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Abstract 

Evidence accumulation models are a class of computational cognitive model used to 

understand the latent cognitive processes that underlie human decisions and response 

times. They have seen widespread application in cognitive psychology and neuroscience. 

However, historically the application of these models was limited to simple decision tasks. 

Recently, researchers have applied these models to gain insight into the cognitive processes 

that underlie observed behaviour in applied domains such as air-traffic control, driving, 

forensic and medical image discrimination, and maritime surveillance. Here, we discuss how 

this modelling helps to understand how the cognitive system adapts to task demands and 

interventions such as task automation. We discuss future directions and argue for wider 

adoption of cognitive modelling in Human Factors research. 

Key words: evidence accumulation; computational cognitive model; decision making; human 

factors; performance and safety; applied cognition 
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Bringing computational modelling out of the lab and into the wild 

Computational cognitive models are powerful tools for understanding human cognition and 

behaviour. The models are cognitive because they explain how unobserved cognitive 

processes (e.g., attention, learning, working memory capacity) give rise to observed 

behaviour (e.g., choice, response time; RT). The models are computational because 

theorized relations between cognition and behaviour are defined unambiguously in terms of 

formal mathematics and instantiated in executable computer code. This enables the precise, 

quantitative measurement of latent cognitive processes and ultimately allows for stronger 

tests of competing cognitive theories than is possible through verbal (non-computational) 

reasoning or analysis of observed behaviour alone [1].  

Evidence accumulation models (EAM) are among the most prominent and successful 

computational cognitive models in cognitive psychology and neuroscience [2-8]. EAMs 

explain the outcome and duration of decisions in terms of latent cognitive processes 

including the efficiency of information processing, the amount of evidence required to 

trigger a response, and the duration of encoding and motor response processes. In contrast 

to traditional analysis of mean RT and error rates, which can be ambiguous or difficult to 

interpret, EAMs account for all aspects of the data (e.g., skew and variability of RT 

distributions) and can identify differences in underlying decision processes that cannot be 

inferred from traditional descriptive analyses [9].  

In the cognitive (neuro)sciences, EAMs have been most widely applied to simple, highly 

controlled decision-making tasks (e.g., brightness discrimination, random dot motion, lexical 

decision, stop-signal, go/no-go tasks). The simplicity of highly controlled tasks enables 

precise, targeted measurement of cognitive processes and facilitates interpretation of 

neurophysiological measures (e.g., EEG, fMRI) [2,10-12]. However, such tasks are seldom 

representative of the more complex and cognitively demanding decision-making contexts 

that humans face in the modern workplace [13,14]. Consequently, the practical implications 

of such work for how humans make decisions ‘in the wild’ are often unclear for those 

seeking to understand the cognitive underpinnings of human performance and errors in 

safety-critical work domains. Bringing EAMs ‘into the wild’ holds reciprocal benefits for 

applied and basic research: Applied research benefits from greatly enhanced measurement 
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of the latent cognitive mechanisms underlying performance. Basic research benefits from 

understanding how cognitive theories generalise to representative complex work tasks [15].  

In this article, we review recent work pioneering the use of EAMs to study representative 

simulations of real-world decisions in such diverse domains as air-traffic control (ATC), 

driving, forensic and medical image discrimination, and maritime surveillance. We first 

outline the theory and key computational features of EAMs. Next, we review several recent 

novel insights into human decision making in safety-critical work tasks made possible by 

EAMs. In doing so, we show that EAMs provide a common theoretical framework that 

explains human performance across a diverse set of modern work tasks. Finally, we discuss 

future directions and argue for wider adoption of computational cognitive modelling 

approaches in applied (Human Factors) research. 

