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	Event	memory	is	a	process	of	interpretation.	The	rememberer	acts	less	like	an	

archivist	retrieving	records	of	past	events	and	more	like	a	detective	piecing	together	clues	

to	build	a	case	about	what	must	have	happened	(Johnson,	Hashtroudi,	&	Lindsay,	1993).	

The	information	stored	in	memory	provides	the	evidence	for	the	case,	not	the	verdict.	As	

such,	researchers	cannot	develop	a	complete	understanding	of	memory	without	

considering	the	decision	processes	that	map	evidence	states	onto	explicit	answers	to	

memory	questions	(“Have	I	ever	met	this	person	before?”;	“Did	I	see	that	movie	with	

Paula?”;	“Have	I	told	this	story	at	a	previous	work	party?”).	To	complete	the	courtroom	

analogy,	decision	processes	play	the	role	of	the	jury	by	integrating	the	available	evidence	

and	making	a	judgement	about	past	events.	Decision	processes	are	a	worthy	subject	of	

investigation	in	themselves,	and	researchers	need	to	understand	decision	making	to	

correctly	interpret	results	from	memory	tasks	that	have	a	decision	component.	Such	

decision	tasks	include	recognition,	in	which	one	decides	whether	or	not	an	event	was	

previously	experienced	(often	the	event	of	seeing	a	word	in	a	list);	source	memory,	in	

which	one	decides	which	context	or	attribute	was	paired	with	a	stimulus	in	an	earlier	event	

(such	as	whether	a	word	was	heard	in	a	male	or	female	voice);	and	many	other	tasks	used	

by	memory	researchers	(even	recall	tasks	involve	deciding	whether	or	not	a	generated	

item	should	be	reported;	Anderson	&	Bower,	1972).			

	 The	last	few	decades	have	marked	substantial	theoretical	progress	for	mathematical	

models	of	decision	making,	and	evidence-accumulation	models	have	provided	the	main	
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impetus	for	this	progress	(e.g.,	Brown	&	Heathcote,	2008;	Ratcliff,	1978;	Smith	&	Vickers,	

1988;	Usher	&	McClelland,	2001).	Broadly,	evidence-accumulation	models	assume	that	

decisions	are	made	by	adding	or	integrating	samples	of	noisy	evidence	over	time	until	the	

total	evidence	reaches	a	threshold,	so	they	are	also	commonly	called	sequential-sampling	

models.	When	applied	to	memory	tasks,	these	models	are	consistent	with	the	metaphor	in	

the	preceding	paragraph:	they	assume	that	information	retrieved	from	memory	provides	

evidence	about	past	events,	and	they	implement	the	decision	process	that	translates	this	

evidence	into	a	response.		

Currently,	a	number	of	models	are	available	that	consistently	match	all	aspects	of	

behavioral	data	from	decision	tasks:	choice	proportions;	the	location,	shape,	and	spread	of	

response	time	(RT)	distributions	for	both	correct	and	error	responses;	and	the	manner	in	

which	all	of	these	characteristics	(co)vary	across	experimental	conditions	or	individual	

differences	(e.g.,	Ratcliff	&	Smith,	2004;	Brown	&	Heathcote,	2008).	These	models	have	

proven	to	be	valuable	research	tools	across	a	wide	variety	of	tasks	by	mapping	complex	

patterns	of	data	onto	psychologically	meaningful	processes	(Donkin	&	Brown,	2018;	

Ratcliff	&	McKoon,	2008).	They	are	also	becoming	increasingly	influential	in	memory	

research,	where	they	are	slowly	replacing	decision	models	that	address	accuracy	but	do	not	

consider	RT	data,	such	as	models	based	on	signal-detection	theory	(Green	&	Swets,	1966;	

Tanner	&	Swets,	1954).		

To	illustrate	the	role	of	dynamic	decision	processes	in	memory	we	will	focus	on	two	

evidence-accumulation	models	that	have	been	widely	applied,	the	diffusion-decision	model	

(DDM;	Ratcliff	&	McKoon,	2008)	and	the	Linear	Ballistic	Accumulator	(Brown	&	Heathcote,	

2008).	We	will	first	provide	details	of	the	DDM	and	then	describe	the	LBA.	
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A	simple	diffusion	model	was	first	proposed	by	Stone	(1960)	as	a	general	model	of	

binary	perceptual	choice.	It	assumes	that	the	evidence	for	a	two-alternative	choice	is	

sequentially	sampled	and	integrated	until	it	exceeds	either	an	upper	or	lower	threshold,	

where	each	threshold	corresponds	to	a	choice.			

	

Figure	1.	The	diffusion	model	as	applied	to	a	recognition	memory	task.	Panel	A	shows	a	

Gaussian	distribution	of	within	trial	variability	and	the	drift	criterion	defining	the	zero-

point	in	drift	rates.	Panel	B	shows	an	example	evidence	accumulation	process,	which	

begins	at	a	starting	point	(z),	accumulates	(sums	together)	samples	from	the	within	trial	

distribution	(Panel	A),	and	terminates	when	one	of	the	two	response	boundaries	is	
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reached.	Panel	C	shows	Gaussian	distributions	of	between-trial	variability	in	drift	rates.	

The	average	drift	rate	(i.e.,	mean	of	the	within-trail	distribution)	on	each	trial	is	a	random	

sample	from	this	distribution.	

	

Let’s	consider	an	example	of	this	sequential	sampling	process	relevant	to	a	common	

recognition	memory	task;	that	is,	deciding	if	a	word	was	or	was	not	studied	in	an	earlier	

list.	To	make	this	decision,	one	needs	an	information	source;	that	is,	some	signal	that	tends	

to	be	different	for	words	that	were	and	were	not	encountered	on	the	study	list.	Some	

candidates	for	such	a	signal	could	be	the	“sharpness”	of	neural	representations	in	the	

perirhinal	cortex	or	the	fidelity	of	pattern	completion	in	the	hippocampus	(Norman	&	

O’Reilly,	2003),	but	we	will	remain	agnostic	as	to	the	source	of	the	signal	and	simply	refer	

to	it	as	“memory	strength.”	The	diffusion	model	assumes	that	evidence	is	subject	to	

moment-to-moment	variability	(neural	noise,	perhaps;	Gold	&	Shadlen,	2007)	that	can	be	

represented	by	a	Gaussian	distribution	such	as	the	one	shown	in	Figure	1A.	The	values	in	

the	distribution	represent	the	memory	strength	experienced	at	different	points	in	time	

within	a	single	trial	of	a	recognition	task,	with	higher	values	on	the	continuum	representing	

stronger	evidence	that	a	word	was	previously	studied.	The	vertical	line	is	a	model	

parameter	called	the	drift	criterion,	and	it	defines	how	strength	values	are	mapped	to	

evidence	that	the	word	was	studied	or	not	studied.	Strength	values	above	the	drift	criterion	

provide	evidence	that	the	item	was	studied,	and	strength	values	below	the	drift	criterion	

provide	evidence	that	it	was	not.	The	memory	strength	experienced	in	a	given	moment	is	a	

random	sample	from	the	within-trial	distribution	seen	in	Figure	1A,	and	due	to	the	
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considerable	within-trial	variability,	the	strength	value	will	sometimes	fall	above	and	

sometimes	below	the	drift	criterion,	creating	ambiguity	as	to	the	correct	response.	

The	model	assumes	that	the	decision	maker	deals	with	this	within-trial	variability	

by	taking	multiple	evidence	samples	over	time	and	accumulating	evidence	until	a	criterial	

level	of	support	for	one	decision	alternative	is	achieved.	Figure	1B	shows	a	continuum	of	

accumulated	evidence	over	time,	with	higher	(lower)	values	indicating	more	evidence	

supporting	a	studied	(not	studied)	response.	The	wavy	line	in	Figure	1B	shows	an	example	

evidence	accumulation	process,	with	the	“waves”	representing	the	moment-to-moment	

variability	in	strength	as	each	evidence	sample	affects	the	total	accumulated	evidence.	The	

offset	produced	by	each	new	sample	is	determined	by	its	distance	from	the	drift	criterion;	a	

momentary	strength	sample	far	above	the	drift	criterion	moves	the	accumulation	process	

up	by	a	lot,	a	sample	just	below	the	drift	criterion	moves	it	down	by	a	little,	and	so	forth.	

The	decision	maker	continues	to	consider	new	momentary	strength	samples	until	the	

accumulation	process	reaches	one	of	the	two	boundaries	shown	in	Figure	1B,	triggering	a	

“studied”	response	for	the	top	boundary	or	a	“not	studied”	response	for	the	bottom	

boundary.		

The	speed	and	accuracy	of	responses	are	influenced	by	several	factors.	First,	moving	

the	within-trial	strength	distribution	relative	to	the	drift	criterion	affects	the	rate	of	

approach	to	the	top	or	bottom	boundary,	commonly	referred	to	as	drift	rate,	v	(Ratcliff,	

1978).	A	within-trial	distribution	centered	near	the	drift	criterion	tends	to	produce	an	

accumulation	path	with	many	vacillations	in	direction	(drift	rate	near	zero);	a	within-trial	

distribution	far	above	the	drift	criterion	produces	an	accumulation	path	that	consistently	

takes	big	steps	towards	the	top	boundary	(strong	positive	drift	rate);	and	a	within-trial	
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distribution	far	below	the	drift	criterion	produces	an	accumulation	path	that	consistently	

takes	big	steps	towards	the	bottom	boundary	(strong	negative	drift	rate).	So,	the	drift	rate	

for	an	individual	trial	represents	the	overall	memory	strength	of	the	item	being	considered;	

for	example,	a	word	studied	4	times	should	tend	to	have	a	higher	positive	drift	rate	than	a	

word	studied	once.	The	distance	between	the	response	boundaries,	often	denoted	by	a,	

represents	the	level	of	response	caution,	or	the	speed-accuracy	tradeoff,	adopted	by	the	

decision	maker.	Narrow	boundaries	produce	fast	responding	but	high	susceptibility	to	

errors	produced	by	within-trial	variability;	wide	boundaries	produce	slow	responding	but	

reduce	within-trial	errors	by	allowing	more	time	for	within-trial	variability	to	“average	

out.”	The	position	of	the	accumulation	process	at	the	beginning	of	the	trial	is	called	the	

starting	point,	z,	and	it	represents	response	biases	that	are	unrelated	to	an	item’s	memory	

strength.	For	example,	a	decision	maker	who	knows	that	the	majority	of	tested	items	are	

studied	might	start	accumulation	near	the	top	boundary	to	represent	the	fact	that	they	are	

leaning	towards	a	“studied”	response	even	before	they	attempt	to	remember	the	test	item.		

Building	on	earlier	work	by	Laming	(1968)	in	perceptual	choice,	Ratcliff	(1978)	

applied	an	elaborated	version	of	the	simple	diffusion	model	to	recognition	memory	data.	

The	elaboration	adds	between-trial	variability	to	the	within-trial	variability	of	the	simple	

diffusion	model.	The	most	important	added	assumption	for	memory	theorists	is	between-

trial	variability	in	drift	rate.	That	is,	the	Ratcliff	diffusion	model	assumes	that	drift	rate	

varies	from	trial	to	trial	according	to	a	Gaussian	distribution	for	both	studied	and	non-

studied	items.	Figure	1C	shows	an	example	of	these	drift	distributions,	one	for	studied	and	

one	for	non-studied	items.	For	a	given	trial,	the	position	of	the	within-trial	distribution	in	

Figure	1A	is	a	random	draw	from	the	appropriate	between-trial	distribution	in	Figure	1C;	
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e.g.,	a	draw	from	the	distribution	on	the	right	for	a	studied	item.	So,	two	different	trials	with	

a	studied	item	would	have	two	different	positions	of	the	within-trial	distribution	(i.e.,	two	

different	drift	rates).	This	added	layer	of	variability	is	very	plausible	for	memory	tasks	like	

recognition.	For	example,	even	if	every	word	on	a	study	list	is	studied	once	for	one	second,	

say,	some	words	will	be	more	memorable	than	others	because	they	have	distinctive	

orthography,	have	a	meaning	that	is	personally	relevant	to	the	participant,	are	presented	at	

a	time	when	the	participant	happens	to	be	paying	close	attention	to	the	study	task,	etc.	

Moreover,	even	words	not	studied	on	the	list	can	vary	in	strength	for	a	number	of	reasons;	

for	example,	some	of	these	words	might	be	a	close	associate	of	a	word	that	was	studied.	

