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Interest in the processes that mediate between stimuli and responses is at the heart of most 

modern psychology and neuroscience. These quantities cannot be directly measured but instead 

must be inferred from observed responses. Race models, through their ability to account for 

both response choices and response times, have been a key enabler of such inferences. Examples 

appeared contemporaneously with the cognitive revolution, and since have become increasingly 

prominent and elaborated, so that psychologists now have a powerful array of race models at 

their disposal. We showcase the state-of-the-art for race models and describe why and how they 

are used. 

 
 
  



Quantitative models facilitate the expression of psychological theories in a way that can be 

rigorously tested against data. This paper addresses an influential and widely-used type, race 

models. Figure 1 illustrates one of the most well-known examples, Logan and Cowan’s (1984) 

“horse-race” model of the stop-signal task used to measure the ability to inhibit a response. The 

“horses” represent cognitive processes racing against each other; if the “go” runner wins, a 

response is made, and if the “stop” runner wins, it is withheld. The speed of the stop runner is 

the key measure of inhibitory ability, but definitionally that runner’s finishing time is not 

observable. However, combining what can be observed with assumptions based on the horse-

race model enables estimation of the stop runner’s speed. Measuring the unobservable in this 

way exemplifies the role of race models in inferring psychological quantities that cannot be 

directly observed. 

 

 
Figure 1. Logan and Cowan’s (1984) horse-race model of response inhibition in the stop-signal task. On most 
trials (“go” trials) participants perform a choice task, making a response to a go stimulus, typically a binary 
choice, but on some trials, a stop signal (e.g., a tone) also occurs sometime after the go stimulus, indicating that 
they should withhold their response. Typically, the delay between the go and stop signals is varied, and effects 
on the probability of stopping and response times (RTs) when stopping fails, along with RTs when there is no 
stop signal, are observed. Combining the race model with these observables, along with some assumptions 
about the distribution of finishing times, provides an estimate of stop-signal RT, the time for the stop horse to 
run the race.     
           
 
 

What are race models? 

The defining characteristics of a race model are that: a) it contains one or more “runner” that 

take time to complete, b) where there is more than one runner, they may or may not interact in a 

way that affects their timing, and c) it acts according to a “winner-takes-all” rule that controls 



subsequent processing based on the runner, or set of runners, that finishes first. Evidence-

Accumulation Models (EAMs) are the most widely-adopted special case of a race model, where the 

runners have a specific interpretation as processes that complete when they have accrued a 

threshold amount of evidence. We first examine several basic EAMs used to address simple 

decision tasks. We then describe how these basic EAMs can be used as building blocks to 

address a broader range of tasks and psychological processes.  

Figure 2 illustrates three race models, two in which the runners are independent, the Linear 

Ballistic Accumulator (LBA) and the Racing Diffusion Model (RDM), and one which is a special 

case of the latter, the Wiener Diffusion Model (WDM), where the runners interact. In the LBA 

and RDM, the “horses” are evidence accumulators, and their positions are the current values of 

the sum of the evidence for the response that they represent. For example, a choice about 

whether a stimulus is moving left or right could have accumulators corresponding to left- and 

right-hand button-press responses, respectively, as shown in Figure 2. Accumulation rates vary 

from trial to trial but are on average higher for the accumulator that matches the stimulus than 

the accumulator that mismatches the stimulus.  

In the LBA, accumulation occurs at a constant rate within a trial; in the RDM it is “diffusive”, 

(i.e., varying randomly from moment to moment) with a constant average rate. In the LBA, the 

starting point of accumulation also varies from trial to trial. In both, the choice is determined by 

the first accumulator to reach a threshold. Response time (RT) is the sum of decision time (i.e., 

the time to move from the starting point to threshold) and non-decision time, typically the sum 

of the times to encode the choice stimulus and to produce a motor response once a winner is 

determined. The third column of Figure 2 shows the resulting RT distributions, with the area 

under each distribution representing the corresponding response probability. 