 

The architecture of evidence accumulation 

Two of the most successful EAMs, the diffusion decision model (DDM) [16] and linear 

ballistic accumulator (LBA) [17] are illustrated in Fig. 1. In these models, decision making 

involves sampling evidence from the task environment until a threshold amount of evidence 

is reached. There is typically one threshold for each possible choice option in the 

experimental task, and the first threshold reached triggers the corresponding overt 

response. Across repeated decisions, the distribution of threshold crossing times (plus the 

time for non-decision processes like stimulus encoding and response production) describes 

a decision maker’s distribution of empirical RTs, and the proportion of times evidence 

terminates at each threshold describes the empirical response proportions. Predicting both 

choices and RTs is critical because the slowest or fastest responses can pose unique risks 

(e.g., rash decisions or slow detection of an unsafe event can both be hazardous). Explaining 

the entire shape of RT distributions in terms of latent cognitive processes is a critical 

advantage of EAMs (over analyses of behavioural summaries such as mean RT and error 

rate) that allows EAMs to provide a coherent account of complex or ambiguous observed 

effects [9].   
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Figure 1. Diffusion decision model (DDM) and linear ballistic accumulator (LBA) evidence 

accumulation architectures.  

(A) In the DDM, noisy evidence starts accumulating at a point between two response boundaries 

(thresholds) and terminates when either threshold is reached. Accumulation rate measures the difference in 

evidence strength for the two response options (a step toward one boundary is a step away from the other). 

The distance between the response boundaries represents response caution, which controls trade-offs 

between speed and accuracy. Moving the evidence start point closer to one boundary (relative to the other) 

creates a bias towards that response. (B) In the LBA, instead of relative evidence, evidence for each 

response accumulates in independent ‘racing’ accumulators, each with its own response threshold. The first 

accumulator to reach threshold triggers the overt response. Threshold height controls response caution 

settings. Biases can be induced by setting a low threshold for the target response and high threshold(s) for 

the other response(s). Owing to its modular architecture, the LBA is easily applied to decisions involving an 

arbitrary number of response options. Other common architectures include the single-boundary diffusion 

(noisy evidence accumulates toward a single threshold) [54,68,69] and racing diffusion models (noisy 

evidence accumulates independently in two or more racing accumulators) [70,71]. 

 

Importantly, EAM parameters have psychologically meaningful interpretations in terms of 

latent cognitive processes [18,19]. The mean rate of evidence accumulation represents the 

efficiency of information processing. Accumulation rates are jointly determined by stimulus 
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characteristics (e.g., salience and discriminability from other choice options) and the 

amount of attention/cognitive resources devoted to the task. When stimulus characteristics 

are held constant, accumulation rates measure the level of attention devoted to the task 

and hence are a powerful tool for quantifying cognitive demands when attentional capacity 

is exceeded. For example, increased task demands can impair the rate at which an air-traffic 

controller processes potential conflicts (i.e., violations of minimum aircraft separation 

standards), leading to slower and more error-prone observed performance. Accumulation 

rates converge with other rigorous measures of cognitive capacity such as Systems Factorial 

Technology [20-22], the gold-standard nonparametric method for determining whether a 

human processing architecture has limited, unlimited, or super capacity. Several studies 

reviewed below use accumulation rates to identify conditions of unmanageable workload in 

which task demands exceed the operator’s capacity to manage them, leading to significant 

performance degradations [23-33].  

A threshold’s height relative to where evidence starts accumulating (i.e., the amount of 

evidence required to trigger a response) measures response caution, with higher thresholds 

producing more cautious decisions since more evidence is required to reach a decision. The 

relative position of thresholds to each other measures bias towards responding one way or 

another. Continuing our running example, an air-traffic controller may respond to perceived 

heightened time pressure both by adopting lower response thresholds overall (producing a 

global speed-up) and by shifting bias towards classifying aircraft as in-conflict versus not-in-

conflict (increasing false alarms but ensuring no conflicts are missed) [34]. Since thresholds 

are set in advance of stimulus presentation, they are considered a locus of proactive 

cognitive control strategies [35,36]. Several studies reviewed below use thresholds in this 

manner to identify when and how individuals proactively adapt decision-making strategies 

to deal with anticipated task demands (e.g., when facing heightened time pressure and/or 

additional task complexity), and to identify potential drawbacks of certain strategies 

[23,24,26-28].  

Non-decision time measures the duration of perceptual encoding and motor response 

processes. Several studies reviewed below use non-decision time to identify situations 

where individuals fail to encode stimuli with sufficient detail to make reliable decisions 

[25,26]. For example, an air-traffic controller under extreme time pressure may 
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inadequately encode information about potential conflicts, leading to a shortened non-

decision time and high miss rate.  