This	between-trial	variability	in	drift	can	produce	errors	even	with	a	very	cautious	speed-

accuracy	tradeoff	(i.e.,	wide	boundaries).	For	example,	a	studied	word	presented	during	a	

lapse	in	attention	could	fall	in	the	lower	tail	of	the	drift	distribution	and	end	up	with	a	

negative	drift	rate;	thus,	the	accumulation	process	would	tend	to	move	toward	the	bottom	

boundary	and	the	participant	would	be	likely	to	incorrectly	decide	that	the	item	was	not	

studied	even	if	they	adopted	a	slow	pace	of	responding.	

The	diffusion	model	also	has	some	ancillary	parameters	that	are	less	likely	to	factor	

into	research	questions	addressed	with	the	model.	One	of	these	in	the	average	duration	of	

non-decision	processes,	including	stimulus	encoding	and	response	production	times.	For	

example,	non-decision	time	could	represent	the	time	needed	to	read	a	word	before	trying	

to	remember	if	it	was	on	the	study	list	or	the	time	needed	to	press	a	computer	key	once	a	

decision	has	been	made.	RT	is	the	sum	of	decision	time	(i.e.,	the	time	to	accumulate	

evidence	to	a	response	boundary)	and	non-decision	time.	The	full	version	of	the	DDM	also	

includes	uniformly	distributed	variability	from	trial	to	trial	in	non-decision	time	and	in	the	
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starting	point	of	evidence	accumulation	(Ratcliff	&	Tuerlinckx,	2002).	The	latter	type	of	

variability	affords	the	full	DDM	the	ability	to	accommodate	data	in	which	error	responses	

are	faster	than	correct	responses,	which	happens	when	people	are	pressed	to	respond	very	

quickly	but	the	decision	task	is	otherwise	very	easy	(Ratcliff	&	Rouder,	1998).	The	error-

faster-than-correct	pattern	is	rare	for	memory	tasks,	which	tend	to	be	difficult.	Trial-to-

trial	variability	in	drift	rates	also	allows	the	DDM	to	accommodate	slower	error	than	

correct	RT,	which	happens	when	accuracy	is	emphasized	over	speed.	These	two	types	of	

trial-to-trial	variability	together	make	the	DDM	able	to	accommodate	most	observed	

patterns	of	correct	vs.	error	speed	(Ratcliff	&	Rouder,	1998).					

Even	with	multiple	sources	of	across-trial	parameter	variability,	the	model	is	still	

quite	testable	in	that	there	are	many	patterns	of	RT	data	that	it	cannot	produce.	Artificially	

changing	RT	data	in	even	fairly	subtle	ways	severely	impairs	model	fits	(Ratcliff,	Thapar,	

Gomez,	&	McKoon,	2004),	and	one	could	list	many	properties	of	RT	distributions	that	the	

model	must	predict	for	any	parameter	set,	such	as	the	fact	that	predicted	distributions	

must	be	positively	skewed	and,	further,	must	maintain	the	same	shape	across	any	

manipulation	that	affects	decision	difficulty	by	changing	the	information	available	for	the	

decision	(Ratcliff	&	McKoon,	2008).	Observed	RT	distributions	honor	these	tight	

constraints	with	impressive	consistency,	providing	strong	support	for	the	model	(e.g.,	

Ratcliff	&	McKoon,	2008;	Ratcliff	&	Smith,	2004).	

Although	the	diffusion	model	has	been	incredibly	influential	(Wagenmakers,	2009),	

it	is	by	no	means	the	only	evidence	accumulation	model	available	to	decision	modelers.	The	

LBA	model	was	proposed	more	recently	by	Brown	and	Heathcote	(2008)	and	is	illustrated	

in	Figure	2.		It	shares	the	DDMs	assumptions	about	across-trial	variability	in	the	starting	



9	
	

point	and	rate	of	evidence	accumulation	but	differs	in	three	respects.	First,	it	assumes	the	

effect	of	within-trial	variability	is	so	much	smaller	than	that	of	across-trial	variability	that	

accumulation	within	a	trial	can	be	approximated	as	having	a	constant	rate,	from	which	it	

derives	the	“Linear	Ballistic”	components	of	its	name	and	the	straight	line	accumulation	

illustrated	in	Figure	2.	Second,	there	are	separate	accumulators	for	each	response,	with	the	

first	one	that	reaches	its	threshold	determining	the	choice	that	is	made	and	the	decision	

time.	Figure	2	illustrates	a	binary	recognition	memory	trial	in	which	a	lure	response	is	

made	because	the	lure	accumulator	reaches	its	boundary	before	the	target	accumulator.		As	

we	discuss	in	Section	3,	racing	accumulator	models	like	the	LBA	are	not	limited	to	

accounting	for	only	binary	choice	like	the	DDM	because	it	is	straightforward	to	expand	

their	architectures	to	have	an	accumulator	for	each	possible	response.	Finally,	in	most	

applications	of	the	LBA,	non-decision	time	variability	has	been	assumed	to	be	so	much	

smaller	than	variability	in	decision	time	that	it	can	be	treated	as	a	constant.			
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Figure	2.		An	LBA	model	of	a	binary	recognition	memory	trial.	Target	and	lure	accumulators	

have	separate	parameters	indicated	by	T	and	L	subscripts	respectively:	b,	the	evidence	

total	required	to	trigger	a	response,	v,	the	mean	rate	of	evidence	accumulation,	sv,	the	

standard	deviation	of	across-trial	rate	variability	(which	has	a	normal	distribution),	and	A,	

the	width	of	the	uniform	distribution	of	evidence	starting	points.	Non-decision	time	is	the	

sum	of	encoding	and	response	production	times.	In	the	trial	illustrated	a	target	is	

presented,	so	the	mean	rate	for	the	target	accumulator	given	a	target	stimulus	(vT,T)	is	

greater	than	the	mean	rate	for	the	lure	accumulator	(vL,T),	so	the	slope	of	the	dashed	line	

representing	within-trial	accumulation	for	the	target	accumulator	is	steeper	than	the	slope	

for	the	lure	accumulator.	However,	random	variability	in	the	starting	point	of	evidence	

accumulation	gives	the	lure	accumulator	a	sufficient	head	start	to	win.	This	illustrates	how	

speed-accuracy	tradeoff	is	accounted	for	the	LBA:	raising	the	threshold	would	eventually	

result	in	a	correct	response.		

Although	these	different	assumptions	make	the	LBA	simpler	than	the	DDM,	both	

mathematically	and	computationally,	Brown	and	Heathcote	(2008)	showed	that	it	can	

provide	the	same	comprehensive	account	of	benchmark	binary	choice	phenomena	as	the	

DDM	(e.g.,	Figure	2	illustrates	how	it	accounts	for	speed-accuracy	tradeoffs).		At	the	same	

time,	its	greater	architectural	flexibility	allows	it	not	only	to	be	applied	beyond	binary	

choice,	but	also	to	model	a	wider	range	of	paradigms	and	cognitive	processes	than	the	

DDM,	as	we	illustrate	in	Section	3.			

Most	applications	of	the	DDM	and	LBA	do	not	account	for	the	memory	processes	

that	give	rise	to	drift	rates.	Instead,	they	are	used	as	a	measurement	models,	which	combine	

the	information	in	accuracy	and	RT	measurements	in	order	to	separate	out	the	effects	of	
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memory	processes,	which	determine	drift	rates,	from	the	effects	of	decision	processes,	such	

as	the	total	amount	of	evidence	required	to	make	a	choice.	However,	some	theorists	have	

also	advocated	a	closer	integration	of	the	idea	of	evidence	accumulation	with	models	of	

memory	processes.	In	the	final	section	of	the	paper	we	discuss	three	recent	examples.			

	To	set	up	our	discussion	of		evidence	accumulation	models,	the	next	section	

describes	some	ways	that	applying	accuracy-based	decision	models	has	influenced	

memory	research.		Our	goal	for	this	section	is	to	paint	a	broad-strokes	picture	of	the	types	

of	research	questions	that	have	been	addressed	with	accuracy-only	decision	modeling,	

which	will	serve	as	context	for	the	next	section	describing	applications	that	use	evidence-

accumulation	models	as	measurement	models	in	recognition	memory	research.	As	such,	we	

will	omit	discussion	of	research	questions	that	have	not	been	re-assessed	with	evidence-

accumulation	models.	For	more	thorough	reviews	of	this	literature,	see	Wixted	(2007),	

Yonelinas	and	Parks	(2007),	and	Pazzaglia,	Dube,	and	Rotello	(2013,	with	commentary	by	

Batchelder	&	Alexander,	2013).			

Section	1:	Accuracy-based	decision	modeling	in	memory	research	

	 Decision	modeling	in	memory	research	has	a	long	history,	stretching	back	at	least	to	

Egan’s	(1958)	signal	detection	modeling	of	recognition	memory	data.	In	the	early	1990’s,	

seminal	papers	from	the	Ratcliff,	Glanzer,	and	Yonelinas	laboratories	sparked	a	wave	of	

studies	that	attempted	to	test	memory	theories	by	fitting	receiver	operating	characteristic	

(ROC)	functions	(Glanzer,	Adams,	Iverson,	&	Kim,	1993;	Ratcliff,	McKoon,	&	Tindall,	1994;	

Ratcliff,	Sheu,	&	Gronlund,	1992;	Yonelinas,	1994).	ROCs	are	a	way	of	representing	data	and	

theoretical	predictions	that	was	borrowed	from	perceptual	signal	detection	research	

(Tanner	&	Swets,	1954).	A	recognition	memory	ROC	shows	the	relationship	between	the	
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hit	rate	and	the	false-alarm	rate,	with	the	former	defined	as	the	proportion	of	studied	items	

(“targets”)	correctly	identified	as	studied	and	the	latter	defined	as	the	proportion	of	non-

studied	items	(“lures”)	mistakenly	identified	as	studied	(see	Figure	1).	Although	

recognition	memory	ROCs	are	the	most	common,	ROCs	can	be	defined	for	any	memory	task	

that	requires	discrimination	of	different	stimulus	classes;	for	example,	in	a	source	memory	

task,	researchers	can	form	an	ROC	by	plotting	the	proportion	of	“Source	1”	responses	for	

items	actually	studied	in	Source	1	(correct	responses)	on	the	proportion	of	“Source	1”	

responses	for	items	studied	in	Source	2	(incorrect	responses;	e.g.,	Yonelinas,	1999).	

	 ROCs	can	be	defined	by	manipulations	that	affect	response	biases;	most	commonly,	

this	involves	changing	the	proportion	of	the	different	stimulus	types	on	the	test	list	or	

changing	the	gains	and	losses	associated	with	the	different	response	options	(e.g.,	Starns,	

Ratcliff,	&	McKoon,	2008).	For	example,	a	participant	might	complete	a	recognition	test	

across	different	test	blocks	that	have	either	20%,	35%,	50%,	65%,	or	80%	studied	words.	

Figure	3A	shows	an	example	of	five	ROC	points	and	labels	the	corresponding	proportion	

conditions	for	each.	Participants	tend	to	be	more	willing	to	say	“studied”	when	a	higher	

proportion	of	studied	items	are	on	the	test	list,	producing	increases	in	both	the	hit	rate	and	

the	false	alarm	rate.	Accordingly,	the	ROC	points	move	higher	on	both	axes	from	20%	to	

80%	targets.	
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Figure	3.	Recognition	memory	Receiver	Operating	Characteristics	(ROCs)	and	Signal	
Detection	Theory	(SDT)	distributions.	Panels	A	and	B	show	ROC	points	defined	by	5	
different	bias	conditions	(proportion	of	targets	on	the	test	list)	or	a	6-point	confidence-
rating	scale,	where	each	point	marks	the	hit	rate	and	false	alarm	rate	at	a	given	level	of	
response	bias.	Panel	C	shows	three	pairs	of	hit	and	false	alarm	rates,	with	two	pairs	
indicating	the	same	level	of	memory	discriminability	and	the	third	indicating	higher	
discriminability.	Panel	D	shows	the	signal	detection	strength	distributions	that	generated	
the	ROCs	in	Figure	C,	with	a	dotted	line	for	the	lure	distribution,	a	solid	line	for	the	weak	
target	distribution,	and	a	dashed	line	for	the	strong	target	distribution.	
		

ROCs	can	also	be	created	from	a	confidence	scale	(e.g.,	Egan,	1958).	For	instance,	

participants	could	be	asked	to	respond	to	each	test	word	with	a	6-point	scale	ranging	from	

1	(Definitely	Not	Studied)	to	6	(Definitely	Studied).	In	this	case,	the	first	ROC	point	

represents	the	most	stringent	policy	for	mapping	confidence	levels	onto	a	binary	

“studied”/”not	studied”	decision,	so	only	high-confidence	“studied”	responses	(6’s)	are	

counted.	The	next	point	represents	the	next	most	stringent	policy,	so	high-	and	moderate-
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confidence	“studied”	responses	(5’s	and	6’s)	are	counted,	and	so	forth.	Figure	3B	shows	a	

confidence-rating	ROC	and	labels	the	confidence-scale	levels	counted	as	“studied”	for	each	

point.	