The WDM is a special case of the RDM where moment-by-moment changes in the evidence in 

one accumulator correspond to equal and opposite changes in the other accumulator. Evidence 



for each response is reduced to a difference, and the race becomes a tug of war represented as 

one accumulator with two thresholds (right column, Figure 2). The basic WDM wrongly predicts 

that error and correct responses have identical RT distributions, so it has been augmented with 

the same types of trial-to-trial variability as in the LBA, in which case it has been called the 

Diffusion Decision Model (DDM; Ratcliff & McKoon, 2008). Both models remain limited to 

binary choices, but other diffusive race models like the RDM and variants with interactions 

among the runners, are not so limited. 

 
Figure 2. LBA, RDM, and WDM models for a choice between left and right response options where the left option 
is correct (accuracy ~73% in all cases), and corresponding response time (RT) distributions (s = seconds). Left 
evidence trajectories and RT distributions shown in green and right evidence trajectories/RT distributions in red. 
The LBA and WDM have one accumulator for each response option each with its own threshold, indicated by a 
dashed line. For the WDM, there is only one accumulator, but it has two thresholds: the upper dashed line 
corresponds to the left-response threshold and the lower dashed line to the right response threshold. In all cases, 
the RT distributions are depicted in their “defective” form where the area under the curve equals the probability of 
the corresponding response. For each accumulator, accumulation trajectories during 10 trials are plotted (straight 
lines in the LBA, jagged lines in the others), where arrows show the average accumulation rates. Each LBA 
accumulator has independent trial-to-trial variability in accumulation rates and starting points with Gaussian and 
uniform distributions, respectively. Both the RDM and WDM have normally distributed moment-to-moment 
variability in rates, which is independent between accumulators for the RDM. Parameters and code to plot this 
figure are given in an R script at https://osf.io/xzhe5. Figure available at https://tinyurl.com/52v7hwam under CC-
BY 2.0 license (https://creativecommons.org/licenses/by/2.0/). 
 
 
Our first recommended reading, Donkin and Brown (2018), provides a broad and inclusive 

review of most types of EAM. These vary along dimensions ranging from discrete vs. 

continuous evidence accrual to non-linearities due to “leakage” (i.e., evidence being lost from the 

total) and positive feedback. Bogacz et al. (2007) discuss motivations for EAMs in terms of 
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optimality and their biological basis. Despite these differences, all applications interpret the core 

parameters similarly: rates are determined by arousal, attention, and stimulus characteristics, 

whereas thresholds are set to strategically control response caution and bias. Higher thresholds 

increase caution, slowing responding but increasing accuracy (i.e., the speed-accuracy trade-off) 

by overcoming start-point biases or averaging out diffusive variability. Bias occurs when the 

threshold for one response is lower than another.    

 
      (a) 

 
(b) 

 
(c) 



Figure 3. (a) Strickland et al.’s (2018) Prospective Memory Decision Control (PMDC) model. A standard binary (i.e., 
two accumulators corresponding to two response options) LBA makes a lexical decision (i.e., word vs. non-word 
choice) based on inputs from word and non-word detectors unless beaten by a third prospective memory (PM) 
accumulator that receives input from a detector for a PM stimulus attribute (e.g., “tor” as a sub-string of the lexical 
decision stimulus). Solid arrows indicate excitatory inputs and dashed lines inhibitory inputs. For example, the PM 
detector both excites the PM accumulator (A1) and inhibits the lexical-decision accumulators (B1 and B2), 
instantiating reactive control. Response thresholds instantiate proactive inhibition, in this example favouring PM 
responses by setting a lower threshold for the PM than word accumulator, as only words can contain the PM 
stimulus. (b) Hawkins and Heathcote’s (2021) timed racing-diffusion model (TRDM). A standard binary RDM (the 
“Evidence Process”) makes choices in the usual way unless beaten by a third accumulator (the “Timing Process”) in 
which case a random choice is made. (c) van Ravenzwaaij et al.’s (2020) Advantage LBA (ALBA) model for a choice 
between three alternatives (1, 2, 3; the same approach can be generalized to any number of choices). Standard LBAs 
accumulate “advantage” evidence (e.g., 1-2 evidence has a mean equal to the mean for evidence for choice 1 minus 
the mean for the evidence for choice 2). The counters increment when an accumulator reaches threshold. Under a 
“win-all” stopping rule, each set of accumulators corresponding to a particular choice is connected to a counter that 
starts at zero and increments each time an accumulator in the set hits threshold. A response is triggered by the first 
counter to achieve a count equal to the number of accumulators in the set (e.g., in the figure, respond “1” if its 
counter is the first to register two counts). 
 