Finally, parameters controlling between-trial variability in accumulation rate and starting 

point account for commonly observed differences in the relative speed of correct and 

incorrect responses [37,38]. Although less commonly interpreted than accumulation rate, 

threshold, and non-decision time, some studies use variability parameters to identify task 

factors that lead to increased uncertainty (greater variability) in decision making [26,27,39]. 

Decomposing performance into these underlying cognitive processes has clear implications 

for the modern workplace. Identifying whether errors are due to the quality of information 

provided by the task display has implications for interface design. In contrast, an operator 

using a suboptimal strategy has implications for work training, whereas an operator having 

reduced cognitive resources due to excessive workload has implications for work design.  

Box 1 contains considerations regarding the application of EAMs to decisions that unfold 

over longer timescales than those typical of highly controlled lab settings.  

Box 1. Modelling long timescale decisions with EAMs 

An important question concerns whether standard EAMs represent an appropriate model of naturalistic 

tasks in which decisions unfold over longer timescales than are typically seen in highly controlled lab 

settings (e.g., mean RT < 1.5 seconds). Most EAMs assume that decisions are the result of a single 

continuous evidence accumulation process. However, violations of this assumption become increasingly 

plausible at longer timescales, where decisions may be the result of multiple, potentially sequential, 

unobserved processing stages.  

In every study throughout this review, standard (single accumulation process) EAMs provided close fits to 

relatively long decisions (e.g., 2-10 seconds mean RT) and generated inferences consistent with those in the 

short-RT literature (i.e., accumulation rates as the locus of capacity sharing, discriminability, and reactive 

control effects; thresholds as the locus of proactive control and response bias effects). This suggests that 

the standard EAM framework is robust to potential violations of the single accumulation process 

assumption and can be a valid measurement model of longer timescale naturalistic decisions. This is 

supported by simulation studies showing standard EAMs provide close fits and theoretically sensible 

parameter effects for tasks with mean RT up to 7.4 seconds in which the single accumulation process 

assumption is explicitly violated [72].  

In some settings, it is also possible to test empirically for the appropriate processing architecture. For 

example, when examining performance of a task involving asynchronous stimuli with different onsets 
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within each trial, [27] compared model fits to RTs computed assuming either parallel or serial processing of 

stimuli (i.e., RT from stimulus onset for parallel; RT from termination of the previous response for serial). 

Given that [27] found that assuming the incorrect architecture resulted in severe miss-fit to RT 

distributions, this approach suggested the appropriate processing architecture whilst demonstrating the 

falsifiability of the EAM framework.  

For situations in which the standard models fail, one can construct EAMs that explicitly account for 

multiple, potentially sequential, processing stages [73,74]. Such models have shown promise in highly 

controlled lab settings and could in principle be applied to longer timescale tasks. However, the additional 

complexity of these models renders some of them very computationally expensive to fit and the 

mechanisms describing unobserved within-trial dynamics may suffer from poor identifiability, particularly in 

less controlled applied settings. Generally, researchers should seek converging evidence about whether a 

single accumulation process can be assumed, especially when RTs are long. 

 

We now turn to reviewing recent work that has used EAMs to understand human 

performance in representative simulations of complex dynamic work tasks. We 

demonstrate that EAMs provide a unified theoretical framework for explaining human 

performance across a diverse set of decision-making contexts and offer unique insights that 

practitioners can use to improve operator training and work design, and to inform the 

development of automated decision-support tools. The first section discusses findings 

surrounding limitations on operator attention and processing capacity, including when only 

limited or impoverished information is available from the task environment. The second 

section discusses findings regarding cognitive control strategies individuals use to adapt to 

task demands.  

 

Attention, processing, and performance in the red zone 

A central goal of Human Factors research is to identify limits on operators’ ability to process 

task information while maintaining acceptable performance. When task demands exceed 

operator capacity, or when multiple channels of task demand compete for the same 

cognitive resource (e.g., attention, memory) [40], performance can suffer and potentially 

catastrophic errors may result (e.g., a pilot responding to multiple instrument warnings 

forgets to set flaps for landing; a driver attending to a passenger’s conversation fails to 
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brake for an unexpected hazard). These situations are referred to as red zones/lines of 

workload [41], and designers of work systems must be aware of them to predict when task 

demands may degrade performance. However, red zones/lines are difficult to identify 

because humans employ counter measures (e.g., getting assistance from another operator 

or relying more on task automation) and/or adjust task processing strategies to avoid them 

[42,43]. In this manner, task demands are not simply imposed upon an operator, but rather, 

actively managed through resource allocation and strategy change [44,45]. EAMs provide a 

means of disentangling these effects, which are difficult to identify in traditional analyses of 

mean RT and/or error rates.  