ROCs	as	a	Measurement	Tool	

	 One	strand	of	ROC	research	uses	these	functions	as	a	tool	to	disentangle	changes	is	

memory	discriminability	and	response	bias	across	different	levels	of	an	independent	

variable	or	predictor	variable.	Discriminability	refers	to	how	much	information	a	person	

has	to	distinguish	words	that	were	previously	studied	from	words	that	were	not;	in	

everyday	terms,	it	is	a	measure	of	how	well	a	person	remembers	the	words	on	the	study	

list.	Response	bias	refers	to	the	overall	predilection	to	say	“studied”	or	“not	studied.”	It	is	

often	difficult	to	distinguish	changes	in	discriminability	and	response	bias	when	

performance	is	defined	by	a	single	hit	and	false-alarm	rate.	For	example,	imagine	that	the	

circle,	triangle,	and	plus	sign	in	Figure	1C	show	performance	from	Conditions	1,	2,	and	3	in	

an	experiment.	Conditions	2	and	3	both	have	higher	hit	rates	and	higher	false	alarm	rates	

than	Condition	1,	but	determining	whether	or	not	this	indicates	a	difference	in	memory	

discriminability	requires	a	decision	model	to	define	the	ROC.		

The	theoretical	curves	displayed	in	Figure	3C	are	based	on	the	signal	detection	

model	(Tanner	&	Swets,	1954)	displayed	in	Figure	3D.	Signal	detection	theory	posits	

distributions	of	evidence	strength	that	are	quite	similar	to	the	drift	distributions	discussed	

above	as	shown	in	Figure	1C,	but	the	strength	values	are	used	in	a	one-step	decision	

process	in	which	a	given	item’s	strength	value	is	simply	compared	to	a	response	criterion	

to	decide	between	“studied”	and	“not	studied”	responses	(strength	values	above	and	below	

the	criterion,	respectively).	In	Figure	3D,	the	dotted	curve	represents	the	memory	strength	
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distribution	for	non-studied	words,	and	the	solid	and	dashed	curves	represent	strength	

distributions	for	studied	items	at	two	different	levels	of	discriminability.	The	ROCs	are	

produced	by	sweeping	a	criterion	across	the	strength	distributions,	with	the	hit	rate	and	

false	alarm	rate	for	a	given	criterion	position	determined	by	the	proportion	of	the	studied	

and	non-studied	strength	distributions	above	the	criterion,	respectively.	For	example,	if	we	

start	the	criterion	at	an	extremely	high	value	(all	the	way	to	the	right	in	Figure	3D),	then	

almost	none	of	the	strength	distributions	are	above	the	criterion	and	we	are	near	the	(0,0)	

point	on	the	ROCs.	Moving	the	criterion	lower	and	lower	increases	the	proportion	of	the	

distributions	above	the	criterion,	moving	to	the	(1,1)	point	on	the	ROCs.	Any	difference	in	

performance	for	conditions	that	fall	on	the	same	ROC	can	be	accommodated	by	a	change	in	

response	bias	without	a	change	in	memory	ability.	

According	to	the	displayed	signal	detection	model,	the	difference	between	Condition	

1	and	2	(the	circle	and	the	triangle)	is	a	function	of	response	biases:	participants	in	the	two	

conditions	have	the	same	potential	to	discriminate	studied	and	non-studied	items	

(performance	lies	on	the	same	ROC),	but	participants	in	Condition	2	made	“studied”	

responses	more	liberally	(adopted	a	lower	criterion	value).	The	difference	between	

Condition	1	and	3	(the	circle	and	the	plus	sign)	is	produced	by	both	a	bias	shift	and	a	

difference	in	discriminability,	with	participants	in	Condition	3	displaying	better	ability	to	

discriminate	studied	and	non-studied	items.	In	technical	terms,	the	average	strength	for	

studied	items	was	farther	above	the	average	strength	for	non-studied	items	in	Condition	3	

compared	to	Condition	1,	so	performance	lies	on	a	different	ROC	farther	from	the	chance	

diagonal.	Different	decision	models	trace	different	functions	through	these	points	and	

might	produce	different	conclusions	about	whether	or	not	memory	discriminability	
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changed	between	conditions	(Kinchla,	1994).	Thus,	obtaining	ROC	data	helps	to	distinguish	

discriminability	and	bias	by	providing	information	about	whether	the	ROC	assumed	by	a	

particular	model	is	appropriate	for	the	data.	

A	number	of	memory	studies	have	employed	either	confidence	ratings	or	bias	

manipulations	to	define	ROCs	with	the	goal	of	distinguishing	memory	discriminability	and	

response	bias	(e.g.,	Gombos,	Pezdek,	&	Haymond,	2012;	Healy,	Light,	&	Chung,	2005;	Verde	

&	Rotello,	2003).	This	practice	has	been	generally	successful	for	standard	recognition	tasks,	

and	is	now	being	explored	in	the	eyewitness	memory	literature	(e.g.,	Mickes,	Flowe,	&	

Wixted,	2012).	That	said,	we	wish	to	note	two	caveats	for	the	use	of	ROCs	as	measurement	

tools.		

The	first	caveat	is	empirical:	a	recent	study	sent	unlabeled	data	to	a	number	of	

published	recognition	memory	researchers	and	asked	them	to	determine	if	memory	

discriminability	was	manipulated	across	two	conditions	that	might	also	vary	in	terms	of	

response	bias	(Starns	et	al.,	2019).	The	results	showed	no	indication	that	the	ability	to	

make	inferences	about	discriminability	improved	when	confidence	rating	data	were	

available	to	define	ROCs	compared	to	two-choice	(“studied”/“not	studied”)	data	without	

confidence	ratings.	This	suggests	that	ROC	data	are	not	always	helpful,	but	future	research	

will	be	needed	to	explore	this	pattern	in	more	depth.	

The	second	caveat	is	theoretical.	Differences	in	memory	discriminability	can	be	

masked	not	only	by	response	biases,	but	also	by	differences	in	response	caution,	i.e.,	the	

speed-accuracy	tradeoff	adopted	by	the	decision	maker.	For	example,	one	subject	

population	might	emphasize	quick	responding	while	another	takes	the	time	to	retrieve	as	

much	information	as	possible,	which	could	produce	lower	performance	in	the	first	
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population	even	if	members	of	this	population	can	remember	the	target	events	just	as	well	

as	the	comparison	population.	As	we	will	review	below,	evidence-accumulation	models	can	

measure	memory	performance	independently	of	differences	in	response	caution	as	well	as	

bias.	

ROCs	as	Tests	of	Memory	Theories	

A	different	strand	of	research	has	focused	on	using	ROCs	to	answer	basic	questions	

about	memory	processes.	Again,	we	will	briefly	characterize	this	work	without	attempting	

a	comprehensive	review.	We	will	consider	three	general	research	questions	that	have	been	

influential	in	this	literature	and	that	are	currently	being	re-assessed	with	evidence-

accumulation	models:	whether	there	are	independent	memory	systems	or	a	single	

coherent	system;	whether	the	relative	variability	of	memory	evidence	for	studied	and	non-

studied	items	is	consistent	with	various	mathematical	models	of	memory;	and	whether	

retrieval	processes	produce	continuous	or	discrete	information	states.	In	the	following	

paragraphs,	we	will	briefly	describe	efforts	to	investigate	these	questions	and	highlight	a	

few	example	studies.	The	examples	in	this	section	demonstrate	that	memory	researchers	

have	a	history	of	making	theoretical	conclusions	based	on	properties	of	ROCs.	

	 Dual	Process	Debate.	Pioneering	work	by	Yonelinas	(1994)	linked	ROCs	to	earlier	

multiple-system	theories	of	memory	(see	Yonelinas,	2002,	for	a	review	of	these	theories)	

and	quickly	became	a	powerful	force	promoting	the	popularity	of	ROC	modeling.	Yonelinas	

created	a	decision	model	that	distinguished	recollection	–	the	controlled,	contextualized	

recovery	of	specific	details	from	an	earlier	experience	–	and	familiarity	–	the	error-prone,	

automatically-generated	sense	that	a	stimulus	has	been	recently	encountered	(Yonelinas,	

2002).	This	dual-process	signal	detection	(DPSD)	model	assumes	that	familiarity	is	a	
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continuous	signal-detection	process;	that	is,	familiarity	values	follow	Gaussian	

distributions	across	trials	with	higher	familiarity	on	average	for	studied	items	due	to	their	

recent	presentation	(like	the	distributions	in	Figure	3D).	Recollection,	in	contrast,	follows	a	

high-threshold	process	that	succeeds	for	a	proportion	of	studied	items	and	fails	for	the	rest.	

The	model	further	assumes	that	recollection	and	familiarity	are	independent	(i.e.,	the	

familiarity	distributions	are	identical	for	recollected	and	non-recollected	targets)	and	that	

the	familiarity	distributions	are	equally	variable	for	studied	and	non-studied	words.	

	 Yonelinas	(1994)	demonstrated	a	simple	correspondence	between	parameters	of	

the	DPSD	model	and	properties	of	the	predicted	ROC.	In	the	model,	familiarity-based	

responding	produces	a	curved	ROC	that	is	symmetrical	around	the	negative	diagonal,	

whereas	recollection-based	responding	produces	a	linear	ROC	with	a	slope	less	than	1	

(thus	making	the	function	asymmetrical	around	the	negative	diagonal).	As	a	result,	the	

relative	contribution	of	recollection	and	familiarity	can	be	measured	based	on	the	extent	to	

which	the	observed	ROC	is	flattened	and	asymmetrical.	This	conceptualization	of	ROC	

shape	triggered	a	flood	of	studies	that	either	applied	these	measurement	properties	of	the	

model	to	various	research	questions	or	tested	the	DPSD	model	against	alternatives	(for	

reviews	of	this	literature,	see	Heathcote,	2003;	Wixted,	2007;	Yonelinas	&	Parks,	2007).		

	 The	dual-process	approach	is	often	contrasted	with	the	unequal-variance	signal	

detection	(UVSD)	model	in	which	memory	strength	values	are	normally	distributed	for	

both	studied	and	non-studied	items,	with	a	higher	mean	and	higher	variability	for	studied	

items	(Egan,	1958).	For	some	researchers,	this	approach	was	motivated	by	global	matching	

models	in	which	memory	evidence	is	represented	by	a	single,	continuous	match	strength	

(e.g.,	Ratcliff	et	al.,	1992).	For	others,	it	was	motivated	by	dual-process	models	in	which	
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recollection	and	familiarity	are	both	continuous	variables	and	are	added	together	on	every	

trial	to	represent	the	total	evidence	that	an	item	was	studied	(e.g.,	Wixted,	2007).	This	

approach	predicts	curved	ROCs	without	the	flattening	produced	by	recollection	in	the	dual-

process	model,	and	it	links	the	degree	of	ROC	asymmetry	to	the	ratio	of	the	standard	

deviation	in	evidence	values	for	studied	and	non-studied	items,	with	symmetrical	functions	

for	equal	variability	and	increasingly	asymmetrical	functions	for	variability	ratios	farther	

from	1.	Given	that	the	DPSD	model	uniquely	predicts	flattened	ROCs,	one	would	expect	that	

ROC	shape	provides	information	capable	of	discriminating	the	models.	For	recognition	

memory	tasks,	however,	this	aspect	of	the	data	has	proven	to	be	too	subtle	for	confident	

conclusions.	For	example,	Glanzer,	Kim,	Hilford,	and	Adams	(1999)	noted	that	conditions	

producing	more	asymmetrical	recognition-memory	ROCs	do	not	also	have	more	flattened	

ROCs	as	predicted	by	the	DPSD	model,	but	Yonelinas	(1999)	responded	by	noting	that	the	

DPSD	model	closely	fits	empirical	ROCs.			

	 Generally,	evaluating	ROC	data	has	not	successfully	resolved	the	process	debate.	

Instead	of	enumerating	the	many	volleys	exchanged	by	the	competing	theoretical	camps,	

we	will	highlight	research	on	source	memory	ROCs	as	an	example.	Early	source	ROCs	

seemed	to	support	the	DPSD	model,	as	they	were	substantially	flatter	than	recognition	

memory	ROCs	and	flatter	than	predicted	functions	from	the	UVSD	model	(Yonelinas,	1999).	

