distributions in the model when
each source has equal strength (see Appendix A) which is consistent
with observed zROC slopes of one (Glanzer et al., 2004; Slotnick &
Dodson, 2005).

Memories fall into one of four categories depending on whether they
match or mismatch the item and context cues. Fig. 5 illustrates an ex-
ample where the word “bubble” is used as a cue, along with a context
cue that represents the study list and the source A cue. In the example,
source A was illustrated using uppercase letters, source B as lowercase
letters, and other sources for memories acquired prior to the list episode
are depicted using other less conventional fonts. Since “bubble” was a
studied item, there is a binding between “bubble” and a representation
of the study list context in source A present in memory. This is referred

Fig. 5. Illustrative example of the source memory extension of the Osth and Dennis (2015) model. Items in memory are associated with either the study list (right) or
prior contexts (left). Items in memory were also studied in source A (denoted by uppercase font), source B (denoted by lowercase font), and other sources (denoted by
other fonts). A cue comprising an item cue (“bubble”), a context cue, and the source A cue are globally matched against each item in memory. Each box represents a
different interference category. See the main text for details and the Appendix for the mathematical implementation.

A.F. Osth et al. Journal of Memory and Language 103 (2018) 91–113

101



to as the self match, and is the primary determinant of performance in
item recognition because lure cues do not match any of the items on the
list. In source memory, both the source A and source B cues are used to
probe memory. There is a self match present for each of these cues, but
one of them will mismatch the source cue.

The match on the item dimension is a draw from a normal dis-
tribution with a mean equal to 1 and variance σtt

2, which is a parameter
of the model. The match on the context dimension is a draw from a
normal distribution with mean 1 and variance 0.1 and represents the
ability to reinstate the study list context. However, in our experiments
the retention interval was not manipulated, so it was necessary to fix
these parameters to conventional values. The mean of the self match is
primarily determined by the learning rate r , which increases with study
time and/or repetitions, and varies across weak and strong items in our
experiments.

The variability of the self match is determined by the item match
variability parameter σtt

2. Psychologically, this parameter might corre-
spond to variability in encoding an item’s features from presentation to
presentation (e.g., McClelland & Chappell, 1998). As σtt

2 is increased, the
variability of the target distribution is increased relative to the lure
distribution, which allows for the predictions of zROC slopes that are
less than one in item recognition.

Item noise refers to the penalty from items that were present on the
study list but mismatch the item cue, such as the word “wood” in Fig. 5,
and is critically responsible for the predictions about list strength ef-
fects. Item noise is scaled by the learning rate r , such that stronger items
produce more interference, producing an LSE. The mismatch on the
item cue is a sample from a normal distribution with mean 0 and var-
iance σti

2. Increases in the item mismatch variability parameter σti
2 in-

crease the interference from other items on the list. Psychologically,
this can correspond to the degree to which items are similar to each
other; if items are completely dissimilar to each other, there is no in-
terference among the studied items and therefore the number or
strength of other items cannot influence performance. Osth and Dennis
(2015) found that the list length effect and LSE of varying magnitudes
across stimuli reflected different values of σti

2, with words exhibiting
very low item noise and confusable stimuli such as fractal images ex-
hibiting relatively high values.

The remaining interference sources come from pre-experimental
memories. Context noise refers to interference from prior occurrences of
the item cue. A word such as “bubble” has been experienced by a
participant many times over the course of their lifetime. “Bubble” was
also likely to have been experienced in various source contexts - these
source contexts might include source A and B along with many other
sources that were not manipulated in the experiment, such as different
sensory modalities, locations, or speakers; in Fig. 5 these are depicted
using non-conventional fonts. The penalty for mismatching the context
representation is a draw from a normal distribution with mean 0 and
variance σsu

2 which is multiplied by the number of prior occurrences of
the item. In item recognition, context noise predicts poorer perfor-
mance on HF words, as their greater number of prior occurrences
produces a larger memory strength penalty (e.g., Dennis & Humphreys,
2001). One should note that the same predictions apply to source
memory here - items that have been experienced in more sources prior
to the experiment should exhibit poorer performance, which can pro-
duce advantages for LF words in source memory. Background noise re-
fers to the penalty from memories that were learned prior to the ex-
periment that mismatch the item cue. Background noise comprises
interference from all other unrelated memories acquired across the
participant’s lifetime.

The new parameters of the model correspond to the source matches
and mismatches. The match on the source dimension is a draw from a
normal distribution with mean 1 and variance σaa

2 , which reflects the
noise in the match of a source to its own representation. As this para-
meter increases, interference increases from memories that were bound
to the source A context if source A is used as a cue. The source mismatch

is a sample from a normal distribution with mean 0 and variance σab
2 ,

which increases the noise contribution from sources that mismatch the
source cue, such as when source A is used as a cue but is matched to
items that were associated with source B. Half the items are expected to
match the source cue while half should mismatch. While Fig. 5 illus-
trates the case where the source associated with the self match matches
the source cue (source A), it will mismatch when the source B cue is
used.

The tensor model described above applies to source memory; how
might predictions be derived for item recognition where only two cues
are required (item and context), given that the memory structure is a
mode three tensor? We follow Humphreys, Bain, and Pike (1989) and
assume that when undergoing item recognition, participants attempt to
cue their memory without any reference to source information. We did
this by assuming a generalized source cue, which has a match of one to
all source vectors and no variance (see Appendix A for more details).
Because this cue exhibits noise in source memory, the interference
contribution can be much larger in source memory than in item re-
cognition.

A complete list of model parameters used in the model fit is depicted
in Table 2. Several model parameters were fixed to improve parameter
estimation and because they were not consequential to the performance
of the model; these are described in Appendix B.