Recently, researchers have turned to EAMs to study the limits of attention and performance 

using representative simulations of ATC conflict detection [23,24], distracted driving [29,31-

33,46], and maritime surveillance [25-28]. Two studies [23,24] investigated how prospective 

memory (PM) demands (i.e., the need to remember to perform a deferred action in the 

future) and time pressure affect the allocation of attention and cognitive capacity in 

individuals tasked with detecting potential conflicts between aircraft in simulated ATC. 

Understanding the resource requirements of PM is a critical applied question because PM 

tasks can impair controllers’ performance on critical routine tasks (e.g., slower 

acceptance/hand-off of aircraft, slowed or failed conflict detection) [47,48]. Moreover, the 

experimental PM literature at the time was largely uninformed about PM capacity demands 

because the simple tasks (e.g., lexical decision) typically used did not place sufficient 

demands on cognitive capacity to necessitate resource sharing [35,49-52]. Using LBA 

accumulation rates to measure capacity, it was found in the more complex ATC task that PM 

demands did in fact drain resources from the conflict detection task, causing lower 

accumulation rates and resulting in slower and more error-prone conflict detection (Fig. 2A) 

[23,24]. In addition, the slowing induced by PM demands was especially detrimental under 

high time pressure (tighter response deadlines), with participants significantly more likely to 

fail to respond to potential conflicts on-time. Additionally, participants flexibly allocated 

capacity according to task priority, such that prioritized tasks received proportionally more 

resources at the expense of lower priority tasks: Prioritizing conflict detection reduced the 

severity of time pressure- and PM-induced costs to conflict detection performance whereas 

prioritizing the PM task increased the severity of those costs [24]. 
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Figure 2. EAM accounts of capacity sharing and stimulus discriminability effects discussed in 

text.  

In each accumulator diagram, black (grey) arrows represent mean accumulation rate for correct (incorrect) 

responses. Atop each threshold (dashed horizontal lines) is an RT distribution whose shape reflects the 

illustrated task/parameter effect. Red vertical lines indicate mean RT. Note that one ongoing task 

accumulator is used to represent potentially multiple ongoing task responses. (A) In single-task conditions 

(e.g., without a concurrent PM task) accumulation is fast and high quality (large rate difference for correct 

and incorrect responses), producing fast and accurate responses. In dual-task conditions (e.g., with a 

concurrent PM task) ongoing task accumulation is slow and poor quality (small rate difference for correct 

and incorrect responses), producing slower and less accurate responses. (B) At low time pressure, ongoing 

task and DRT accumulation is high quality and responses accurate. At high time pressure, some DRT 

accumulation is diverted to the ongoing task, increasing the speed of responses. However, the quality of 

ongoing task accumulation is lower, reducing accuracy. (C) With highly discriminable stimuli, ongoing task 

accumulation is fast and high quality and responses fast and accurate. With poorly discriminable stimuli, 

ongoing task accumulation is slow and poor quality and responses slow and inaccurate.  
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Similar PM-induced resource sharing effects occurred in a cognitively demanding maritime 

surveillance task, in which participants monitored an aerial view from an uninhabited aerial 

vehicle of five shipping lanes (partially obscured by cloud cover) and were tasked with 

classifying passing ships according to equipment visible on deck (e.g., cranes, masts, 

lifeboats) [28]. Reduced LBA accumulation rates under PM load indicated that adding a 

concurrent PM task drained resources that would have otherwise gone to the ongoing ship 

classification task, causing slower and less accurate classification performance (Fig. 2A).  

Several studies have assessed operator attention and cognitive capacity by combining a 

primary task (e.g., maritime surveillance, driving) with a concurrent detection response task 

(DRT) [25,29,32,53]. The DRT is designed to measure spare (off-task) capacity and to infer 

cognitive workload on the primary task. In one study [25], participants performed the 

maritime surveillance task described above under varying degrees of time pressure (longer 

and shorter response deadlines) while simultaneously monitoring for DRT stimuli. 