This	pattern	of	results	is	expected	under	the	DPSD	model	based	on	the	reasonable	

proposition	that	source	tasks	rely	primarily	on	recollection.	However,	subsequent	studies	

argued	that	flat	ROCs	are	produced	by	uninformed	guesses	for	the	subset	of	items	that	

were	not	recognized	as	being	studied	in	any	source,	and	this	account	is	supported	by	the	

fact	that	source	ROCs	show	the	curvature	predicted	by	the	UVSD	model	if	analyses	are	
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limited	to	items	that	the	rememberer	is	confident	were	previously	studied	(Slotnick	&	

Dodson,	2005).	More	recent	studies	demonstrate	that	people	are	less	willing	to	provide	

high-confidence	source	responses	when	they	are	less	certain	that	an	item	was	studied,	and	

neither	the	DPSD	or	UVSD	model	can	accommodate	joint	recognition	and	source	confidence	

data	without	using	decision	criteria	that	implement	this	confidence	heuristic	(Starns	et	al.,	

2014;	Starns,	Pazzaglia,	Rotello,	&	Hautus,	2013).	Notably,	the	confidence	heuristic	

produces	flattened	ROCs	even	for	models	that	otherwise	predict	curved	ROCs,	so	ROC	

flattening	does	not	provide	clear	information	about	the	nature	of	memory	retrieval.	

	 Testing	Memory-Process	Models.	The	previous	section	described	efforts	to	use	ROCs	

to	test	decision	models	that	make	a	few	basic	assumptions	about	the	nature	of	memory	

retrieval,	such	as	assuming	that	strength	values	follow	Gaussian	distributions.	ROCs	have	

also	been	used	to	test	“process”	models	that	attempt	to	simulate	the	mechanisms	involved	

in	memory	encoding,	storage,	and	retrieval.	This	trend	began	with	studies	that	used	ROCs	

to	measure	the	relative	variability	of	evidence	strength	values	for	studied	and	non-studied	

items	to	test	global	matching	models	of	memory	(Ratcliff	et	al.,	1992,	1994).	These	

researchers	measured	evidence	variability	in	terms	of	ROC	asymmetry	as	defined	by	the	

UVSD	model.	Results	showed	that	ROCs	were	asymmetrical	to	a	degree	corresponding	to	

roughly	25%	higher	variability	for	studied	than	non-studied	items	(replicating	Egan,	1958),	

but	the	degree	of	ROC	asymmetry	did	not	increase	with	additional	learning.	This	pattern	

provided	evidence	against	existing	global	matching	models,	which	tended	to	predict	either	

increasing	unbalanced	variability	ratios	with	additional	learning	or	equal	variability	for	

studied	and	non-studied	items	(Clark	&	Gronlund,	1996;	Ratcliff	et	al.,	1992,	1994).		
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	 Retrieval	Format.	Recently,	the	ROC	literature	has	focused	on	the	format	of	memory	

evidence,	where	one	alternative	is	that	a	retrieval	attempt	produces	a	continuous	strength	

value	representing	the	total	evidence	available	in	memory	and	the	other	alternative	is	that	

retrieval	results	in	one	of	a	small	number	of	discrete	evidence	states	(for	a	review,	see	

Pazzaglia	et	al.,	2013,	and	commentary	by	Batchelder	&	Alexander,	2013).	Discrete-state,	or	

threshold,	models	have	been	dismissed	by	some	researchers	based	on	the	observation	that	

ROCs	are	curved,	not	linear	(Kintsch,	1967;	Wixted,	2007;	Yonelinas	&	Parks,	2007).	

However,	most	recognition	ROCs	are	based	on	confidence	rating	data,	and	discrete-state	

models	can	predict	curved	ROCs	if	responses	from	a	given	evidence	state	are	distributed	

across	confidence	levels	(Banks,	1970;	Broder	&	Schutz,	2009;	Erdfelder	&	Buchner,	1998;	

Malmberg,	2002).	A	number	of	papers	have	attempted	to	distinguish	discrete	and	

continuous	models	by	evaluating	ROCs	produced	by	bias	manipulations	instead	of	

confidence	ratings	(e.g.,	Bröder	&	Schutz,	2009;	Dubé	&	Rotello,	2012;	Dubé,	Starns,	

Rotello,	&	Ratcliff,	2012;	Kellen,	Klauer,	&	Bröder,	2013).	ROC	data	have	not	succeeded	in	

resolving	this	debate,	and	one	can	find	papers	claiming	to	support	continuous	models	and	

discrete	models	in	roughly	equal	measure.	

Summary	

	 Perhaps	the	clearest	take	away	from	the	ROC	literature	is	that	fitting	ROCs	is	not	a	

great	way	to	test	models	of	memory	decisions,	a	conclusion	that	was	presaged	by	Banks	

(1970)	and	Lockhart	and	Murdock	(1970).	A	wide	range	of	models	have	been	successful	in	

matching	empirical	ROCs	despite	offering	dramatically	different	characterizations	of	

memory	retrieval	(DeCarlo,	2002;	Egan,	1958;	Kellen	&	Klauer,	2015;	Yonelinas,	1994).	On	

a	more	positive	note,	ROCs	can	be	a	useful	tool	for	distinguishing	effects	on	memory	
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discriminability	versus	response	bias	(Banks,	1970),	but	this	methodology	is	limited	as	a	

measurement	technique	as	it	has	no	way	to	identify	speed-accuracy	tradeoffs.	

Section	2:	Evidence-accumulation	models	in	memory	research	

	 Although	decision	modeling	has	played	a	prominent	role	in	many	aspects	of	

memory	research,	memory	researchers	have	primarily	relied	on	models	that	fit	accuracy	

and/or	confidence	data	without	considering	RTs.	We	now	consider	more	recent	studies	

that	capitalize	on	the	rich	processing	information	provided	by	RT	distributions	while	

addressing	the	same	sorts	of	research	questions	discussed	in	Section	1.	Modeling	RT	

distributions	has	been	a	fairly	recent	focus	for	these	specific	research	questions,	but	RT	

data	have	long	played	an	important	role	in	various	aspects	of	memory	research.	To	cite	

some	prominent	early	examples,	Atkinson	and	Juola	(1974)	developed	and	tested	a	model	

for	average	recognition	RTs	based	on	a	process	in	which	a	fast	familiarity	assessment	was	

supplemented	by	a	slower	memory	search	for	items	with	ambiguous	familiarity	values;	

Norman	and	Wickelgren	(1969)	explored	the	possibility	that	recognition	response	times	

are	an	increasing	function	of	the	distance	between	an	item’s	memory	strength	and	the	

response	criterion;	and	Thomas	and	Myers	(1972)	used	RT	data	to	construct	RT-ROCs	with	

the	goal	of	testing	decision	models	assuming	continuous	or	discrete	evidence	states	(see	

Weidemann	&	Kahana,	2016,	for	a	recent	follow	up).	The	specific	studies	discussed	here	

differ	from	these	past	efforts	by	directly	modeling	all	aspects	of	the	data,	including	

response	proportions	and	RT	distributions	for	both	correct	and	error	responses.	

Measurement	of	Underlying	Processes	

	 Just	as	ROCs	are	sometimes	used	as	a	tool	to	distinguish	memory	and	bias,	

advocates	of	evidence-accumulation	models	have	emphasized	their	ability	to	separately	
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measure	distinct	psychological	constructs	(Donkin	&	Brown,	2018),	and	a	growing	number	

of	studies	have	used	evidence-accumulation	models	as	measurement	tools	for	memory	

tasks	(e.g.,	Criss,	2010;	Starns,	Ratcliff,	&	White,	2012;	Ratcliff,	Thapar,	and	McKoon,	2004).	

We	first	highlight	the	Ratcliff,	Thapar,	and	McKoon	(2004)	study	as	an	excellent	example	of	

the	value	of	decision	modeling	in	memory	research.	These	researchers	used	the	DDM	to	

explore	aging	effects	in	recognition	memory.	Previous	results	indicated	that	young	and	

older	adults	have	similar	accuracy	levels	in	recognition	memory,	but	older	adults	take	

substantially	more	time	to	decide.	This	pattern	had	been	interpreted	in	terms	of	a	“general	

slowing”	mechanism	whereby	aging	slows	a	wide	range	of	cognitive	processes	by	a	similar	

factor	(Salthouse	&	Somberg,	1982).	However,	considering	the	decision	requirements	of	

the	task	reveals	that	there	are	a	number	of	possible	interpretations	for	the	observed	

results.	The	slowing	experienced	by	older	adults	could	be	driven	by	any	combination	of	

impaired	evidence	quality	(i.e.,	lower	drift	rates),	greater	response	caution	(i.e.,	more	

widely	separated	thresholds),	or	slowed	non-decision	components	like	pressing	a	key	once	

a	decision	has	been	made.	The	roughly	equivalent	accuracy	values	could	indicate	similar	

levels	of	recognition	memory	ability,	or	it	could	indicate	impaired	memory	for	older	adults	

that	is	counteracted	by	increased	response	caution.	These	different	theoretical	possibilities	

produce	different	patterns	of	aging	effects	on	accuracy	data	and	RT	distributions	in	the	

diffusion	model,	so	applying	the	model	can	provide	information	about	which	scenario	is	the	

most	credible.	

	 In	fits	to	data,	Ratcliff	et	al.	(2004)	found	that	older	adults	had	drift	rate	estimates	

that	were	very	similar	to	younger	adults,	indicating	similar	levels	of	recognition	memory	

ability.	The	age-related	slowing	was	driven	by	two	factors:	older	adults	were	more	cautious	
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and	took	longer	to	complete	the	non-decision	task	requirements	(e.g.,	hitting	keys).	One	

might	expect	that	older	adults	would	be	more	accurate	than	younger	adults	if	they	have	

similar	memory	acuity	and	are	more	cautious,	but	that	incorrect	expectation	shows	why	it	

is	critical	to	formalize	ideas	in	explicit	decision	models	instead	of	relying	on	intuition.	As	

response	caution	increases,	accuracy	increases	in	a	negatively	accelerated	function	that	

approaches	an	asymptote	imposed	by	between-trial	variation	in	evidence	(i.e.,	some	items	

have	drift	rates	that	approach	the	wrong	boundary	due	to	the	variability	illustrated	in	

Figure	1C,	and	these	items	will	consistently	produce	errors	even	in	conditions	of	high	

caution).	Younger	adults	tend	to	set	boundaries	that	achieve	accuracy	levels	near	

asymptotic	performance,	and	older	adults	tend	to	set	boundaries	well	past	the	flat	part	of	

the	curve,	meaning	that	they	could	speed	up	substantially	without	a	meaningful	drop	in	

accuracy	(Garton,	Reynolds,	Hinder	&	Heathcote,	2019;	Starns	&	Ratcliff,	2010).	Thus,	this	

example	illustrates	the	multiple	benefits	of	applying	decision	models:	the	modeling	efforts	

not	only	clarified	the	factors	driving	observed	effects,	but	also	led	to	new	discoveries	that	

were	not	evident	in	the	raw	performance	data,	such	as	the	fact	that	older	participants	tend	

to	adopt	a	maladaptive	level	of	caution	for	decision	tasks	(Starns	&	Ratcliff,	2010,	2012).		

RT	Models	of	ROC	Data	

Confidence	ROCs.	Theorists	have	developed	a	variety	of	models	that	attempt	to	

jointly	accommodate	confidence	and	RT	data	(and	the	relationship	between	the	two;	

Merkle	&	Van	Zandt,	2006;	Moran,	Teodorescu,	&	Usher,	2015;	Pleskac	&	Busemeyer,	2010;	

Ratcliff	&	Starns,	2009;	Smith	&	Vickers,	1988;	Van	Zandt,	2000).	Some	of	these	models	

focus	on	a	two-step	decision	task	in	which	participants	first	make	a	two-choice	response	

and	then	rate	their	confidence	in	that	response	(Pleskac	&	Busemeyer,	2010;	Smith	&	
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Vickers,	1988;	Van	Zandt,	2000;	Van	Zandt	&	Maldonado-Molina,	2004;	Vickers,	1979).	

Other	models	focus	on	a	one-step	paradigm	in	which	participants	make	a	single	response	

across	multiple	confidence	levels;	for	example,	selecting	one	of	six	keys	for	six	confidence	

levels	from	“Definitely	Not	Studied”	to	“Definitely	Studied”	(Moran	et	al.,	2015;	Ratcliff	&	

Starns,	2009).	