Prior to the decision, the memory strength distributions for both
item recognition and source memory are subjected to a log likelihood
ratio transformation (Glanzer, Hilford, & Maloney, 2009) using the
linear approximation developed by Osth, Dennis, and Heathcote
(2017). The essence the transformation is that memory strength is
compared to an expected degree of memory strength for a given con-
dition; conditions with higher expectations are held to a higher stan-
dard, which results in lower log likelihood ratios. This produces the
mirror effect (Glanzer & Adams, 1985), because conditions of better
performance are held to a higher standard, reducing the FAR in item
recognition. This is critical for the list strength predictions here. In the
mixed lists, the strong items are compared to higher retrieval ex-
pectations; specifically a degree of learning that is the average of the
weak and strong learning rates. These higher expectations predict that
HR and FAR should be reduced in the mixed list, just as is found in data.
Analytics for the log likelihood ratio distributions of the model can be
found at the end of Appendix A. Log likelihood ratios are compared to a
decision criterion in each task (Φitem and Φsource) to produce a decision.

Table 2
Description of each of the model’s parameters, including their boundaries and
which conditions they change.

Param Bounds Description

rweak ∞0: Learning rate for once presented items
rs ∞1: Strength factor for strong items; multiplied by rweak to produce

learning rate for strong items (rstrong)

σtt
2 ∞0: Item match variability: Variability of the match of the item cue

to the stored item. Increases the variability of the target
distribution relative to the lure distribution

mHF ∞0: Number of prior occurrences of HF items in memory. Increases
context noise for HF words

σti
2 ∞0: Item mismatch variability: Increases item and background

noise in the model

σsu
2 ∞0: Context mismatch variability: Increases context and

background noise in the model

σaa
2 ∞0: Source match variability: Increases noise for matches on the

source dimension. Note that =σ σbb aa
2 2

σab
2 ∞0: Source mismatch variability: Increases noise for mismatches on

the source dimension. Note that =σ σba ab
2 2

σac
2 ∞0: Source mismatch variability: Increases noise for mismatches

for sources outside of the experiment. Note that =σ σac bc
2 2

Φitem −∞ ∞: Response criterion for item recognition (0= unbiased)
Φsource −∞ ∞: Response criterion for source memory (0=unbiased)
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Predictions for the list strength paradigm

Predictions for the paradigm can be seen in Fig. 6. Predictions in
item recognition (HR and FAR in the left panel, ′ditem in the middle
panel) and source memory ( ′dsource’; right panel) were generated with a
range of different values of the item mismatch variability parameter σti

2,
which governs the total amount of item noise, along with a range of
different values of the source match variability parameter σaa

2 and
source mismatch variability parameter σab

2 , which increase the inter-
ference of the source representations. To simplify the predictions, a
fixed background noise of 0.05 was assumed for item recognition and
0.1 for source memory. A greater degree of background noise was
employed for source memory due to the fact that background memories
will produce more interference from the source cues. All predictions
were generated for a set of 16 focal tested items learned with a learning
rate of 1.0. The other half of the study list items were not tested but
were added to memory with a learning rate r2 that was varied between
0.01 and 4.0, to evaluate the extent to which the learning rate of these
items interfered with the other half of the list items. One should note
that this figure encapsulates predictions for the entire list strength de-
sign. When r2 is less than 1.0 (the learning rate of the focal items), this is
analogous to a mixed strong condition because the interfering items are
weaker than the focal items. When r2 is greater than 1.0, this is ana-
logous to a mixed weak condition because the learning rate of the in-
terference items exceeds that of the focal items. When =r 12 , this is akin
to a pure list, because both the focal and interference items have the
same strength (this would be observed if all items were studied with the
same presentation rate or number of repetitions).

One can see from the figure that when =σ 0ti
2 (green lines), which is

the case where there is no item noise, ′d is completely unaffected by the
learning rate of the other items, meaning that a null LSE is predicted in
item recognition and source memory. This is evident in the middle and
right panels, where the model’s ′d is unchanged by the strength of the
second set of items. This applies in source memory even when as the
parameters that govern interference from the source representations
(σaa

2 and σab
2 ) are increased (the dashed and dotted lines show higher

values of σaa
2 and σab

2 ). It does not, however, mean that r2 has no effect on
performance, as the HR and FAR in item recognition (left panel) de-
crease as r2 is increases. As σti

2 is increased above zero, a list strength
effect in both item recognition and source memory is predicted as r2 is
also increased; this is evident as a decrease in ′d as r2 is increased for all
models where >σ 0ti

2 . The parameters that govern interference among
the sources (σaa

2 and σab
2 ) do not appear to strongly interact with the σti

2,
implying that the list strength predictions are mostly reliant on the σti

2

parameter and not on the parameters governing interference from the
source representations. This is because each memory’s interference is a

three way multiplication of the similarity to each cue employed. As the
similarity to the item cue approaches zero, the overall similarity should
approach zero, and no interference should result.

The model fit

The three experiments from the article provide a rich set of
benchmarks for the model, including word frequency, improved per-
formance on strong items, reduced FAR in conditions of higher list
strength, ROC shapes (Experiment 3), and the presence and absence of
LSEs (positive LSE in Experiment 1 for source memory, null LSEs
elsewhere). The model was fit to all three experiments simultaneously
using hierarchical Bayesian analysis. Parameters that were allowed to
vary across experiments were given separate group-level distributions,
so that data from other experiments have no influence on those para-
meters. Wherever possible, however, we attempted to use a single
group level distribution across all experiments to provide a strong de-
gree of constraint on the model. The only parameters that were allowed
to vary across experiments were the item and source criteria along with
the learning rate for once presented items, rweak. The learning rate was
varied across experiments to capture the differing degrees of perfor-
mance in each. Experiment 2 had the best performance, while
Experiment 3 showed substantially worse performance in source
memory. This could be because the differing nature of the test formats
in each experiment encouraged different degrees of learning from the
participants. Alternatively, the poor performance in Experiment 3 could
be due to the fact that the source memory test occurred after the item
test, which would result in a weaker match to the study list context, or
due to greater criterion variability as a consequence of the six-point
confidence ratings (e.g.; Benjamin, Tullis, & Lee, 2013). Distinguishing
between these different possibilities in the model would add little for
the present purposes.