Accumulation rates from LBA and racing diffusion models [54] measured how individuals 

allocated resources between the two tasks as demands increased. With greater time 

pressure, accumulation rates increased for ship classifications (speeding up responses) but 

decreased for DRT responses, indicating that individuals diverted resources away from the 

DRT and reallocated them to the ship classification task to compensate for greater task 

demands (Fig. 2B). Convergent results have been obtained without a concurrent DRT: 

Tighter deadlines led individuals to devote a greater quantity of resources (higher average 

accumulation rates) to classifying ships. However, the quality of processing was poorer 

(smaller difference in accumulation rates for correct and incorrect responses), which 

reduced accuracy. Expending additional resources and effort thus only partially 

compensated for increased task demands [26].  

Similar work has studied distracted driving by pairing a simulated driving task with the DRT 

[29,31-33] or by directly modelling aspects of driver behaviour (e.g., braking and steering-

wheel turning RTs) [30,46]. Understanding how drivers handle distraction is important for 

road safety because distractions (e.g., mobile phone use) increase driver RTs and reduce 

hazard detection rates [55,56]. Drivers show lower DRT accumulation rates and slower DRT 

responses when multi-tasking (steering while counting backwards by threes) compared to a 

single-task condition (steering only) [29]. Impaired DRT processing suggests that resources 
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were reallocated from the DRT to maintain performance on the other tasks (Fig. 2B; see also 

[33]).  

Other work [30] used a single-boundary DDM to directly model braking RTs when a 

simulated driving task was performed either alone or while holding a distracting 

conversation (on a mobile phone and with a passenger) [57]. Drivers had lower 

accumulation rates for braking responses when distracted compared to when driving with 

no distraction. Distractions may thus impair drivers’ ability to respond quickly and 

effectively to safety-critical events (e.g., a vehicle braking suddenly, a pedestrian stepping 

into traffic), since low accumulation rates produce slow, inaccurate responses. Follow-up 

work [32] found that conversation impaired DRT accumulation rates for both drivers and 

passengers, and that speaking drained more resources than listening. Importantly, the 

resources drivers allocated to driving and conversing traded-off according to the natural ebb 

and flow of the conversation, demonstrating that individuals allocate resources adaptively 

to meet dynamically evolving task demands.  

Naturalistic stimuli vary widely in complexity and perceptual discriminability, and thus it is 

crucial to understand how stimulus characteristics affect operators’ ability to process 

information and meet task demands. Studies using the maritime surveillance task described 

above varied the complexity of the decision rule (the number of features that defined a 

target) [26] and stimulus discriminability (the degree to which ships were obscured by 

passing cloud cover) [27]. Both factors (greater complexity, lower discriminability) impaired 

information processing (reduced accumulation rates) and caused slower and more error-

prone ship classifications (Fig. 2C).  

Recent work has applied EAMs to forensic and medical image discrimination using highly 

complex naturalistic stimuli encountered in the field (e.g., forensic fingerprint images [39], 

histological cell images [58,59]). One study [39] varied the amount of visual noise that was 

added to naturalistic fingerprint images in an image discrimination task (deciding whether a 

crime scene print matches a suspect). Matching prints were processed less efficiently (with 

lower accumulation rates) when degraded by visual noise (Fig. 2C), which produced more 

frequent errors, and this deficit was ameliorated by a brief training intervention. These 

findings have implications for the trustworthiness of crime scene-suspect fingerprint 
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matches produced by human decision makers and may inform training programs aimed at 

improving identification accuracy.  

Seeking to understand diagnostic decision making in medicine, recent work [59] obtained 

naturalistic cell histology images that varied in perceptual difficulty (as judged by subject-

matter experts) and were then judged by novices and experts as either positive or negative 

for pathology. Reduced DDM accumulation rates indicated that hard-difficulty images were 

processed less efficiently than easy-difficulty images, causing less accurate diagnoses (Fig. 

2C). Additionally, experts processed information more efficiently than novices, and both 

novices and experts accumulated evidence more slowly for negative than positive 

diagnoses. These results could be used to reduce the frequency of misdiagnoses by 

improving diagnostician training.   