Figure 3 shows examples where the LBA and RDM are used as components in models of 

complex tasks. Strickland et al.’s (2018) PMDC model (see Figure 3a for details) addresses a 

prospective memory (PM) task, where participants perform lexical decision (word vs. non-word) 

trials with letter strings, which in a small subset of randomly selected trials have an attribute (e.g., 

the sub-string “tor”) that requires them to remember to make a different response. To do so, 

they augmented a binary-choice LBA with a third accumulator for the PM response. PMDC 

provided a novel cognitive-control-based perspective on PM, illustrating how race models can be 

used to instantiate both reactive (i.e., stimulus-driven) control, through feedforward inhibition of 

routine responses when a PM stimulus is detected, and proactive (i.e., anticipatory) control, 

through setting different thresholds across accumulators.   

Hawkins and Heathcote’s (2021) TRDM (Figure 3b) combines a binary-choice RDM with a 

leading model of time perception (Simen et al., 2016), a diffusion process with a constant input 

and a threshold set so that it is crossed on average at a target time. Previous attempts to model 

the effect of the passage of time on decision making relied on implicit timing mechanisms like 

decreasing thresholds. The TRDM provides a comprehensive account of these phenomena with 

an explicit and hence testable mechanism that is grounded in the literature on timing tasks.  



van Ravenzwaaij et al.’s (2020) ALBA models responding contingent on more than one LBA 

threshold-crossing event. Accumulators correspond to “advantages”, evidence for the presence 

of one stimulus over another (see Figure 3c for details). ALBA accounts for competition effects 

among choice options previously thought to rule out independent-race models. It extends to 

multiple choices, and predicts Hick’s Law, a logarithmic increase in RT with the number of 

choices. ALBA uses dynamic logical “AND” functions where all accumulators in a group must 

finish to trigger a response. Other logical functions can be constructed in the same way (e.g., an 

“OR” function requires only one group member to finish), providing the building blocks for 

powerful and general-purpose computations.  

Reynolds et al. (2021) proposed an alternative to the ALBA account of making more than two 

choices in a model that requires only two accumulators. They built on Vicker’s (1979) hypothesis 

that equates confidence with a “balance-of-evidence”, the difference between the winning and 

losing accumulator when the winner achieves threshold. Reynolds et al. added a set of thresholds 

to each accumulator to translate the balance-of-evidence into discrete responses. For example, a 

choice is rated as uncertain if the losing accumulator has passed all but the last threshold when 

the winner achieves threshold (i.e., the looser is not far behind the winner). Figure 4 illustrates 

this Multiple-Threshold Race (MTR) model and related approaches where a response is triggered 

as a function of the states of both accumulators, either based on the total number of thresholds 

passed, or when the thresholds themselves are defined jointly by both accumulators’ states. Our 

second recommended reading, Kvam (2019), proposes a geometric perspective integrating these 

and other race models, where the states of each accumulator are represented as cartesian 

coordinates. Building on Smith’s (2016) seminal circular-diffusion model, Kvam showed that 

with enough thresholds, or a non-linear joint threshold, race models can be extended to 

accommodate continuous responding. Kvam et al. (2022) used this approach to provide a 

unified account of discrete and continuous responding with respect to line length and colour 

matching judgements.  