Specific details of the hierarchical model implementation, such as
the prior distributions on the model parameters, are described in
Appendix B. In addition, model code along with the DE-MCMC software
are available online at https://osf.io/578xj/. The model employed 11
parameters per participant for Experiments 1 and 2, 19 parameters per
participant for Experiment 3, and 25 pairs (mean and standard devia-
tion) of group level parameters. Although this might seem like a lot of
parameters, one should note that the only parameter to vary across the
pure weak and mixed list conditions is the additional learning rate
parameter for strong items; all others are held constant. In addition,
parameters corresponding to the source cues (σ σ,aa ab

2 2 , and σac
2 ) could be

fixed in future applications of the model based on the parameter esti-
mates here.

We fit two implementations of the model that varied with their

Fig. 6. Model predictions for the list strength paradigm for item recognition (HR/FAR in left panel, ′d in right panel), and source memory ( ′d ; right panel). See the
main text for more details. Model parameters: = = = = = = =

=

r σ σ σ σ n1.0, 0.1, 0.01, 0.015, 0.25, 5, Φ 0, Φ

0
ss tt su ac item source
2 2 2 2 .
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assumptions about the data from Experiment 1. The first model employs
the aforementioned mechanism from the Hautus et al. model that as-
sumes that source memory responses in Experiment 1 are a latent
mixture of guesses and retrieval from source memory, a model we refer
to as the mixture model. More specifically, the likelihood of source re-
sponses was calculated according to retrieval from the model and ac-
cording to a guessing process where all source memory decision prob-
abilities were fixed to 0.5. The former process is weighted by the HR
while the latter is weighted by the miss rate, both of which are gen-
erated by the model’s fit to the item recognition data. For Experiment 2,
all of the responses were assumed to be informed source responses
because participants only gave source memory responses for items they
had recognized. For Experiment 3, the recognized and unrecognized
items are known due to participants having been tested on both. The
recognized items were assumed to be source informed while the un-
recognized items were assumed to be guesses. For the guessing, the
probabilities of each confidence response were fixed to 1/6.

An additional model was fit that assumed that there was no latent
mixture of guesses and source informed decisions, a model we refer to
as the non-mixture model. This model instead assumed that all source
memory responses came directly from the model; no guessing process
was included. Both models had the same number of parameters; while
mixture models often require additional parameters for mixing rates
(e.g.; DeCarlo, 2002), in our mixture model the mixing parameter is
determined by the old-new hit rate in item recognition, making this
model variant quite constrained.

Posterior predictive distributions from both models were generated
by simulating a dataset for 5% of posterior samples from each partici-
pant and averaging across participants. Fig. 7 shows the results from
each model for Experiment 1. Both models exhibit very similar pre-
dictions with the exception of the LSE in source memory. In particular,
the non-mixture model fails to predict the LSE; equivalent performance
is predicted for the pure weak and mixed list conditions. This is because
the item recognition data along with the null LSE in the other two ex-
periments offer strong constraint on the model parameters that prevent
the model from predicting a list strength effect. The mixture model,
however, predicts poorer performance in the mixed list relative to the
pure weak list. This is because the higher retrieval expectations in the
mixed list reduce the HR in the mixed list, which consequently produces
a greater degree of guessing in the source memory task due to the
greater number of unrecognized items. Aside from these differences, the
two models yielded extremely similar predictions.

We additionally compared the models on quantitative grounds by
comparing the WAIC scores from each model. The mixture model
(WAIC= 39,251) improved over the non-mixture model
(WAIC= 39,301) by 50 points; a substantial improvement. Outside of
Experiment 1, all model predictions are derived from the mixture model

to provide cleaner figures.
Aside the source memory LSE in Experiment 1, the model does a

very good job of addressing the data from each experiment. The model
also produces a null LSE in item recognition (all experiments) along
with the null LSE on source memory in Experiment 2. In Experiment 3,
the model predicts a smaller effect of list strength when the predictions
are restricted to recognized items, as that has the effect of removing the
greater number of unrecognized items in the mixed list. It is also in-
teresting to note that while the hierarchical Bayesian SDT model
identified that source memory performance was slightly above chance
for unrecognized items in Experiment 3, the source memory ′d s for
unrecognized items did not fall outside our model’s posterior predictive
distribution (lower right panel in Fig. 3). The model also appears to be
providing a strong account of the word frequency effect in both tasks.
One notable exception is that in Experiment 2 the model predicts a LF
advantage in source memory for once presented items, while the data
showed no effect. However, it remains unclear why Experiment 2 shows
no LF advantage for once presented items, as both Experiments 1 and 3
show an LF advantage, and in Experiment 3 the advantage remains
when the analysis is restricted to recognized items. Another limitation
is that the model appears to somewhat underpredict the performance
on strong items in source memory for each experiment.

The model additionally accounts for the reduced HR and FAR in the
mixed list relative without requiring a criterion shift. This follows from
the likelihood ratio decision mechanism (Glanzer et al., 2009; Osth
et al., 2017), which produce a higher standard for evidence in condi-
tions of higher list strength. Although we have demonstrated these
phenomena with this model previously (Osth & Dennis, 2015), the work
here demonstrates that the predictions persisted when the model was
jointly constrained by the source memory task.