Overall, these findings indicate that, in tasks that embody the complexity in which most 

decision-making occurs, additional task demands (e.g., PM, time pressure) require operators 

to redistribute limited cognitive resources. When demands divert resources away from 

safety-critical primary tasks, performance may be impaired—with potentially catastrophic 

outcomes (e.g., failing to identify potential aircraft conflicts or brake for a traffic hazard). 

Additionally, stimulus characteristics, such as complexity and discriminability, affect how 

efficiently operators process task-relevant information. Performance on tasks involving 

complex or poorly discriminable stimuli is especially likely to be impaired when demands 

venture into the ‘red zone’. Importantly, this work demonstrates that EAMs offer a unified 

theoretical account of a complex set of behavioural effects across a wide range of 

naturalistic tasks and experimental manipulations.  

Box 2 discusses potential connections between EAMs and other models used to understand 

safety-critical decisions.  

Box 2. Towards an integrated theory of safety-critical decisions 

As highlighted throughout this review, EAMs are advantageous over traditional analyses of mean RT and 

error rates because they allow researchers to disentangle effects that may otherwise be ambiguous or 

masked. For example, analyses of mean RT or error rates alone cannot establish why one participant is fast-

but-inaccurate and another is slow-but-accurate, because shifts in these variables can arise from 

(combinations of) different latent processes. One participant might respond more slowly and accurately 
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than another due to relatively higher response thresholds (a difference of strategy not ability). An 

alternative explanation for accurate but slow responding is high-quality cognitive processing (high 

accumulation rate) but slow motor responding (long non-decision time). In fully accounting for the entire 

shape of RT distributions, including variability and skew, EAMs make it possible to differentiate such cases 

[9]. 

A further advantage is that EAMs allow researchers to establish formal connections with other theories of 

cognition (e.g., reinforcement learning) and broader cognitive and task network architectures commonly 

used to understand safety-critical decisions. For example, recent work has integrated EAMs with 

reinforcement learning (RL) models [75-78], which allow decision mechanisms (e.g., accumulation rate, 

threshold) to be parameterised in terms of trial-by-trial learning dynamics. RL-EAMs have successfully 

explained learning effects in several simple lab tasks (e.g., value-based choice, category learning), and have 

been shown to provide a close account of data that standard EAMs fail to fit [76]. By incorporating RT 

distributions, this approach substantially extends the explanatory scope of, and constraint upon, models of 

learning. Practically speaking, these models can improve our understanding of how operators perform in 

dynamic work settings that require adapting decision making from moment-to-moment (e.g., as new 

information is learned, as critical events unfold).  

Similar opportunities exist for integrating EAMs with more general cognitive architectures (e.g., ACT-R [79], 

SOAR [80]), task network models (e.g., IMPRINT [81]), and multiple-goal pursuit models (e.g., MGPM [82]) 

that explain how operators prioritise the allocation of time and effort as they pursue a set of competing 

goals with different deadlines. These models explain task scheduling and goal prioritization but are largely 

silent in modelling the dynamics of individuals choices. Considered as a ‘front end’ model that explains 

choices and RTs, EAMs could bring these models in closer contact with empirical performance data, 

allowing for more detailed predictions of safety-critical decisions and stronger tests of competing theories.  

 

Taking control of cognition: Proactive and reactive decision control 

In the preceding section, we reviewed effects arising due to either limitations on the human 

operator’s processing capacity or limitations on the information available from the task 

environment. In this section, we discuss the ways in which operators exert cognitive control 

to meet specific task demands and prioritize different goals. Flexible adaptation depends 

upon this “ability to regulate, coordinate, and sequence thoughts and actions in accordance 

with internally maintained behavioral goals” [60, p. 1]. According to the dual-mechanisms 

framework, cognitive control comes in two forms: proactive and reactive [60]. Proactive 

control is volitional control engaged before a cognitively demanding event or change in task 

demands to bias the cognitive system in a goal-driven manner. Key to proactive control is 
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that it is deployed to be already active when the target event/context occurs. Reactive 

control, in contrast, is automatic, event-driven control engaged after the onset of a target 

event/context to influence responding “only as needed, in a just-in-time manner” [60, p. 2]. 