Figure 4. Geometric representations showing how two (left and right) racing accumulators can produce more than 
two choices by triggering a response based on a particular threshold-crossing event, with the response option 
chosen also contingent on previously occurring threshold-crossing events. The state of the right accumulator is 
represented on the x-axis and the state of the left accumulator on the y-axis, so each point on the plane represents 
the joint state of the two accumulators at a given time. The dashed lines represent examples how the joint state 
evolves over time when accumulation is linear and deterministic. Each accumulator has multiple thresholds: 
horizontal dotted lines represent thresholds for the first accumulator and vertical dotted lines the thresholds for the 
second accumulator. The colored line segments correspond to combinations of threshold-crossing events producing 
a particular choice. The four panels represent the relationship between Reynolds et al.’s (2021) multiple threshold 
race (MTR) models and Kvam’s (2019) general geometric framework where a response is triggered, and an option 
chosen, based on an equation combining the x and y states. (a) An MTR with n = 3 thresholds per accumulator is 
able to choose among 6 options. Responding is triggered by the first time an accumulator’s highest threshold is 
crossed, and the option chosen depends on how many of the losing accumulator’s thresholds were previously 
crossed. For example, orange segments could correspond to a high confidence rating, green segments to medium 
confidence and blue segments to low confidence, with segments on the horizontal line corresponding to choosing 
left and segments on the vertical line to choosing right. In this example, the left accumulator crossed all three 
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thresholds before the right accumulator crossed any, corresponding to a high confidence response. Note that each 
accumulator could have different numbers of thresholds, thresholds can be spaced unevenly, and different segments 
could be mapped to the same option. (b) Threshold counting model with n = 3 evenly spaced thresholds: a response 
is triggered when n thresholds have been crossed. Continuing the confidence example, a medium confidence left 
response is illustrated, triggered when the first right threshold is crossed after two left thresholds were crossed 
previously. (c) A threshold counting model with quadratically spaced thresholds (i.e., even spacing on a squared 
scale). (d) Threshold counting with n = 25 quadratically spaced thresholds for choosing a color of the rainbow (a 
violet choice is illustrated). In the limit of large n, this approximates a circular boundary in Kvam’s geometric 
framework (i.e., a response is triggered when !𝑥! + 𝑦! exceeds the radius of the circle). Note that different spacings 
in the threshold-counting model can be used to approximate differently shaped geometric model boundaries. Figure 
available at https://tinyurl.com/yck8xrke under CC-BY 2.0 license 
(https://creativecommons.org/licenses/by/2.0/). 
 

What are the advantages of using race models? 

The expressive power of race models is being used in an increasing number of areas. What 

motivates researchers to quantitatively instantiate their psychological-process theories in this 

way? On reason is to avoid mistaken psychological inferences resulting from speed-accuracy 

tradeoffs. For example, Evans et al. (2018) applied the LBA to data from the Human 

Connectome Project and showed that performance correlations between twins that had been 

interpreted in terms of cognitive ability were more likely due to the heritability of response 

caution. Because correctly identifying underlying causes in this way is key for effective 

interventions, EAMs are increasingly used in areas ranging from computational psychiatry (e.g., 

ADHD; Weigard et al., 2018) to performance in time-pressured multi-tasking environments (e.g., 

Palada et al., 2019).  

EAMs are also used as a second stage or “back-end” that enables decision-making effects to be 

disentangled from the effects of an initial “front-end” stage modelling non-decision phenomena. 

For example, Steyvers et al. (2019) combined a front-end accounting for trial-to-trial changes in 

task-set activation with an LBA back-end to model task-switching costs. The specificity of this 

approach supports clearer selection among theoretical positions, such as applied by White et al. 

(2011) to attentional-selection theories in vision, Osth and Farrell (2019) to primacy and recency 

effects in free recall, and Evans et al. (2019) to theories of multi-attribute choice. The latter case 

is instructive on the utility of the constraint afforded by RTs, as the selected model differed from 



earlier comparisons based only on choice data. Incorporating RTs also brings measurement 

advantages. For example, Jones et al.’s (2015) race model of healthcare preferences elicited by 

identifying the best and worst among a set of options provided the equivalent of more than 

doubling sample size relative to traditional choice-only models. Front-ends can also model 

variable processing times that add to a race model’s decision time, such as in Provost and 

Heathcote’s (2015) model of the mental-rotation-matching tasks, or can consist of a series of 

decision stages, as in Fific et al.’s (2010) test of different mental architectures for categorization.  