ROC predictions and group averaged data for Experiment 3 can be
seen in Fig. 8 for item recognition (top two panels), along with source
memory for recognized items (second row), unrecognized items (third
row), and collapsed across recognized and unrecognized items (fourth
row). Model predictions are the mean of the posterior predictive dis-
tribution. For item recognition, the mixed list condition yields a similar
shape as the pure weak condition but is shifted to the left due to the
more conservative responding (reduced HR and FAR). For source
memory, the ROC shapes for the pure weak and mixed list conditions
are extremely similar to each other. Overall, the model is providing a
good account of the ROC shapes across both tasks.

To get a sense of why the null LSE was captured by our model, we
calculated the magnitude of each interference category, namely the self
match, item noise, context noise, and background noise, in item re-
cognition and source memory. Because two source cues are employed in
source memory, we separated the self match and item noise contribu-
tions depending on whether there was a match on the source dimension
(same source, e.g.; item was studied in source A and A was used as a
cue) or a mismatch on the source dimension (different source, e.g.; item
was studied in source A and source B was used as a cue). The propor-
tions of each interference contribution are depicted in Fig. 9. We re-
stricted consideration to the mixed list condition for each task because
that condition exhibits the highest degree of item noise. In addition, we
restricted consideration to Experiment 1 because the other experiments
yielded nearly identical results.

One can see in the figure that in both tasks, item noise never
dominates the interference contributions. In fact, its proportional con-
tribution to the source memory task appears to be much smaller than
the other sources, where background noise effectively dominates.
Nonetheless, one can see that for both the self match and item noise in
source memory, the interference is much larger for the items in memory
that match the source cue rather than the ones that mismatch the source
cue. The results of the computational modeling suggest that in both
item recognition and source memory, null list strength effects are found
because item noise, which increases with increasing list strength, plays
a relatively small role due to minimal interference among word stimuli,

Fig. 7. Group averages along with model predictions for the source memory ′d
in Experiment 1 for the mixture and non-mixture models.
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similar to prior results (Osth & Dennis, 2015; Osth et al., 2018).

General discussion

The list strength paradigm asks whether strengthening some mem-
ories can cause forgetting of other memories. Many experiments have
found that this is not the case in item recognition; increasing the list
strength of a set of items does not impair discrimination of other
memories. However, to our knowledge this question has not been asked
in the domain of source memory. Three experiments tested participants
on both item recognition and source memory. In Experiment 1, we
found strong evidence for the presence of an LSE in source memory
while finding a null LSE in item recognition. However, it was unclear as
to whether the observed LSE in source memory was due to a decision
phenomenon where unrecognized items elicit guess responses (e.g.;
Hautus et al., 2008). Specifically, if this mechanism is correct, the lower
frequency of recognized items in conditions of higher list strength im-
plies that there should be greater degrees of guessing on source memory
decisions in conditions of higher list strength. Thus, in Experiments 2
and 3, we implemented procedures that enabled us to conditionalize
source memory performance on recognition on an item-by-item basis,
which should reduce the differential degrees of guessing across the two
list strength conditions. Both of these experiments observed null LSEs
after the conditionalization, suggesting that there is no LSE in under-
lying source memory discriminability.

Tests for the presence of an LSE in source memory are critical, as
they constrain the extension of current models of recognition memory
to source memory. In this article, we presented an extension of the Osth
and Dennis (2015) global matching model to the case of source
memory. This model claims that at study, a conjunctive binding of the
item, list context, and source is stored in memory. At retrieval, the item
and list context are combined with each source cue and matched
against the contents of memory. This is done for each source, and the
difference between the memory strengths is used to drive a decision.
Simulations in Fig. 6 revealed that the model predicts that both item
recognition and source memory should be similarly affected by list
strength; a null LSE in item recognition should be accompanied by a
null LSE in source memory. The extent to which the tasks are vulnerable
to LSEs depends on the interference among the studied items; when this
is minimal, a null LSE is predicted in both tasks. Prior investigations
with this model have measured very low levels of interference from
studied items when the items are word stimuli.

The model was applied to all experiments simultaneously using
hierarchical Bayesian estimation and provided a good account of the
data. The set of the three experiments provided a rich set of benchmarks
for the model, which additionally included word frequency effects and
ROC shapes in both tasks. When the model was augmented with a
mechanism for which guessing was elicited on unrecognized items, it
was capable of accounting for the positive LSE in source memory in

Fig. 8. Group averaged ROC data and model predictions for Experiment 3 for
item recognition (top row), along with source memory for recognized items
(second row), unrecognized items (third row), and collapsed across recognized
and unrecognized items.

Fig. 9. Memory strength variance from each interference category in item recognition (left two panels) and source memory (right two panels). Note that SM= self
match, IN= item noise, CN= context noise, and BN=background noise. In source memory, the self match and item noise components are divided into the
contributions from when the same source is used as a cue (“same”) and different source is used as a cue (“diff.”).
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Experiment 1 while accounting for the null LSE in item recognition and
the null LSEs in both tasks in Experiments 2 and 3. The model was also
capable of addressing the decreased HR and FAR in the mixed list in
item recognition, the word frequency effect in both tasks, and the ROC
shapes across tasks and conditions. The coverage of the trends is im-
pressive when one considers that the only parameter that varied across
the pure weak and mixed lists was the learning rate for strong items; all
other parameters were fixed across conditions. The model accounted for
the null LSEs in both tasks because the bulk of the interference con-
tributions appear to come from pre-experimental sources rather than
the experimental context itself, similar to previous work, while there
was minimal interference among the studied items (Osth & Dennis,
2015; Osth et al., 2018).