These two control modes allow operators to flexibly adapt to changes in task demands and 

task priority that often occur in dynamic decision-making contexts (e.g., a maritime 

surveillance operator adopting a more conservative threshold for classifying enemy targets 

when friendly forces are nearby; an air-traffic controller strategically shifting bias toward 

making conflict responses when under time pressure to ensure aircraft remain separated 

[34]). As we will demonstrate, EAMs provide a coherent framework for measuring and 

interpreting numerous cognitive control effects.  

In EAMs, key loci of proactive control strategies are threshold and bias settings, since these 

are set by the operator in advance of stimulus onset (i.e., it is circular for the amount of 

evidence used to identify a stimulus to depend upon the identity of that stimulus). Several 

studies have used threshold and bias to quantify how decision makers use proactive control 

to adapt to changes in demands. For example, individuals detecting aircraft conflicts use 

proactive control to adapt to PM demands and time pressure [23,24], albeit in different 

ways. When facing tighter deadlines, participants set lower thresholds to ensure that 

responses were executed before the deadline (Fig. 3A). In contrast, when given a concurrent 

PM task, participants set higher conflict detection thresholds, which delayed conflict 

detection responses relative to PM responses (Fig. 3B). Model simulations indicated this 

strategy allowed individuals to avoid pre-empting PM responses (if appropriate) and thus 

achieve higher PM accuracy. However, with tighter deadlines, this slowing strategy led to a 

substantial increase in non-responses (responses not executed before the deadline) that 

would be unacceptable for controllers in the field. Similar modelling of PM in the maritime 

surveillance task converged with these results: Individuals adapted to PM demands by 

setting higher ship classification thresholds to avoid pre-empting the atypical PM responses 

[28].  
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Figure 3. EAM accounts of proactive and reactive control effects discussed in text.  

In each accumulator diagram, black arrows represent mean accumulation rate. Atop each threshold (dashed 

horizontal lines) is an RT distribution whose shape reflects the illustrated task/parameter effect. Red vertical 

lines indicate mean RT. Note that, in panels B and D, one ongoing task accumulator is used to represent 

potentially multiple ongoing task responses. (A) With low time pressure, thresholds are high and responses 

slow and accurate. With high time pressure, thresholds are low and responses fast and inaccurate. (B) In 

single-task conditions (e.g., without a concurrent PM task), ongoing task thresholds are low and responses 

fast. In dual-task conditions (e.g., with a concurrent PM task), ongoing task thresholds are set higher. This 

slows down ongoing task responses, allowing more time for the PM target accumulator to reach threshold 

(if appropriate). (C) When responding is unbiased, similar threshold settings are used for all responses. 

When responding is biased, the threshold for the prioritized response is lowered, making it easier to trigger 
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relative to less-prioritized responses. (D) On non-PM target trials, ongoing task accumulation is fast and 

likely to win against the PM accumulator. On PM target trials, ongoing task accumulation is inhibited 

(lowered) and less likely to win against the PM accumulator.  

 

Drivers use similar proactive control strategies to manage the demands of distracted driving. 

For example, drivers set higher thresholds for pressing the brake pedal when experiencing 

distraction (mobile phone or passenger conversation) to compensate for the poorer quality 

of information uptake caused by dividing attention between the conversation and events on 

the road [30]. DRT studies [29,31-33] show that drivers set higher DRT thresholds and 

respond more slowly while engaged in conversation [31,32] and when multi-tasking 

(counting backwards by threes) [29,33] compared to driving undistracted. Such proactive 

control strategies (e.g., delaying certain responses) can help compensate for additional task 

demands but are undesirable if operators become too slow to react to critical events.  

In terms of managing time pressure, every study in this review that increased time pressure 

found that individuals proactively set lower thresholds to decrease RT and ensure responses 

were executed on-time [23-27,39,59,61,62]. Individuals adopt this strategy regardless of 

whether increased time pressure takes the form of tighter deadlines [23-26,62], being 

required to process more stimuli per unit time [25-27], or being instructed to prioritise 

speed over accuracy [24,39,59,61], consistent with thresholds as a general mechanism for 

controlling speed-accuracy trade-offs [7,63]. However, setting thresholds too low can cause 

unacceptably high error rates and may thus be an undesirable strategy in operational 

settings in which errors are extremely costly (e.g., an air-traffic controller quickly 

misclassifying aircraft heading for a conflict as safely separated).  