The	list	of	memory	studies	that	attempt	to	jointly	model	RT	distributions	and	

confidence	data	remains	sparse	(Osth,	Bora,	Dennis	&	Heathcote,	2017,	Osth,	Dennis	&	

Heathcote,	2017;	Osth,	Jansson,	Dennis	&	Heathcote,	2018;	Moran	et	al.,	2015;	Ratcliff	&	

Starns,	2009,	2013;	Van	Zandt,	2000;	Van	Zandt	&	Maldonado-Molina,	2004),	but	this	

literature	has	already	established	some	important	conclusions.	Perhaps	the	most	important	

contribution	of	these	studies	is	demonstrating	that	all	properties	of	the	ROC	can	be	

influenced	by	decision	processes,	and	thus	ROCs	do	not	provide	direct	insight	into	memory	

processes.	Section	1	highlighted	the	practice	of	interpreting	certain	ROC	properties	in	

terms	of	memory	processes,	with	particular	focus	on	asymmetry	and	shape	as	an	indication	

of	underlying	processes	such	as	the	relative	contribution	of	recollection	and	familiarity	or	

the	relative	variability	of	memory	evidence	for	studied	versus	non-studied	items.	The	link	

between	ROC	properties	and	memory	processes	was	inspired	by	accuracy-only	models	

based	in	signal	detection	theory,	such	as	the	DPSD	(Yonelinas,	1994)	and	UVSD	(Egan,	

1958)	models.	In	these	models,	changing	decision	processes	(i.e.,	response	criteria)	shifts	

performance	along	the	same	ROC	without	affecting	properties	like	asymmetry	and	shape.	

Unfortunately,	this	clean	dissociation	breaks	down	when	models	are	extended	to	RT	data,	

and	several	empirical	results	show	that	decision	processes	do	indeed	influence	ROC	
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properties	in	the	manner	predicted	by	RT	models	(Mueller	&	Weidemann,	2008;	Ratcliff	&	

Starns,	2009;	Van	Zandt,	2000).	

Van	Zandt	(2000)	provided	a	compelling	demonstration	of	the	uncertainties	

inherent	in	ROC	interpretation.	In	this	study,	participants	completed	a	recognition	test	

across	conditions	designed	to	manipulate	response	biases	(e.g.,	changing	the	proportion	of	

studied	items	on	the	test)	and	were	also	asked	to	rate	their	confidence	in	each	response.	As	

expected,	conditions	that	encouraged	people	to	make	“not	studied”	responses	(e.g.,	a	test	

list	in	which	only	25%	of	the	items	were	studied)	had	lower	hit	and	false-alarm	rates	than	

conditions	that	encouraged	people	to	make	a	“studied”	response	(e.g.,	75%	studied	items).	

A	more	surprising	result	was	that	the	bias	manipulations	also	changed	the	asymmetry	of	

the	ROC.	Van	Zandt	demonstrated	that	an	evidence-accumulation	model	predicted	the	

change	in	ROC	asymmetry	and	also	correctly	predicted	the	effect	of	the	bias	manipulation	

on	RT	medians.	Thus,	this	study	offers	both	an	empirical	demonstration	that	ROC	

asymmetry	is	not	a	pure	measure	of	memory	processes	and	a	theoretical	demonstration	

that	predicted	ROCs	can	change	dramatically	when	accuracy-only	decision	mechanisms	are	

replaced	with	mechanisms	capable	of	accommodating	RT	data.	

Work	by	Ratcliff	and	Starns	(2009)	reinforces	the	message	that	dynamic	decision	

processes	can	complicate	ROC	interpretation.	They	developed	the	RTCON	model	for	the	

one-step	confidence	procedure	with	the	goal	of	accommodating	the	proportion	of	

responses	and	the	full	RT	distribution	at	each	level	of	the	confidence	scale.	The	model	is	

similar	to	a	signal-detection	approach	to	confidence,	as	it	assumes	Gaussian	distributions	of	

memory	strength	with	criteria	to	segment	the	evidence	continuum	into	regions	associated	

with	each	confidence	level.	However,	the	proportion	of	the	strength	distribution	in	each	
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region	does	not	directly	determine	the	distribution	of	confidence	responses;	instead,	the	

proportions	are	translated	into	drift	rates	for	evidence	accumulators	associated	with	each	

confidence	response.	The	accumulators	race	and	RT	is	the	time	taken	by	the	first	

accumulator	to	reach	its	response	boundary	plus	non-decision	time.	The	accumulators	

differ	from	the	DDM	in	that	they	have	only	one	boundary.	This	type	of	accumulator	has	a	

different	distribution	of	the	time	to	reach	the	boundary	than	the	DDM	(a	Wald	distribution,	

see	Heathcote,	2004)	and	has	been	used	in	a	range	of	applications	where	there	are	more	

than	two	possible	responses	(e.g.,	Leite	&	Ratcliff,	2010;	Logan,	Van	Zandt,	Verbruggen	&	

Wagenmakers,	2014).	

Ratcliff	and	Starns	(2009)	demonstrated	that	the	RTCON	model	could	match	data	

from	a	speeded	confidence	judgement	experiment	and	noted	a	number	of	ways	in	which	

switching	to	an	evidence	accumulation	mechanism	changes	the	interpretation	of	ROCs.	Just	

like	the	evidence	accumulation	model	used	by	Van	Zandt	(2000),	the	RTCON	model	

predicts	that	response-bias	manipulations	should	affect	ROC	asymmetry,	and	empirical	

results	again	confirmed	this	prediction	for	sequential-dependency	biases	(i.e.,	a	bias	to	

repeat	the	previous	response).	Moreover,	ROC	shape	is	also	affected	by	the	relative	

position	of	the	accumulation	boundaries	across	confidence	levels	in	RTCON.	These	changes	

in	accumulation	boundaries	should	be	accompanied	by	changes	in	the	RT	distributions	

across	the	confidence	levels,	and	Ratcliff	and	Starns	(2013)	showed	that	individual	

differences	in	ROC	shape	are	linked	to	differences	in	the	RT-confidence	relationship	in	the	

manner	predicted	by	RTCON	(they	actually	explore	an	extension	of	this	model	that	they	

creatively	dubbed	RTCON2).		
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Overall,	RT	models	of	confidence	ROCs	show	that	the	ROC	properties	used	to	

support	conclusions	about	memory	are	also	affected	by	decision	processes.	Thus,	

developing	models	with	appropriate	decision	mechanisms	is	critical	for	making	accurate	

conclusions	about	memory,	and	RT	data	provide	important	constraints	to	test	whether	or	

not	a	model	appropriately	characterizes	the	decision	process.	Many	of	the	critical	

theoretical	advances	are	still	ahead	of	us	when	it	comes	to	jointly	modeling	RT	and	

confidence,	and	certainly	none	of	the	available	models	have	establishing	anything	like	the	

widespread	success	of	accumulation	models	for	two-choice	tasks	(see	Wagenmakers,	

2009).	However,	there	is	no	reason	to	doubt	that	future	models	will	share	the	critical	

property	of	those	reviewed	here,	namely	that	decision	processes	can	affect	the	asymmetry	

and	curvature	of	ROCs.	

Bias	Manipulation	ROCs.	RT	modeling	also	plays	an	increasingly	important	role	in	

studies	exploring	ROCs	formed	from	bias	manipulations	as	opposed	to	confidence	ratings	

(Dube,	Starns,	Rotello,	&	Ratcliff;	Heck	&	Erdfelder,	2016;	Klauer	&	Kellen,	2018;	Osth,	

Bora,	Dennis,	&	Heathcote,	2017;	Starns,	Ratcliff,	and	McKoon,	2012).	For	example,	Starns	

et	al.	(2012)	modeled	data	from	a	recognition	task	in	which	the	proportion	of	studied	items	

was	manipulated	across	test	lists	in	an	attempt	to	encourage	a	range	of	response	biases.	In	

addition,	participants	responded	under	either	speed	or	accuracy	stress	as	a	manipulation	

of	response	caution,	and	different	levels	of	memory	performance	were	created	by	

manipulating	the	number	of	study	attempts	and	the	natural-language	frequency	of	the	

stimulus	words.	The	diffusion	model	was	able	to	closely	match	the	response	proportions	

and	RT	distributions	with	psychologically	meaningful	parameter	changes,	and	this	success	

held	across	the	many	conditions	defined	by	the	factorial	combination	of	the	bias,	caution,	
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encoding	strength,	and	word	frequency	variables.	The	model	matched	ROC	asymmetry	

with	the	same	mechanism	as	the	UVSD	model;	that	is,	the	between-trial	variability	was	

higher	for	studied	items	than	non-studied	items.		

Much	like	the	confidence-ROC	results	in	the	last	section,	applying	an	RT	model	

changed	critical	conclusions	about	memory	processes.	For	one,	the	relative	variability	of	

memory	evidence	for	studied	and	non-studied	items	was	quite	different	in	the	diffusion	

results	compared	to	a	standard	accuracy-only	UVSD	model	fit	to	the	same	ROCs,	with	a	

more	unbalanced	ratio	for	the	diffusion	model.	Evidence	variability	has	figured	

prominently	in	several	theoretical	debates	(e.g.,	Ratcliff	et	al.,	1992;	Glanzer	et	al.,	1993;	

Wixted,	2007;	Yonelinas,	2007),	so	it	is	important	to	acknowledge	the	possibility	that	

conclusions	about	this	quantity	will	change	when	a	more	complete	decision	model	is	

applied.	For	another,	results	showed	that	speed	pressure	had	the	intended	effect	of	making	

participants	less	cautious	(lower	boundary	width	in	the	diffusion	model),	but	did	not	

produce	more	symmetrical	ROCs	compared	to	accuracy	emphasis	conditions.	The	diffusion	

model	was	able	to	match	the	ROC	asymmetry	in	both	the	speed	and	accuracy	conditions,	

but	this	result	could	be	challenging	for	dual-process	models.	For	example,	the	DPSD	model	

assumes	that	disrupting	recollection	should	produce	a	more	symmetrical	ROC,	and	speed	

pressure	is	often	assumed	to	affect	recollection	to	a	greater	extent	than	familiarity	

(Yonelinas,	2002).	As	such,	developing	a	version	of	the	DPSD	model	that	is	capable	of	fitting	

RT	distributions	is	an	important	step	in	testing	this	model	against	alternatives.		

Corroborating	ROC	Conclusions	

As	an	alternative	to	jointly	modeling	RT	and	ROC	data,	some	recent	studies	have	

attempted	to	use	RT	modeling	as	an	independent	way	to	validate	conclusions	from	the	ROC	
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literature	(Osth	et	al.,	2017;	Osth,	Dennis,	&	Heathcote,	2017;	Starns,	2014;	Starns	&	

Ratcliff,	2014).	These	studies	have	focused	on	measuring	the	relative	variability	of	memory	

strength	for	studied	and	non-studied	items	in	recognition	and	source	tasks.	As	noted	above,	

assessing	item-to-item	variability	in	memory	strength	informs	a	number	of	central	

theoretical	questions.	Notably,	assessing	variability	plays	a	key	role	in	attempts	to	

distinguish	dual	process	theories	positing	independent	memory	systems	from	“strength”	

models	that	base	memory	decisions	on	a	single	combined	strength	value	produced	by	a	

coherent	memory	system	(e.g.,	Wixted,	2007).	The	diffusion	model	falls	into	the	“strength”	

category,	because	the	memory	strength	for	a	given	item	is	represented	by	a	single	drift	

rate.	Figure	1C	shows	distributions	of	these	drift	rates	across	items.	The	studies	reviewed	

in	this	section	applied	models	in	which	the	variability	of	drift	distributions	could	vary	

between	studied	and	non-studied	items	to	determine	if	RT	distributions	provide	evidence	

that	variability	in	memory	strength	is	higher	for	studied	items.	This	finding	would	bolster	

“strength”	models	that	match	ROC	asymmetry	using	an	unequal-variance	mechanism	as	

opposed	to	dual-process	models	that	match	the	asymmetry	by	combining	decisions	based	

on	separate	memory	systems.				