Current modeling efforts in the source memory task have largely
focused on whether decisions are based on continuous information or
discrete states (e.g., Hautus et al., 2008; Klauer & Kellen, 2010). While
these models have yielded useful predictions about the relationships
between the tasks, they are agnostic with respect to encoding, re-
presentation, and retrieval operations, which are often of great interest
to memory researchers. The importance of specifying such mechanisms
is exacerbated when one considers that dissociations between item re-
cognition and source memory have been heavily investigated in the
contexts of aging and amnesic patients (e.g., Addante, Ranganath,
Olichney, & Yonelinas, 2012; Ghetti & Angelini, 2008; Janowsky,
Shimamura, & Squire, 1989; Johnson, Hashtroudi, & Lindsay, 1993).
Application of a mechanistic model such as ours to these populations
has the potential to produce more fine-grained conclusions about such
differences. For instance, selective deficits in source memory in aging
could be due to poorer ability to associate the source features to the
items (e.g., Naveh-Benjamin, 2000), greater interference from the
source cues, or may indicate a more general memory deficit (e.g.,
Benjamin, 2010), either due to increased interference or poorer
learning. The fact that likelihoods for our model can be expressed
analytically make it such that our model can address these questions in
a tractable manner, which may be difficult to accomplish in other
models that require lengthy simulation times.

While the finding of the null LSE in item recognition and source
memory are consistent with our model, they are inconsistent with dual
process models such as SAC (Diana & Reder, 2005) and the Norman and
O’Reilly (2003) model. Each of these models assumes that recollection
should be impaired by list strength. Familiarity-based discrimination is
unaffected by list strength, which enables the models to predict a null
LSE in item recognition. While the models could perhaps be revised
such that familiarity could subserve source discrimination, cued recall
additionally shows a null LSE (Wilson & Criss, 2017). In the next sec-
tion, we discuss how the results compare with REM’s predictions which
depend on how source information is represented in the model.

The mechanism from the Hautus et al. (2008) model, where guesses

are elicited on decisions where items are not recognized, was inspired
by analyses from ROC data, which demonstrated that source memory
abruptly dropped to chance when performance was restricted to un-
recognized items. Other investigations have found source memory to be
inaccurate for unrecognized items (Bell et al., 2017; Malejka & Broder,
2016). In our Experiment 3, an analysis of unrecognized items using a
hierarchical Bayesian SDT model found that source memory perfor-
mance for unrecognized items was slightly above chance but con-
siderably lower than the accuracy for recognized items. Although this
might appear to be contrary to the mechanism of the Hautus et al.
(2008) model, our Experiment 3 used separate test phases for item re-
cognition and source memory. Criterion variability (e.g.; Benjamin
et al., 2009) or learning of the items during the recognition test could
have caused recognition during source testing of initially unrecognized
items, which would inflate their source memory performance.

REM model predictions for list strength effects in source memory

In the REM model, items are represented as vectors with features
sampled from a geometric distribution. During learning, a noisy copy of
each studied item is stored in memory as a trace. During retrieval, a
probe cue is matched against each trace in memory and a likelihood
ratio is calculated reflecting the probability that the trace is the same as
the probe divided by the probability that the trace is not the probe.
These likelihood ratios are averaged across all traces in memory, and if
the averaged likelihood ratio exceeds a decision criterion a “yes” re-
sponse is made.

Shiffrin and Steyvers (1997) created associations that are con-
catenations among the to-be-associated items. That is, if an association
between “cat” and “dog” is learned and each vector contains 20 ele-
ments, these vectors are concatenated to create a vector with 40 ele-
ments that corresponds to the association. A similar approach can be
considered for source memory, where vectors corresponding to source
A and source B are concatenated to each of the items. A source memory
decision can be made by combining the probe item vector with the
source A vector, cuing memory to assess the strength of source A, then
repeating the process for the source B vector, and calculating the dif-
ference and comparing it to a decision criterion. We generated simu-
lations of the model for our paradigm by using LF and HF words. We
followed conventional parameterizations of the model and used =c 0.7
(noise during encoding), =g 0.3 for LF words, and =g 0.45 for HF
words, while using =g 0.4 for source vectors.

Predictions can be seen in the left panel of Fig. 10. We used three
different learning rates for the focal (tested) items ( =u 0.12, 0.24, 0.36)
while varying the learning rates of the interfering items across five le-
vels that were lower, equal, or higher than the focal items. Similar to
the predictions in Fig. 6, the figure encapsulates the entire list strength
paradigm. When the learning rate for interference items is less than the

Fig. 10. REM model predictions for our list
strength paradigm in source memory. The left panel
shows predictions from the simple concatenation
model proposed by Shiffrin and Steyvers (1997)
while the right panel shows predictions from the
Criss and Shiffrin (2005) ensemble features model.
The black dashes indicate the point at which the
learning rate for the focal items was the same as the
learning rate for the interfering items. See the text
for details of the simulations.
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focal items, this is analogous to a mixed strong condition (interfering
items are weaker than the tested items), whereas the case where the
learning rate for interference items is greater than the focal items is
akin to a mixed weak condition (interfering items are stronger than the
tested items). The point where the learning rate for focal and inter-
ference items is the same is a pure list (all items have the same
strength); these are indicated with black dashes in the figure.