Race models afford even greater expressive ability through probabilistic mixtures that model 

participants performing tasks in different ways on different trials, accounting for guessing in 

visual working memory tasks (Donkin et al., 2013), misapplication of complicated decision rules 

(Bushmakin, et al., 2017), and monkeys who responded with low caution in a putatively high 

decision-caution condition (Cassey et al, 2014). The ability to test for such effects can have 

applied as well as theoretical implications. For example, Matzke et al. (2017) used the mixture 

approach to account for the occurrence of goal neglect that causes the stop runner to fail to 

enter the race in response to a stop signal, where the finishing times of the go and stop runners 

are described by the sum of Gaussian and exponential random variables (i.e., ex-Gaussian 

distribution). Goal-neglect, rather than inhibitory deficits (i.e., slowing of the stop runner), was 

found to explain poorer performance in the stop-signal task by participants with schizophrenia.  

How should race models be used? 

Race-model parameters enable insights into the psychological causes of observed phenomena. 

Going beyond the ability of simple EAMs’ to account for speed-accuracy tradeoffs, the race 

models in Figure 2 enable insights into more complex constructs. For example, Strickland et al. 

(2018) found that PMDC parameter estimates indicate that prospective-memory failure is mainly 

due to reactive control rather than proactive control or limited attention capacity.  



Race models can also be used to unify theoretical constructs. For example, Hawkins and 

Heathcote (2021) found that people with greater precision (i.e., less moment-to-moment 

variability) in the diffusion process underlying a time-interval-production task also had higher 

precision in the timing component of the TRDM. Reynolds et al. (2020) used the MTR 

framework to unify race models with perhaps the most widely applied cognitive model, signal-

detection theory, providing estimates of its discriminability and bias parameters that are 

informed by RT.         

 

However, to be valid, parameter values must be uniquely identified by the data from which they 

are inferred. That is not always guaranteed, particularly when data quality (in terms of the 

number of observations per participant in each condition) is low. Our third recommended 

reading, Heathcote et al. (2018), addresses this issue using hierarchical Bayesian estimation. It 

describes the many advantages of a Bayesian approach and how to perform parameter-recovery 

studies that fit models to simulated data, enabling estimation accuracy and precision to be 

assessed by comparing data-generating and estimated parameters. We strongly recommend that 

parameter-recovery studies be carried out not only for new models but also for applications of 

existing models to new designs. If problems emerge, either the design or the model must be 

adjusted. Hierarchical estimation can help where data quality is limited, by constraining each 

participant’s estimates through a group-level model of individual differences. With enough 

participants, well-estimated group-level parameters can be obtained, although limitations may 

remain for the participant-level estimates.  

 

Carefully chosen parameterizations are also key for both estimation and interpretation. Ideally, 

rate parameters should be made a function of stimulus values. van Ravenzwaaij et al. (2020) 

proposed a simple and general way to do so, and applied it to determine rates (V) when 

choosing the brighter of left (L) vs. right (R) stimuli: 



𝑉! = 𝑠 + 𝑤"(𝐵! + 𝐵#) + 𝑤$(𝐵! − 𝐵#) 

𝑉# = 𝑠 + 𝑤"(𝐵! + 𝐵#) + 𝑤$(𝐵# − 𝐵!). 
Parameter s quantifies cognitive-processing speed, and wS and wD the weights of the terms based 

on the sum (i.e., overall magnitude) and difference (i.e., advantage) of the subjective brightness 

of the two stimuli (BL and BR). Subjective brightness followed Weber’s Law in being a 

logarithmic function of the objective luminance. Where objective and/or subjective stimulus 

values are not available, the processing-speed and magnitude terms are not separately 

identifiable. However, in any evidence-accumulation model, it can be useful to interpret 

differences of the estimated rates (i.e., advantages) as reflecting the aggregate impact of the 

discriminability of the stimuli corresponding to different choices and the quality of selective 

attention to the stimulus features that support that discrimination, and their sum as reflecting the 

aggregate impact of internal (e.g., processing speed) and external (e.g., stimulus magnitude) 

factors driving a response to occur.  