Starns	and	Ratcliff	(2014)	approached	this	task	by	estimating	the	between-trial	

variability	in	drift	rate	for	the	diffusion	model	(the	standard	deviation	of	the	distributions	

shown	in	Figure	1C;	often	labeled	η).	They	noted	that	RT	distributions	can	be	used	to	

estimate	between-trial	variability	in	memory	evidence,	but	that	RT	data	place	only	subtle	

constraint	on	variability	estimates	(see	also	Ratcliff	&	Tuerlinckx,	2002).	Basically,	

increasing	variability	in	drift	rates	slightly	increases	the	extent	to	which	errors	are	slower	

than	correct	responses,	but	this	change	is	quite	small	relative	to	the	typical	variability	in	



31	
	

response	times.	To	counteract	the	high	uncertainty	in	RT-based	variability	estimates,	

Starns	and	Ratcliff	(2014)	compiled	a	large	set	of	recognition	memory	studies	that	reported	

RT	data.	These	studies	were	fit	with	versions	of	the	diffusion	model	that	had	separate	

between-trial	variability	estimates	for	studied	and	non-studied	items.	Matching	the	results	

from	ROC	studies,	the	diffusion	fits	consistently	indicated	that	between-trial	variability	was	

higher	for	studied	than	non-studied	items.	However,	the	ratio	of	the	two	variances	was	

more	extreme	in	the	diffusion	results	than	in	accuracy-only	ROC	models	(but	similar	to	the	

ratios	obtained	by	jointly	fitting	the	diffusion	model	to	RT	and	ROC	data	simultaneously,	

Starns,	Ratcliff,	&	McKoon,	2012).	The	RT-based	estimates	were	consistent	with	ROC	

estimates	in	that	the	variability	ratio	remained	constant	across	learning	variables	like	

providing	extra	encoding	attempts.	However,	the	RT-based	estimates	did	not	show	

variability	differences	across	natural-language	word	frequency,	in	contrast	to	the	large	

effects	of	this	variable	on	ROC-based	estimates	(e.g.,	Glanzer	et	al.,	1993).	In	summary,	

fitting	RT	distributions	supported	the	same	general	conclusions	about	variability	in	

memory	strength	that	are	needed	to	account	for	ROC	data,	with	a	few	differences	in	specific	

details.	

Several	subsequent	studies	replicated	the	finding	that	RT-based	estimates	show	

higher	between-trial	variability	for	studied	than	non-studied	items	(Osth,	Bora	et	al.,	2017;	

Osth,	Dennis,	&	Heathcote,	2017;	Starns,	2014).	Starns	(2014)	replicated	the	recognition	

result	and	also	explored	RT-based	variability	estimates	in	a	source	task.	The	source	results	

showed	that	evidence	variability	was	higher	for	a	strong	than	a	weak	source	(defined	by	a	

higher	or	lower	number	of	learning	trials,	respectively),	which	matches	the	results	of	ROC	

studies	(Yonelinas,	1999).	To	make	sure	that	the	model	could	accurately	estimate	drift	
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variability,	Starns	also	tested	a	task	that	allowed	for	strict	control	over	the	strength	of	

evidence	available	for	a	given	judgment.	In	the	task,	subjects	quickly	decided	whether	there	

were	under	or	over	50	asterisks	on	the	screen,	and	evidence	strength	was	varied	by	

changing	the	number	of	asterisks	appearing	on	a	given	trial	(close	to	50	=	low	evidence	

strength;	far	from	50	=	high	evidence	strength).	Some	conditions	were	designed	to	have	

high	trial-to-trial	variability	in	evidence	strength	(high	variability	in	the	number	of	

asterisks	that	appeared)	and	other	conditions	had	low	variability.	Diffusion	fits	accurately	

discriminated	data	sets	with	high	and	low	between-trial	variability,	which	lends	credibility	

to	the	conclusions	derived	from	applying	the	model	to	memory	tasks.		

Osth,	Dennis,	and	Heathcote	developed	a	likelihood	ratio	version	of	the	diffusion	

model,	and	fits	of	this	new	model	again	showed	higher	between-trial	variability	for	studied	

than	non-studied	items.	Osth,	Bora,	et	al.	showed	that	the	diffusion	model	and	the	linear	

ballistic	accumulator	(LBA)	model	produce	different	between-trial	variability	estimates	

when	applied	to	the	same	data	sets.	Notably,	they	also	fit	both	models	to	the	Starns	(2014)	

asterisk-task	data	and	found	that	the	diffusion	model	produced	more	accurate	variability	

estimates	than	the	LBA	model	(Brown	&	Heathcote,	2008,	see	Section	3	for	further	

discussion),	suggesting	that	estimates	from	the	former	model	should	be	given	higher	

credibility.	Their	diffusion	results	showed	higher	variability	for	studied	than	non-studied	

items,	so	this	has	proven	to	be	a	highly	consistent	result.	

	

Information	Format	in	RT	Models	

Modeling	RT	distributions	is	also	beginning	to	play	a	role	in	the	“retrieval	format”	

debate	contrasting	models	that	assume	continuous	versus	discrete	evidence	states.	Before	
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discussing	the	modeling	efforts	here,	we	will	summarize	the	theoretical	issues	at	stake.	As	

an	analogy	to	deciding	if	an	event	was	experienced	or	not,	imagine	that	the	decision	task	is	

to	determine	whether	or	not	a	young	adult	has	a	disease	that	does	not	produce	symptoms	

until	later	in	life.	To	analogize	a	discrete-evidence	model,	we	could	imagine	that	this	

disease	is	based	on	a	single	gene	mutation,	so	people	with	one	allele	of	a	certain	gene	will	

get	the	disease	and	people	with	a	different	allele	will	not.	If	a	genetic	test	identifies	which	

allele	the	patient	has,	then	the	patient	can	be	unambiguously	categorized	as	having	or	not	

having	the	disease.	Errors	are	produced	only	when	the	genetic	test	fails	to	identify	the	

allele,	thus	providing	no	information	about	disease	status.	To	analogize	a	continuous-

evidence	model,	we	could	imagine	a	disease	that	has	imperfect	risk	factors	as	opposed	to	a	

single	marker.	Perhaps	people	with	high	blood	pressure	are	more	likely	to	develop	the	

disease	later	in	life,	but	there	is	considerable	overlap	in	blood	pressure	between	people	

who	will	and	will	not	develop	the	disease.	In	this	scenario,	errors	are	based	on	the	inherent	

uncertainty	in	the	information	used	for	the	decision;	for	example,	sometimes	a	person	

without	the	disease	will	have	very	high	blood	pressure	for	other	reasons.	

	So	the	basic	question	for	this	section	is	whether	memory	retrieval	is	like	a	genetic	

test	that	either	succeeds	and	gives	certain	evidence	or	fails	and	gives	no	evidence	or	like	a	

fuzzy	risk	factor	that	provides	a	continuous	range	of	more-or-less	ambiguous	evidence	

states.	Discrete-state	theorists	hold	that	the	former	analogy	is	more	appropriate;	for	

example,	they	commonly	apply	a	two-high-threshold	(2HT)	model	with	a	Detect	Old	

retrieval	state	that	gives	certain	evidence	that	an	item	was	studied,	a	Detect	New	states	that	

gives	certain	evidence	that	it	was	not	studied,	and	a	Guess	state	that	represents	the	failure	

to	retrieve	diagnostic	evidence	(e.g.,	Snodgrass	&	Corwin,	1988).	Continuous	theorists	hold	
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that	the	latter	analogy	is	more	appropriate,	and	they	use	models	with	overlapping	evidence	

distributions.	For	example,	the	diffusion	model	assumes	that	some	studied	items	can	have	

very	low	memory	strengths	(i.e.,	drift	rates)	and	some	non-studied	items	can	have	very	

high	memory	strengths,	as	represented	in	the	distributions	seen	in	Figure	1C.	

Distinguishing	these	possibilities	has	a	number	of	theoretical	implications,	such	as	how	

measures	of	memory	ability	should	be	corrected	for	differences	in	response	biases.	

Another	related	question	is	whether	memory	errors	can	be	produced	by	misleading	

retrieval;	i.e.,	is	it	possible	to	“remember”	things	that	didn’t	happen	in	the	same	way	one	

remembers	real	events?.	Continuous	models	allow	for	this	sort	of	compelling	false	memory	

by	assuming	that	non-studied	items	sometimes	produce	high	memory	strength	values.	

Although	discrete-state	theorists	have	considered	RT	data	in	the	past	(Hu,	2001;	

Kellen,	Singmann,	Vogt,	&	Klauer,	2015;	Province	&	Rouder,	2012),	discrete-state	models	

that	are	capable	of	fitting	full	RT	distributions	have	only	recently	appeared	(Heck	&	

Erdfelder,	2016;	Klauer	&	Kellen,	2018;	Starns,	2018).	These	models	employ	different	

strategies	for	accommodating	RTs.	The	most	direct	approach	is	to	simply	model	separate	

RT	distributions	for	responses	from	each	underlying	evidence	state	(e.g.,	Heck	&	Erdfelder,	

2016).	For	example,	one	could	describe	the	RT	distribution	associated	with	each	evidence	

state	using	an	exGaussian	distribution,	which	has	a	steep	Gaussian	“ramp	up”	on	the	low	

side	of	the	distribution	and	a	long	exponential	tail	on	the	high	side.	Together,	these	features	

make	the	exGaussian	a	very	good	match	for	most	empirical	RT	distributions	(Van	Zandt,	

2000).		The	predicted	RT	distributions	from	this	sort	of	discrete-state	model	are	mixtures	

of	the	distributions	for	the	different	evidence	states;	for	example,	if	80%	of	targets	called	

“old”	are	based	on	successful	retrieval	and	20%	are	lucky	guesses,	then	the	RT	distribution	
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for	targets	called	“old”	is	produced	by	mixing	the	Detect	Old	and	Guess	RT	distributions	

with	mixing	weights	of	.8	and	.2,	respectively.	Even	this	simple	approach	is	a	substantial	

theoretical	advance	over	accuracy-only	models.	For	example,	Heck	and	Erdfelder	showed	

that	an	RT-extended	model	allows	researchers	to	address	new	research	questions,	such	as	

characterizing	whether	responses	based	on	guessing	are	slower	than	responses	based	on	

detection.	Adding	RT	also	creates	a	more	stringent	test	of	discrete-state	models,	because	

the	models	can	only	match	the	RT	data	if	the	RT	distributions	from	all	conditions	can	be	

produced	by	making	different	mixtures	of	the	few	underlying	distributions	for	each	

discrete	evidence	state	(Province	&	Rouder,	2012).	A	variant	of	this	approach,	the	discrete	

race	model,	allows	for	the	possibility	that	decision	makers	will	sometimes	make	a	guess	

response	even	for	items	that	could	have	been	detected	if	they	waited	longer	to	respond,	

implementing	a	speed-accuracy	tradeoff	(Starns,	2018).		

Another	approach	to	modeling	RT	in	a	discrete-state	model	involves	specifying	

finishing-time	distributions	for	each	step	in	the	decision	tree	that	maps	the	process	of	

determining	a	response	(Klauer	&	Kellen,	2018).	For	example,	one	simple	way	to	

characterize	a	discrete-state	decision	process	is	to	assume	that	the	decision	maker	first	

determines	if	they	will	be	able	to	detect	the	item	(i.e.,	whether	retrieval	will	succeed),	

responds	based	on	detection	if	it	succeeds	(e.g.,	hits	the	“old”	key	if	the	item	produces	the	

Detect	Old	state),	or	selects	a	guess	response	if	detection	fails.	One	could	posit	that	the	time	

needed	to	determine	if	detection	succeeds	and	the	time	needed	to	select	a	guess	both	

follow	an	exponential	distribution,	say	(Klauer	&	Kellen,	2018).	The	decision	time	for	a	trial	

is	determined	by	adding	the	finishing	times	for	all	the	component	processes;	for	example,	

the	decision	time	for	a	guess	in	the	simple	model	outlined	above	would	be	the	sum	of	two	
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exponentially	distributed	random	variables	representing	the	time	needed	to	figure	out	that	

detection	failed	and	the	time	needed	to	select	a	guess	response.	Klauer	&	Kellen	(2018)	

developed	a	complete	framework	of	discrete-state	models	using	this	approach	and	

demonstrated	that	these	models	can	be	used	to	investigate	processing	questions,	such	as	

questions	about	the	order	of	component	processes	in	a	decision	task.	

In	summary,	discrete-state	theorists	are	developing	sophisticated	approaches	to	

modeling	full	RT	distributions	in	addition	to	response	proportions.	Most	of	the	discoveries	

still	remain	on	the	horizon,	but	RT	data	are	beginning	to	play	a	much	larger	role	in	this	

research	area.		Future	studies	will	be	needed	to	contrast	the	different	approaches	to	

accommodating	RT	distributions	in	a	discrete-state	model	and	to	thoroughly	compare	

these	models	to	RT	models	assuming	continuous	evidence	distributions,	like	the	diffusion	

model	(Ratcliff,	1978).	