One can see that as the learning rate for interference items is in-
creased, performance on the focal items is decreased. There is a strong
contrast to the predictions for item recognition, where it has been
shown that the model predicts a null LSE across a range of different
parameter values (Criss, 2006; Shiffrin & Steyvers, 1997). This is due to
differentiation; as traces in memory are strengthened, their similarity to
other items decreases, decreasing item interference as list strength is
increased (Criss, 2006). However, Criss (2006) demonstrated that dif-
ferentiation is most effective when items share few features. In the
source memory case, half of the traces in memory will share as many as
50% of their features with the probe due to the matching source fea-
tures. Criss (2006) demonstrated that under such conditions, traces
with 50% similarity to the probe will actually show increasing inter-
ference as their strength is increased.

However, very different predictions result from when ensemble
features are employed. Criss and Shiffrin (2005) proposed an extended
REM model where each concatenated vector additionally includes a set
of ensemble features that are unique to the combination of the features.
That is, if the word “truck” is combined with a source A vector, an
additional vector is additionally concatenated to this vector that con-
tains features that are unique to the ensemble. That is, if another word
such as “metal” is combined with a source A vector, its ensemble fea-
tures will be different from the ensemble features that correspond to the
truck+ source A pairing. We simulated performance from the model
with ensemble features where each ensemble vector constituted 20
features and was sampled with =g 0.4. This led to the storage of con-
catenated item, source, and ensemble vectors with a total of 60 fea-
tures. Predictions from the ensemble REM model can be seen in the
right panel of Fig. 10. It is immediately evident that the performance of
the focal items is considerably flatter as the learning rate of the inter-
fering items is increased over a very wide range, and a null LSE is
predicted when the learning rate is sufficiently high ( =u 0.36).

In the ensemble model, although half of the traces will still bear a
resemblance to the probe due to the matching source features, the
number of expected shared features is only 33% instead of 50% due to
the presence of the unique ensemble features. As the similarity between
a probe vector and a trace vector is reduced, differentiation is more
likely to reduce interference as strength is increased, which will lead to
the prediction of a LSE. The functional explanation differs from our
model in that REM claims the lack of interference in list strength de-
signs is due to differentiation, while our model claims the lack of in-
terference is due to the bulk of interference coming from memories
acquired prior to the experiment.

While the ensemble version of REM is as consistent with our present

findings as our own model, other paradigms and manipulations may
prove diagnostic for deciding between the models. In item recognition,
a core commitment of item noise models is that increasing the similarity
among the list items should degrade performance. However, thoroughly
controlled manipulations of category length have found that increasing
the number of similar items does not decrease discriminability in both
two-alternative forced choice (2AFC) testing and when dA is calculated
from confidence ratings (Cho & Neely, 2013). While differentiation
predicts decreases in FAR with increasing list strength, REM argues that
this is due to the stronger encoding of the traces which will produce a
weaker match to lures at test, whereas results have indicated this
phenomenon is due to higher retrieval expectations in conditions of
higher list strength (Starns et al., 2010; Starns, White, & Ratcliff, 2012;
Starns, Ratcliff, & White, 2012). A potentially fruitful avenue of re-
search is evaluating whether these constraints further apply to the
source memory task.

In addition, both models clearly diverge with their predictions for
manipulations of list length. When there is no interference among the
list items, our model predicts no effect of list length on discriminability.
In differentiation models such as REM, in contrast, lengthening a study
list introduces additional traces which contribute more noise at re-
trieval (McClelland & Chappell, 1998; Shiffrin & Steyvers, 1997). To
our knowledge, the only investigation which has investigated for the
presence of list length effects in source memory is Glanzer et al.’s
(2004) Experiment 2, which found large impairments in item recogni-
tion and source memory when list length was increased from 50 to 180
items. However, in their design testing immediately followed the study
list and study-test lag was matched between the short and long list by
testing the final 40 items from each study list. This procedure has been
criticized because attentional decreases through the course of list pre-
sentation would produce poor encoding of late list items and artifac-
tually induce a list length effect (Dennis et al., 2008; Underwood,
1978). In item recognition, when beginning-of-list items are matched
for retention interval instead, either very small (Cary & Reder, 2003) or
non-existent list length effects are found (Dennis et al., 2008; Kinnell &
Dennis, 2011; Schulman, 1974). Thus, the list length paradigm in
source memory merits a re-examination that controls for several of the
confounds present in list length designs.

Conclusions

The finding of a null list strength effect in item recognition was very
influential, initiating the development of a new set of memory models.
Here, we extended the list strength paradigm to source memory across
three experiments varying in the nature of the test phase. Our results
suggest that list strength manipulations do not increase interference in
source memory. This finding was reinforced by fitting an extension of
the Osth and Dennis (2015) global matching model, which was capable
of jointly addressing all aspects of the item recognition and source
memory data in each experiment.
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Appendix A. Analytic derivation of the source memory model

Following Humphreys, Pike, Bain, and Tehan (1989), we can deconstruct Eq. (2) into the various components that comprise the memory tensor
M . We are writing this for the case where source A is used as a cue, but the math equally applies for the source B case. While subscripts a and b
denote source A and B in the experiment, we use subscript c to refer to other sources acquired before the experiment:
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where i indicates items on the study list that are not the item cue, which is referred to by subscript t . A and B denote the sets of items that were
studied in source A and B, respectively. The u subscript indicates a prior list context from the set of all contexts prior to the study list (P), and z
indicates items from prior list contexts that were not on the study list.