 

Our final example shows how a single race model can provide a multi-faceted characterization of 

psychological processing that is theoretically revealing, in this case in the domain of healthy 

cognitive aging. Slowing with age is pervasive, so leading theories posit a reduction in cognitive 

processing speed with age as a broad explanatory factor, but age-related performance decrements 

have also been attributed to reduced executive function. Heathcote et al. (2022) investigated 

these theories using a novel stop-signal task (see Figure 5) requiring inhibition of both easier and 

harder binary choices as well as proactive control on go trials based on cues about the response 

most likely to be correct on the upcoming trial. They fit Matzke et al.’s (2017) stop-signal model 

with an ex-Gaussian stop runner but replaced the model of the go trials with RDM runners. The 

hybrid ex-Gaussian-RDM approach provides a rich array of measures including the key index of 

inhibitory ability, stop-signal RT (SSRT), as well as goal neglect, and measures based on RDM go 

processing, i.e., peripheral processing speed (non-decision time), central processing speed 



(average accumulation), selective attention (the rate advantage), caution, and proactive control of 

bias in response thresholds.  

 

Figure 5. Heathcote et al.’s (2022) stop-signal task and the associated hybrid race model of go and stop trials. A stop 
trial is shown as a sequence of frames with timing in milliseconds (ms). The stop signal occurred on a randomly 
ordered 25% of trials. The go (i.e. choice) stimuli were 20 x 20 grids of blue and orange squares whose position 
changed randomly on each screen refresh (see https://youtu.be/kXZk_jCHjkM for a video of the task). 
Participants had to decide which color was dominant. Choice difficulty varied randomly from trial to trial, where the 
dominant color constituted 52% of the squares on harder trials and 54% on easier trials. In the illustration, the cue 
indicates that there is a 70% chance that orange will be the dominant color in the upcoming stimulus. Stop trials 
differed from go trials only in that a red square appeared around the choice stimulus at a stop-signal delay (SSD) 
determined by a staircase algorithm: SSD increased by 50ms after a stop trial where response inhibition was 
successful (making stopping more difficult on the next stop trial) and decreased by 50ms if response inhibition 
failed. ISI = inter-stimulus interval. The go-trial model on the upper left illustrates a choice stimulus presented at t = 
0. Once it is encoded, two runners corresponding to the orange and blue response options start to race each other 
from the same initial level. The jagged lines illustrate noisy accumulating evidence totals for 10 races. The total that 
first crosses its response threshold triggers the associated response. In the illustration, the thresholds are assumed to 
be the same and correspond to the x-axis in the plot, but when there is response bias, the thresholds for each 
accumulator may differ. The dashed lines above the x-axis correspond to the distribution across trials of the 
finishing times of each runner, which in the illustration are longer for the orange accumulator as it has a lower 
average accumulation rate. The solid lines correspond to the distribution of the winning times for each accumulator, 
which are shorter than the finishing times because faster runners win races. The stop-trial model on the right shows 
the finishing and winning time distributions on stop trials. The finishing time of the stop runner is assumed to have 
an ex-Gaussian distribution, truncated below at 50ms (i.e., additional grey dashed line below the x-axis). The 
finishing time distributions for the go runners are assumed to be identical on stop and go trials. The presentation of 
the go stimulus is followed at t = SSD by a stop signal that triggers the stop runner. The go response is successfully 
inhibited when the stop runner finishes before either of the go runners. Hence, the distributions of winning times 
for the go runners when inhibition fails (solid lines) are faster than on go trials because slower go finishing times 
tend to lose out to the stop runner. Figure available at https://tinyurl.com/y5nmbee8 under CC-BY 2.0 license 
(https://creativecommons.org/licenses/by/2.0/). 
 