Section	3:	Evidence-accumulation	process	models	in	memory	research	

In	this	section	we	review	three	recent	developments	that,	to	different	degrees,	

specify	the	processes	that	give	rise	to	the	inputs	to	evidence-accumulation	models	of	

decision	processes.	Our	coverage	is	far	from	exhaustive,	and	focuses	only	on	episodic	

memory.	Evidence	accumulation	models	have	been	applied	to	learning	in	other	areas,	most	

notably	Nosofsky	and	Palmeri’s	(1997)	Exemplar-Based	Random-Walk	model,	which	has	

been	used	to	explain	skill	acquisition	and	the	development	of	automaticity	(Palmeri,	1997,	

1999)	and	incorporated	into	Logan’s	(2002)	broader	Instance	Theory	of	Attention	and	

Memory.		

The	first	example,	Osth,	Dennis	and	Heathcote	(2017),	took	a	process-oriented	

approach	to	specifying	DDM	drift	rates	in	recognition	memory,	assuming	that	memory	
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strength	is	first	translated	into	an	estimate	of	the	relative	likelihood	of	the	observed	match	

assuming	the	test	item	was	vs.	was	not	studied	(Glanzer,	Hilford,	&	Maloney,	2009).	The	

second	example,	Cox	and	Shiffrin	(2017),	describes	a	comprehensively	dynamic	process	

model	of	recognition	memory,	assuming	that	within-trial	variability	in	decision	processing	

is	caused	by	sampling	different	features	of	the	test	probe	over	time.	Although	on	the	

surface	resembling	the	DDM,	their	approach	differs	fundamentally	in	dropping	the	

assumption	that	the	decision	process	integrates	its	inputs.	Like	Osth	et	al.,	the	inputs	are	

based	on	log-likelihood	estimates,	but	the	estimates	approach	an	asymptote	after	initially	

increasing,	and	so	resemble	a	leaky-integration	dynamic	(e.g.,	Usher	&	McClelland,	2001).	

Another	difference	is	that	the	within-trial	fluctuations	are	much	less	pronounced	than	the	

DDM,	so	their	smoother	ballistic	trajectories	more	closely	resemble	nonlinear	deterministic	

accumulation	(e.g.,	Brown	&	Heathcote,	2005).		The	final	example,	Osth	and	Farrell	(2019),	

completely	drops	the	single-decision-unit	architecture	and	within-trial	noise	of	the	DDM,	

and	instead	uses	racing	LBA	evidence-accumulation	processes	(Brown	&	Heathcote,	2008)	

to	provide	a	dynamic	characterization	of	free	recall	as	multi-alternative	decision	making.	

The	seminal	SAM	global-memory	model	(Raaijmakers	&	Shiffrin,	1981,	See	Chapter	1)	

assumed	memory	strength	determines	each	memory	trace’s	success	in	competing	for	

retrieval,	with	recall	probability	described	by	Luce’s	choice	rule.	More	recent	recall	

theories	(Polyn,	Norman,	&	Kahana,	2009;	Sederberg,	Howard,	&	Kahana,	2008)	have	

modeled	trace	competition	as	a	race	between	leaky	competing	evidence	accumulators	(i.e.,	

Usher	&	McClelland’s,	2001,	LCA	model).	Race	processes	produce	a	similar	outcome	in	

terms	of	recall	probability	to	Luce’s	choice	rule	(Bundesen,	1983)	but,	because	they	can	

account	for	decision	time	based	on	the	winning	runner’s	time,	the	newer	models	were	
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applied	to	mean	RT	as	well	as	recall-probability	findings.	Osth	and	Farrell	used	simpler	

independent	race	models,	where	each	racer	was	either	an	LBA	or	the	same	single-barrier	

diffusion	or	Wald	processes	used	in	the	RTCON	models	discussed	previously.	The	LBA	

assumes	a	linear	accumulation	mechanism	that	drops	within-trial	variability	in	favor	of	

purely	between-trial	variability;	normally	distributed	in	the	case	of	accumulation	rates	and	

uniformly	distributed	for	the	initial	evidence	value	on	each	trial,	with	both	independently	

sampled	for	each	accumulator.		Although	simple,	these	race	models	are	capable	of	

providing	a	comprehensive	account	of	benchmark	phenomena	in	choice	RT	(for	the	LBA	

race	see	Brown	&	Heathcote,	2008,	and	for	the	Wald	race	see	Tillman,	Van	Zandt	&	Logan,	

in	press).	The	computational	tractability	of	these	models	makes	them	ideal	for	complex	

applications	such	as	free	recall,	and	their	mathematical	tractability	allowed	Osth	and	

Farrell	to	use	powerful	Bayesian	hierarchical	methods	to	model	the	full	distribution	of	RT.			

Evidence	as	log-likelihoods		

Almost	all	modern	process	models	of	memory	share	a	common	feature:	they	base	

recognition	decisions	on	the	logarithms	of	estimated	likelihood	ratios	(Dennis	&	

Humphreys,	2001;	McClelland	&	Chappell,	1998;	Osth	&	Dennis,	2015;	Shiffrin	&	Steyvers,	

1997).	The	likelihood	ratios	are	based	on	the	estimated	probability	that	a	studied	item	

(numerator)	or	an	unstudied	item	(denominator)	would	produce	a	memory	strength	value	

that	matches	the	memory	strength	of	the	test	item.	This	approach	arose	from	Glanzer	and	

Adam’s	(1990)	proposal	that	in	order	to	explain	pervasive	mirror	effects	in	recognition	

memory	–	the	observation	that	many	performance	manipulations	produce	opposite	effects	

on	the	hit	rates	and	false	alarm	rates	–	signal-detection	theory	based	on	memory	strength	

should	be	replaced	with	signal	detection	theory	based	on	log-likelihood	ratios.	
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Figure	4	illustrates	how	the	log-likelihood	approach	explains	one	type	of	mirror	

effect,	the	strength-based	mirror	effect		(Stretch	&	Wixted,	1998),	which	occurs	in	a	

comparison	between	study-test	list	conditions	that	differ	in	the	memory	strength	of	

studied	(old)	items	when	false	alarm	rates	for	un-studied	(new)	items	in	the	stronger	

condition	are	reduced	relative	to	the	weak	condition.	The	strength-based	mirror	effect	

occurs	with	a	variety	of	manipulations	to	create	weak	and	strong	conditions	(e.g.,	study	

time	and	study	repetitions);	we	will	use	the	example	of	retention	time,	where	strength	is	

greater	for	more	recently	studied	lists	(Singer	&	Wixted,	2006).		At	first	the	false	alarm	

difference	seems	paradoxical	as	new	items	should	have	the	same	memory	strength	in	both	

conditions.	This	is	illustrated	in	Figure	4A,	where	the	memory-strength	distributions	for	

new	items	in	the	weak	and	strong	conditions	are	identical	standard	normal	distributions,	

as	is	conventional	in	signal-detection	analysis.	However,	on	reflection	it	is	clear	that	the	

false	alarm	difference	could	arise	if	the	rememberer	takes	account	of	the	retention	interval	

when	setting	their	decision	criterion.	Otherwise	they	would	too	often	reject	test	items	for	

lists	studied	further	in	the	past	or	too	often	accept	test	times	for	recently	studied	lists.		

This	problem	can	be	solved	by	making	recognition	decisions	based	on	the	relative	

probabilities	or	likelihoods	that	the	observed	memory	strength	arose	from	a	new	vs.	old	

item	rather	than	directly	based	on	memory	strength.	An	ideal	unbiased	decision	is	based	on	

a	criterion	where	this	likelihood	ratio	is	one	(or	equivalently	where	the	logarithm	of	the	

ratio	is	zero),	which	corresponds	to	the	memory	strength	at	which	the	new	and	old	

densities	cross	(as	the	height	of	the	density	is	equivalent	to	the	likelihood).	Figure	4A	

indicates	these	“ideal	observer”	criteria	as	a	dotted	vertical	lines,	on	left	for	the	weak	

condition	and	the	right	for	the	strong	condition.	Figure	4B	illustrates	the	densities	plotted	
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as	a	function	of	log-likelihood	(logarithms	are	used	by	convention;	the	same	conclusions	

hold	for	raw	likelihood	ratios),	which	brings	the	two	ideal	decision	criteria	into	registration	

and	produces	a	mirror	effect	pattern	where	the	new-strong	distribution	lies	to	the	left	of	

the	new-weak	distribution	(and	so	the	strong	condition	has	a	lower	false-alarm	rate)	while	

the	old-strong	distribution	lies	to	the	right	of	the	old-weak	distribution	(and	so	the	strong	

condition	still	has	a	higher	hit	rate).			
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Figure	4.	Memory	strength	and	log-likelihood	distributions	for	a	list	strength	paradigm.	

Decision	criteria	are	indicated	as	dotted	vertical	lines.	
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As	summarized	by	Glanzer	et	al.	(2009),	a	very	large	number	of		studies	have	

confirmed	further	predictions	of	likelihood-ratio	signal-detection	theory,	ranging	from	

concentering	(a	version	of	the	mirror	effect	applying	to	two-alternative	forced	choice),	to	

regularities	revealed	by	ROC	analysis,	the	zROC	length	effect	(i.e.,	plots	of	z	transformed	

ROCs	are	shorter	when	performance	is	higher)	and	the	variance	effect	(zROC	slopes	

indicate	greater	underlying	variance	for	both	studied	and	unstudied	items	in	conditions	

with	higher	performance).	In	the	neurosciences	it	has	been	suggested	that	the	evidence	

accumulated	in	perceptual-decision	tasks	corresponds	to	the	log-	likelihood	of	each	option	

in	a	racing-accumulator	model	(Carpenter	&	Williams,	1995)	or	the	log-likelihood	ratio	in	a	

diffusion	model	(Gold	&	Shadlen,	2001).		

Osth	et	al.	(2017)	applied	this	approach	to	modeling	recognition	memory	with	the	

DDM.	They	noted	that	if	memory	strength	has	a	Gaussian	distribution	and	the	variance	of	

the	old	and	new	distributions	is	unequal	then	the	log-likelihood	ratio	is	not	compatible	

with	the	Gaussian	trial-to-trial	distribution	of	drift-rates	assumed	by	the	DDM	because	the	

required	transformation	is	quadratic.	This	is	evident	in	Figure	4B	in	the	positively-skewed	

nature	of	the	distributions1.	However,	they	developed	a	linear	approximation	to	the	

transformation,	illustrated	in	Figure	4C,	that	both	preserves	a	Gaussian	distribution	and	all	

of	the	mirror-effect	and	ROC	regularities	documented	by	Glanzer	et	al.	(2009).		They	tested						

the	combination	of	this	approximation	and	the	DDM,	which	they	dubbed	the	LR-DDM	by	

fitting	it	to	recognition	memory	data	from	over	150	participants	in	four	recognition	

	
1	With	unequal	variance	the	likelihood	transformation	is	also	non-monotonic	as	evidenced	by	the	left-hand	
edge	of	the	weak	distributions	in	Figure	3B.	This	occurs	because	very	low	values	of	memory	strength	are	
more	likely	to	arise	from	old	items	because	of	their	higher	variance.	This	rather	unintuitive	property	does	not	
arise	with	Osth	et	al.’s	(2016)	linear	approximation.	
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memory	experiments.		The	LR-DDM	required	fewer	parameters	to	specify	drift	rates	than	

the	standard	DDM	and	provided	a	good	fit	to	the	data	that	was	preferred	by	Bayesian	

model	selection	methods	that	weight	model	simplicity	along	with	goodness-of-fit.	Their	

results	indicate	that	log-likelihood	based	models	are	an	elegant	explanation	of	the	

regularities	of	recognition	memory	–	not	only	in	terms	of	choice	accuracy	but	also	in	terms	

of	RT	–	and	suggests	that	it	may	be	useful	to	use	the	LR-DDM	as	a	more	process-plausible	

measurement	model	for	recognition	memory.	

The	approximate	log-likelihood	ratio	transformation	developed	by	Osth	et	al.	(2017)	

has	also	been	combined	with	the	comprehensive	process	model	of	memory	proposed	by	

Osth	and	Dennis	(2015).	In	Osth,	Fox	et	al.	(2018)	it	was	used	to	replace	the	exact	but	

computationally	expensive	transformation	used	in	the	original	Osth	and	Dennis	model	and	

found	to	provide	a	good	account	of	list-length	effects	on	accuracy	data	in	a	source-memory	

paradigm.		Osth,	Jansson	et	al.	(2018)	combined	the	Osth	and	Dennis	model	with	the	LR-

DDM	to	investigate	the	dynamics	of	recognition	testing.	The	DDM	component	enabled						

one	account	that	explains	the	test-position	effect—a	decline	in	performance	over	the	

course	of	testing—in	terms	of	a	speed-accuracy	tradeoff	whereby	participants	gradually	

require	less	evidence	(i.e.,	they	lower	their	thresholds).	The	model	enabled	them	to	partial	

out	threshold	effects	and	to	adjudicate	between	explanations	in	terms	of	interference	

caused	by	learning	of	test	items	and	a	shift	in	the	context	representation	used	to	cue	

memory	caused	by	test	items,	and	results	favored	the	latter	explanation.	This	application	

illustrates	that	accounting	for	RT	using	evidence-accumulation	modeling	can	be	the	key	to	

testing	process-model	explanations	of	memory	performance.	
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A	dynamic	account	of	recognition	memory	

Cox	and	Shiffrin	(2017)	proposed	a	model	that	accounts	for	both	RT	and	choices	and	

provides	a	process	account	of	how	recognition	memory	log-likelihoods	arise.	It	shares	

some	similarities	with	the	DDM	in	that	choices	correspond	to	which	of	two	boundaries	are	

crossed	by	a	value	that	evolves	over	time,	but	the	value	(“familiarity”)	is	a	function	of	the	

log-likelihood	that	a	test	item	was	studied	rather	than	the	integral	of	that	log-likelihood.	