In linear algebra, the dot product of two outer products ( ⊗ ⊗A B C D( )( ̇ )) is equal to the product of the dot products of the constituent vectors
A C B D(( · )( · ). Using that, we can rewrite Eq. (3) as the match between the cue vectors and the stored vectors:
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In this form the three sources of interference (item noise, context noise, and background noise) are described as matches and mismatches on the
item, context, and source dimensions. These dot products can be parameterized using normal distributions:

′ ∼C C Normal μ σ. ( , ) Context Matchs s ss ss
2

′ ∼
′ ∼
′ ∼
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C C Normal σ
I I Normal μ σ
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2

2

2

2

′ ∼S S Normal σ. (0, ) Source Mismatcha b ab
2

The means and variances of the distributions of dot products are the parameters of the model, although as we note in Appendix B several of these
parameters are fixed to improve the estimation of the remaining parameters. This approach is similar to the kernel trick employed by support vector
machines (Schölkopf & Smola, 2002). The choice of the normal distribution offers mathematical convenience for this application by allowing
separate specification of the mean and variance parameters. Covariances were avoided by fixing the means of the mismatch distributions to zero.
Other parameters of the model were fixed to reduce the number of free parameters and because they were not found to be critical for the perfor-
mance of the model.

The distributions of the matches and mismatches from Eq. (5) are substituted into the terms for Eq. (4) to derive mean and variance expressions
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for the signal and noise distributions. Because each noise term is a three way multiplication of the item, context, and source dimensions, and each is
represented by a normal distribution, each term is a multiplication of normal distributions, which results in a modified Bessel function of the third
kind with mean and variance as follows:
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Given the large number of list items and non-list items that are stored in the occurrence matrix, the final distribution of memory strength is the
sum of many product distributions and the sum is approximately normal by virtue of the central limit theorem.

The mean of an item studied in source A when source A (μa a| ) is used as a cue is simply the learning rate r , while the mean of the source A
distribution when B is used as a cue (μb a| ) is zero. The variances are:
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Because we expect symmetry between the two sources (equal performance between source A and source B), we assume parameters that cor-
respond to when source B was studied are the same as those as when source was studied. More specifically, we assume = = =μ μ σ σ σ σ, ,bb aa bb aa ba ab

2 2 2 2 ,
and =σ σbc ac

2 2 . With these assumptions, the expressions above can be rewritten for the a b| and b b| cases by substituting μaa with μ σ,bb bb
2 with σ σ,aa ab

2 2

with σba
2 , and σac

2 with σbc
2 .

To arrive at memory strength distributions for source A and source B, we can take the difference between the source A and source B cues. For
source A, this involves the difference between the a a| and b a| distributions while source B involves the difference between the a b| and b b| dis-
tributions. The mean of the difference between two normal distributions y and z is

= −

= + −
−

− −

μ μ μ

σ σ σ cov
y z y z
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2 2 2

It may seem at first glance that there would be a correlation between the memory strengths of the different source cues due to the re-usage of the
item and context cues for each distribution. However, the item and context cues are multiplied by the source cues. We performed simulations and
found that the correlation between the products of three normal distributions with two overlapping distributions is zero when the mean of one of
those products is zero. For example, consider four normal distributions, a Normal b Normal c Normal(1, 1), (1, 1), (1, 1), and d Normal (0, 1).
Simulations demonstrated that the correlation between ∗ ∗a b c and ∗ ∗a b d is approximately zero. We were not able to demonstrate this analytically
because to our knowledge there are no analytics available for the products of normal distributions when the components of the products are
correlated. Given that we can safely assume the covariances to be zero:

= +σ σ σA a a a b
2

|
2

|
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2

|
2

|
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As mentioned in the main text, to derive predictions about item recognition, we assume that in place of the source cue, participants employ a
generalized cue that matches each source vector in memory with a strength of one and no variance. This has the effect of collapsing across the
background memories ( = + +n n n nitem a b c and = + +m m m mitem a b c) as the different source vectors studied with each prior memory to not
influence the resulting memory strength. This produces the following expressions:

=μ rμ μold tt ss (11)
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Fig. A.1 compares the distributions produced by the analytic approximation to simulations for both item recognition (left panel) and source
memory (right panel). The model was simulated by drawing 500,000 samples from normal distributions and combining them via Eq. (4). We found a
very strong correspondence between the analytic approximation and the simulations. These simulation results also demonstrate the normal ap-
proximation for sums of products of normal distributions is a reasonable description of the distribution when large numbers of products of normal
distributions are summed together.

The likelihood ratio transformation

As mentioned in the main text, in order to capture the mirror effect in item recognition, we apply the memory strengths described above to a log
likelihood ratio transformation to capture the mirror effect using the linear approximation developed by Osth et al. (2017) which results in normally
distributed log likelihood ratios, which we denote using λ. These expressions were written for the general case in terms of discrimination d and the
relative variability of the target distribution S, which we can reach by normalizing the parameters by σnew:

=d μ σ/item old new (15)

=S σ σ/item old new (16)

For source memory, the variances of both distributions are equal, so we can divide by the variability of either the A or B distribution:

= −d μ μ σ( )/source A B A (17)

For item recognition, the means and standard deviations of λ can be expressed in terms of d and S resulting in normal distributions with the
following means and standard deviations:
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For source memory, given that the two distributions have equal variance, we can follow the expressions of Glanzer et al. (2009):

=μ d /2λA
2 (22)

Fig. A.1. Histograms of simulation predictions along with analytic approximations (lines) for the item recognition (left) and source memory (right) model. Model
parameters were = = = = =

= = =
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= −μ d /2λB
2 (23)

=σ dλA B,
2 (24)

In mixed lists of weak and strong items, using the above expressions imply that the participants know whether an item is weak or strong before
having seen the item. In these cases, we subject the true memory strengths to an expected distribution that is the average of the weak and strong
items (e.g.; Osth & Dennis, 2015; Starns et al., 2010). This can be accomplished by averaging the learning rates from the two strength conditions to
generate ravg and then generating the expected strengths d and S according to the above equations. The actual learning rates rweak and rstrong are used to
generate the true strengths for a given condition, which we denote as ∗d and ∗S . Expressions for the target distributions of a mixed strength list in
item recognition are thus:

= + +∗μ dd S
S

μ1
2λold λL

2

2 (25)

= ∗σ S σλold λL (26)

The lure expressions for a mixed list are unchanged. For source memory, we have:

= ∗μ d d/2λA (27)

= − ∗μ d d/2λB (28)

=σ dλA B, (29)

Appendix B. Details of the hierarchical Bayesian fitting procedure

Several parameters of the model were fixed to improve estimation of the remaining parameters and because they were not found to greatly
contribute to the fit of the model when they were freely estimated. The self match variability parameters for items (σtt

2) and context (σss
2 ) govern the

ratio of target-to-lure variability in the model. However, we found in practice that we were able to yield good fits to the ROC function by only
varying one of those parameters. We fixed σss

2 to 0.1, which was the mean of the group level distribution found by Osth and Dennis (2015). In
addition, the means of match distributions for items (μtt), contexts (μss) and sources (μaa) were all fixed to one. It would be possible to estimate these
parameters if the strengths of each of these dimensions were manipulated, via either stimulus strength, study-test delay, or source discriminability,
but given that none of these manipulations were present we were able to achieve good fits by fixing each of these parameters.

We additionally fixed the number of prior memories for LF words, nLF item, , to 20 and the total number of background memories, mitem, to 10e6,
while freely estimating the prior occurrences of HF words, nHF item, . We fixed these parameters because it is not possible to identify both the number
and strength of the prior memories. The values we chose were arbitrary, and other values yielded similar results. We similarly fixed the prior
occurrences of items in each source, m m n n, , ,aa ab aa ab, to 5% of the total memories (e.g.; =n n0.05LF aa LF item, , ), which leaves the number of memories
in non-studied sources (n n m, ,LF ac HF ac ac, , ) as 90% of the total number of prior memories. We initially estimated the proportion of prior memories that
match the sources in the experiment as a free parameter, but this did not greatly improve the fit of the model.

All parameters that were bounded from zero onward were sampled on a log scale, which allows for sampling from a normal prior distribution.
Subject level parameters were sampled from group level distributions with mean M and standard deviation ς :
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where j is the experiment (1, 2, or 3). The learning rates for strong items in Experiment j were determined as:

= ∗ +r r rs(1 )strong i weak i, , (30)

where rs is a scalar on the ∞(0, ) interval. One is added to rs to ensure that the learning rates for strong items cannot be weaker than the learning
rates for weak items. Unlike the rweak parameters, rs does not vary across experiments:

∼log rs Normal M ς( ) ( , )rs rs

Item and source criteria were sampled from normal distributions, along with the ′d parameters in the hierarchical SDT models used in the analysis
of Experiment 3:

′ ∼
∼
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d d

k j ϕkj ϕkj
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where k refers to the task (item vs. source) and j refers to the experiment (1 or 2). ϕk,3,3 is the central criterion of the five criteria for Experiment 3.
The remaining criteria were determined relative to the central criterion as:
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= −
= −
= +
= +

ϕ ϕ c
ϕ ϕ c
ϕ ϕ c
ϕ ϕ c

k k k

k k k

k k k

k k k

,1 ,3 ,1

,2 ,3 ,2

,4 ,3 ,4

,5 ,3 ,5

where the lower (liberal) criteria are determined using lower numbers (1 and 2), and the higher (conservative) criteria are denoted using higher
numbers (4 and 5). This parameterization was done to improve sampling as it guaranteed a partial ordering of the decision criteria. The c parameters
were sampled from truncated normal (TN) distributions that were truncated from zero to infinity:

∼ ∞
∼ ∞
∼ ∞
∼ ∞

c TN M ς
c TN M ς
c TN M ς
c TN M ς

( , , 0, )
( , , 0, )
( , , 0, )
( , , 0, )

k citem ck

k citem ck

k citem ck

k citem ck

,1 1 1

,2 2 2

,4 4 4

,5 5 5 (31)

Priors on the group level distributions for the majority of the parameters were relatively non-informative:

∼
∼
∼ ∞

∼

M Normal
M Normal
M TN
ς Gamma

(0, 10)
(0, 1)

(0.5, 0.5, 0, )
(1, 3)

σti σtt σsu σaa σab σac nHFitem rweaki d

ϕti

ckj

σti σsu σaa σab σac nHFitem rweakj ϕti ckj d

, , , , , , , ,

, , , , , , , , ,

We adopted somewhat stricter priors for the rs and σtt
2 parameters. This was because each parameter was only partially constrained across the

three experiments. In the case of the rs parameter, Experiment 3 did not include tests of strong items; thus, this parameter is primarily estimated from
Experiments 1 and 2. In addition, only Experiment 3 contained ROC functions, which constrains the estimates of σtt

2. To improve estimation of these
parameters, we used stricter prior distributions on ς , which place much higher likelihoods on lower values of ς :

∼
∼

M Normal
ς Gamma

(0, 0.5)
(1, 25)

rs

rs σtt, (32)

For each SDT model, the number of chains was set equal to three times the number of parameters. Sampling began after 6000 burn-in iterations
were discarded. The chains were thinned such that only one in every 20 samples was collected; this process continued until 2000 samples were
collected in each chain. For the extension of the Osth and Dennis (2015) model to source memory, all models were run with 75 chains; after 20,000
burn-in iterations were discarded the chains were heavily thinned such that one in every 20 samples was kept until 1500 samples per chain were
collected.

Appendix C. Supplementary data

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.jml.2018.08.002.
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