Heathcote et al.’s (2022) primary finding is that ageing mainly affected processing speed, both 

central and peripheral, with only a small part of slowing due to caution increasing with age. 



There was no evidence of any age-related deficit in executive-function measures except response 

inhibition, but again that was mediated by a slowing effect in the speed of the inhibitory runner. 

If anything, older participants had less goal neglect, and better selective attention and proactive 

threshold control. These results are surprising given that Ratcliff and McKoon (2008) summarize 

the results of almost a dozen applications of the traditional DDM to aging as showing “the 

slowdown is almost entirely due to older adults’ conservativeness [i.e., caution].” (p. 911). One 

explanation is that, in being driven purely by the difference in evidence between two options, the 

DDM is unable to represent stimulus magnitude and central processing speed effects, and so any 

reduction to the latter in older participants can only be attributed to increased caution. A more 

recent revision of the DDM can account for stimulus magnitude with the additional assumption 

that the mean and variability of rates are positively related (Ratcliff et al., 2018). Further research 

will be required to determine what this new type of DDM indicates about the causes of age-

related slowing.  

 

These results not only show how race models can provide theoretical insights, they also highlight 

the challenges with respect to parameter identifiability and interpretability. First, the descriptive 

ex-Gaussian account of the stop runner had to be retained in the hybrid model because Matzke 

et al. (2020) showed that stop-signal models in which all runners are evidence-accumulation 

processes result in extremely poor parameter recovery. In contrast, the hybrid model’s 

parameters are well recovered, even in Heathcote et al.’s (2022) complex design, with the key 

factor being that the ex-Gaussian does not require the estimation of a parameter corresponding 

to the distribution’s lower bound. Second, the strong theoretical divergence between the DDM 

and the hybrid model underlines the need to carefully consider the limitations in what a model 

can and cannot represent, and the potential for parameter tradeoffs, when interpreting any 

model-based estimate.    

 



Future Directions 

A range of emerging applications are using race models to integrate different data sources, tasks, 

and theoretical frameworks. For example, the LBA has been used to simultaneously link 

behavioral data to fMRI and EEG data through hierarchical Bayesian estimation (Turner et al., 

2016). Similar methods have also been used to link performance in multiple tasks through shared 

LBA parameters (Wall et al., 2021). We believe that these “joint” models are more likely to be 

successful at linking data of different types and from different tasks than approaches such as 

structural equation modeling that ignore the details of cognitive processing, or implicitly assume 

details without making them explicit (and hence testable) as is done by joint models. 

 

Our final recommended reading, Miletić, et al., (2019), generalizes and improves on previous 

attempts to integrate another very successful type of cognitive model, reinforcement learning, 

into the race-model framework. They used a simple delta rule to learn reward values for stimuli 

based on probabilistic feedback from forced choices. These values played the role of brightness 

in van Ravenzwaaij et al.’s (2020) equations, determining rates for RDM accumulators. In 

agreement with van Ravenzwaaij et al.’s results for perceptual choice, the learned values affected 

rates mainly through the advantage term, but the magnitude term also played a non-negligible 

role. In binary-choice tasks, the model outperformed previous approaches that combined the 

DDM with reinforcement learning, and then went beyond what can be achieved with the DDM, 

successfully addressing a three-choice task and reward-magnitude effects.  

 

In closing we note that most of the race models discussed here have been analytically tractable 

enough to yield an easily computed likelihood, the key quantity required for fitting the models to 

data in a comprehensive way. However, requiring such tractability can limit the scope of 

potential applications. Fortunately, recent developments in approximate likelihood methods, 



combined with faster hardware (Lin et al., 2019) and deep neural-network approaches to 

Bayesian estimation (Radev et al., 2020) look set to make it increasingly practical to apply race 

models to a wider range of applications.  
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