Episodes	are	represented	as	context	and	content	features	that	are	probabilistically	encoded	

in	to	memory	traces.	Context	features	represent	times,	locations	and	the	participant’s	

internal	states.	Content	features	represent	perceptual	information	and	knowledge	

associated	with	the	percept.	Recognition	testing	proceeds	by	constructing	a	memory	probe,	

at	first	containing	only	the	test	context,	with	perceptual	and	knowledge	content	features	

derived	from	the	test	item	then	being	probabilistically	added	over	time.	The	probe	is	

constantly	matched	in	parallel	to	all	memory	traces	and	for	each	an	estimate	of	the	

likelihood	that	it	corresponds	to	the	test	item	is	computed.	Logarithms	of	the	likelihood	

values	are	summed	to	create	a	“familiarity”	value	that	fluctuates	as	the	features	in	the	

probe	change.	Recognition	decisions	are	based	on	familiarity,	which	begins	at	a	delay	after	

the	test	item	it	presented,	and	which	fluctuates	over	time	thereafter	due	to	the	changing	

probe,	providing	a	process	explanation	of	within-trial	noise.	In	particular,	decisions	are	

based	on	the	difference	in	familiarity	between	its	initial	and	current	state,	controlling	for	

baseline	differences	in	familiarity	between	items	(Cox	&	Shiffrin,	2012).	

Early	in	a	test	trial	in	a	typical	study-test	list	paradigm	context	dominates	the	probe,	

so	the	best	matches	are	to	traces	from	items	on	the	study	list,	which	for	a	studied	test	item	

correspond	to	both	the	target-item	trace	and	non-target	item	traces.	However,	as	content	
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features	are	added	non-target	matches	decrease	and	matches	to	target-item	traces	(both	

from	the	study	episode	and	earlier	episodes)	increase.	As	a	result,	familiarity	for	target	

items	tends	to	increase	over	time	relative	to	its	initial	level	when	the	probe	contained	only	

context	features	and	matches	to	non-target	items	tend	to	decrease.	In	a	free-response	

paradigm,	where	participants	decide	when	to	respond,	the	familiarity	difference	is	

compared	to	positive	and	negative	thresholds	corresponding	to	studied	and	non-studied	

responses.	As	the	probe	can	only	contain	a	fixed	maximum	number	of	features	of	each	type,	

familiarity	approaches	a	maximum	or	minimum	value.	In	order	to	ensure	a	response	occurs	

the	thresholds	collapse	together	at	a	rate	related	to	the	expected	rate	of	change	in	

familiarity	over	time.	In	a	response-signal	paradigm,	the	probability	of	a	choice	is	

determined	by	whether	the	familiarity	is	above	or	below	a	threshold	that	does	not	change	

with	time	when	the	response	signal	occurs.	

Cox	and	Shiffrin	(2017)	compared	different	explanations	for	dynamic	recognition	

phenomena.	They	first	investigated	word	frequency	effects,	showing	that	the	model	

provided	a	good	account	of	interactions	with	speed-accuracy	tradeoffs—both	choice	

probabilities	in	response-signal	paradigms	and	choice	probabilities	and	the	distribution	of	

RT	in	free-response	paradigms—and	supported	an	account	in	terms	of	low	frequency	

words	having	more	distinctive	features	rather	than	interference	from	past	episodes.	They	

next	found	that	the	model	was	able	to	account	for	response-signal	performance	in	a	list-

discrimination	paradigm	on	the	assumption	that	the	initial	features	in	the	probe	came	from	

the	current	context,	but	with	context	features	representing	the	list-before-last	accruing	

gradually	when	this	list	was	the	target	context.	The	initial	makeup	of	the	probe	also	

accounted	for	both	accuracy	and	RT	in	masked-priming	paradigms,	due	to	incorporation	of	
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features	from	the	prime	and	they	also	found	that	identity	primes	could	affect	the	delay	

before	new	features	were	sampled	into	the	probe,	which	they	attributed	to	pre-activation	

of	the	lexical	trace	of	the	test	item.	Their	final	investigations	were	of	the	effects	of	different	

types	of	content	features	entering	the	probe	at	different	times.	In	recognition	memory	they	

accounted	for	non-monotonic	false-alarm	response-signal	functions	as	due	to	delayed	

encoding	of	plurality	and	modality	information	and	contrasted	it	with	the	early	availability	

of	word-form	and	semantic	information	corresponding	to	monotonic	false-alarm	response-

signal	functions.	In	associative	recognition	they	accounted	for	non-monotonic	false-alarm	

response-signal	functions	for	rearranged	pairs	in	terms	of	the	later	entry	of	association	

features	into	the	probe	because	sampling	them	requires	item	features	in	the	probe	to	be	

sufficiently	encoded	first.	They	also	explored	extensions	of	the	model	to	explain	recall-

based	phenomena	in	signal-respond	probabilities	based	on	trace-sampling	mechanisms	

similar	to	those	of	the	SAM	global	memory	model	(Raaijmakers	&	Shiffrin,	1981).		In	the	

next	section	we	explore	another	recent	approach	to	recall	that	focuses	on	RT.	

Free	recall	as	multi-alternative	decision	making	

Osth	and	Farrell	(2019)	avoided	the	complexities	associated	with	sequential	

dependencies	in	full	recall	series	(Farrell,	2012)	by	modeling	only	the	first	free-recall	

response.		They	focused	on	two	such	phenomena	pertaining	to	serial-position	curves	(i.e.,	

recall	probability	as	a	function	of	an	item’s	study	position),	the	recency	effect,	an	advantage	

for	the	later	list	items,	and	the	primacy	effect,	a	weaker	advantage	for	the	early	items.	Their	

modeling	addressed	three	sets	of	hypotheses	about:	1)	the	shape	of	the	reduction	in	

memory	strength	with	increased	study	test	lag	that	mediates	the	recency	effect,	either	a	

power	or	exponential	function;	2)	primacy	being	caused	by	strength,	rehearsal,	or	
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reinstatement	mechanisms;	and	3)	whether	a	recall	cue	initiates	the	recall	process,	or	

instead	whether	it	can	be	started	before	the	cue.		

Their	two	modeling	frameworks	used	either	standard	LBA	or	shifted	Wald	

accumulators	discussed	earlier,	with	the	exception	that	accumulation-rate	standard	

deviations	(i.e.,	for	within-trial	variation	in	the	Wald	and	from	trial-to-trial	variation	in	the	

LBA)	were	a	linear	increasing	function	of	their	means	(see	also	Ratcliff,	Voskuilen	&	

Teodorescu,	2018;	van	Ravenzwaaij,	Brown,	Marley,	&	Heathcote,	submitted).	This	

modification	was	necessary	to	ensure	that	accumulators	with	zero	rates	could	not	finish	a	

race.	Both	Wald	and	LBA	models	supported	essentially	the	same	conclusions	for	the	14	

data	sets	fit	by	Osth	and	Farrell	(2019).		In most of the experiments the onset of the recall cue 

was predictable, and there was clear evidence that at least some participants-initiated recall prior 

to its appearance, as evidenced by negative non-decision time estimates relative to the cue onset.  

Their results also clearly supported an exponential recency function, which might appear 

surprising because recall probability is typically better fit by a power function (e.g., Averell & 

Heathcote, 2012). However, Osth and Farrell’s finding applies to a latent quantity, accumulation 

rate, that is nonlinearly mapped to recall probability and an exponential function is consistent 

with the TCM model of free recall (Howard & Kahana, 2002). On the other hand, Donkin and 

Nosofsky (2012b) also compared recency functions for LBA rates and supported a power over an 

exponential function in probed item-recognition tasks. Power functions can result from a mixture 

of exponential functions decaying on different time scales (Brown & Heathcote, 2003) and 

Howard et al. (2015) suggested that they might emerge if memory is cued at a range of temporal 

scales. Osth and Farrell proposed this framework could provide a unified account of findings 
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from different tasks, with their results suggesting participants in the experiments they examined 

used focused single-scale cues.   	

The first strength account of primacy tested by Osth and Farrell (2019) assumes primacy 

items receive extra strength that exponentially reduces with increasing serial position, with both 

primacy and recency gradients influencing the race. The second rehearsal account assumes that 

the first item is sometimes rehearsed through to the end of the list so had the greatest memory 

strength of any item, because it is effectively at the head of the recency function. The third 

reinstatement model assumes that participants sometimes use a start of list retrieval cue instead 

of an end of list cue, in which case primacy items race without any competition from the recency 

gradient. They showed that these three accounts produce very similar effects of serial position on 

recall probability but very different effects on RT because, in a race model, the RT distributions 

for each serial position are mostly determined by the fastest competitor, meaning that RTs can be 

very similar for each serial position despite very different recall probabilities. Consequently, RT 

changes little with serial position for the strength model. The same is true for the rehearsal 

model, except for the first position, which is slightly faster in proportion to the probability of 

rehearsing the first item. For the reinstatement model, in contrast, there is a decrease with serial 

position, particularly for slower RT, in this case in proportion to the probability of using the 

start-of-list cue. Model selection results that took advantage of the Bayesian estimation methods 

to account for both goodness-of-fit and model complexity, favored the context reinstatement 

model with exponential gradients for both primacy and recency.  

Osth	and	Farrell’s	(2019)	results	in	long-term	recall	underline	the	utility	of	RT	

distributions,	and	hence	of	evidence-accumulation	models,	in	discriminating	among	

distinct	theoretical	positions	that	cannot	be	discriminated	by	recall	probability.	In	this	
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regard	they	join	the	results	of	Donkin	and	Nosofsky	(2012a)	and	Ratcliff	and	Murdock	

(1976)	who	showed	that	the	shapes	of	RT	distributions	provided	critical	constraints	

allowing	then	to	adjudicate	among	different	models	of	short-term	recall. These specific 

results with respect to primacy favor theories such as Farrell’s (2012) grouping model that can 

selectively focus	on primacy or recency items at recall initiation. However, they are also 

compatible with models in the temporal context family, as Osth and Farrell showed that like the 

independent Wald and LBA race models, RT in the LCA model is also largely determined by the 

fastest competitor, and models within this family have incorporated context reinstatement 

mechanisms (e.g., Morton & Polyn, 2016). 

Conclusion	

	 Remembering	an	event	is	essentially	a	process	of	making	a	series	of	decisions	about	

what	likely	happened	in	the	past.	Understanding	how	these	decisions	are	made	is	just	as	

important	as	understanding	the	memory	processes	that	inform	them.	A	rich	literature	

demonstrates	that	accounting	for	RT	data	in	addition	to	response	proportions	dramatically	

improves	researchers’	ability	to	identify	the	most	effective	models	of	decision	making	as	

well	as	their	ability	to	map	empirical	results	onto	psychologically	meaningful	processes.	

Evidence-accumulation	models	of	RT	data	are	beginning	to	play	a	prominent	role	in	

memory	research	because	of	the	many	advantages	they	offer.	In	terms	of	measurement,	

they	provide	an	important	advance	over	older	accuracy-only	models	by	revealing	that	

some	data	patterns	previously	attributed	to	memory	processes	are	likely	produced	by	

decision	processes.	Although	it	is	still	far	from	standard	practice,	modeling	RT	distributions	

from	memory	tasks	has	proven	to	be	an	effective	way	to	advance	theoretical	

understanding,	and	the	evidence-accumulation	models	that	underpin	this	enterprise	are	
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becoming	integral	to	process	theories	of	memory.	Like	rememberers	who	must	piece	

together	clues	to	build	a	case	about	what	happened	in	the	past,	memory	researchers	are	

quickly	catching	on	to	the	value	of	dynamic	models	of	decision	processes	to	provide	clues	

about	how	memory	works.			 	
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