Response bias is another proactive control mechanism used to adapt to task demands. In 

maritime surveillance, participants compensated for greater stimulus complexity (ships with 

more features) by shifting bias to favour classifying ships as targets (setting a lower 

threshold for responding ‘target’ than ‘non-target’; Fig. 3C) [26]. Similarly, in ATC conflict 

detection, controllers adapt to increased uncertainty (e.g., longer time to minimum 

separation, greater angle of convergence) and time pressure by becoming biased towards 

classifying aircraft as in-conflict [34,61,62,64]. This strategy ensures targets are not missed 

but increases false alarms. Operators are likely to employ such biases in operational settings 
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that prioritize safety over accuracy, particularly when misses are significantly more costly 

than false alarms, as they are in ATC conflict detection [34,47].  

Individuals also use biases to incorporate prior knowledge and expectations about the task 

environment, such as the expected frequency with which stimuli occur (i.e., base 

rate/prevalence) [58] and the expected reliability of predictive cues [59]. In a medical image 

classification task, participants were given prior information in the form of a predictive cue 

that indicated the correct diagnosis with 65% reliability [59]. As expected, individuals shifted 

bias towards the cued response. Later work [58] varied the relative prevalence 

(presentation frequency) of healthy versus diseased cell images. Both novices and experts 

shifted bias towards the more prevalent diagnostic category, responding more often with 

the high base-rate diagnosis regardless of the identity of a given image. Although less 

pronounced in experts than novices, this strategy can lead to increased false positives (for 

high-prevalence categories) and increased misses (for low-prevalence categories) [65], 

either of which may be undesirable in certain contexts (e.g., medical and airport screening).  

Finally, we discuss reactive control, which is engaged only as needed to deal with critical 

events as they occur (not engaged in advance like proactive control). Recent studies of PM 

in ATC conflict detection [23,24] found that, in addition to the proactive control and capacity 

effects outlined earlier, participants deployed reactive control upon encountering PM 

targets (the onset of which could not be predicted). Specifically, accumulation rates for 

conflict detection responses were lower when a PM target was present versus absent (Fig. 

3D). That is, when the cognitive system detects features consistent with PM targets, 

inhibitory input slows down accumulation for the competing conflict detection responses. 

This increases the likelihood of the PM accumulator winning against the more habitual 

ongoing responses (see also [35,66]). These effects, which were not otherwise obvious, have 

been replicated in the maritime surveillance paradigm, where accumulation rates for 

classifying ships were inhibited in the presence of PM targets [28]. Additionally, it has been 

shown that individuals can vary the strength of reactive inhibition according to task priority: 

Prioritizing PM led to greater inhibition of conflict detection responses compared to when 

conflict detection was prioritized [24].  

Interesting practical consequences of reactive inhibitory control were identified in a study in 

which ATC conflict detection participants were provided with an imperfectly reliable 
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automated decision aid [67]. In automation blocks, the decision aid advised whether the 

aircraft displayed were in conflict. Behaviourally, incongruent responses (responses 

disagreeing with the decision aid) were slower and less frequent relative to responses made 

on matched trials from manual blocks. Crucially, EAM analysis showed that this pattern 

could be explained in terms of a single inhibition mechanism, whereby decision aid advice 

inhibited accumulation rates for incongruent responses. Practically, this strategy allowed 

operators to integrate automated advice whilst still requiring them to process task-relevant 

information to trigger a response, ensuring actions were not initiated solely on potentially 

erroneous automated advice. In situations without time pressure, this strategy increases 

accuracy, making decision aids desirable. However, with high time pressure, inhibited 

responses may become unacceptably slow.  

In sum, individuals use a variety of cognitive control strategies to flexibly adapt to changes 

in operational demands. They use proactive control to adjust threshold and bias settings to 

manage anticipated demands (e.g., time pressure, PM demands, stimulus complexity and 

prevalence). They use reactive control to influence processing (e.g., inhibiting accumulation 

rates for competing/incongruous responses) only as needed (e.g., when encountering PM 

targets, when automation gives incongruous advice). These findings highlight that, although 

it is undoubtably important to understand how cognitive resource limits constrain 

operators’ ability to meet operational demands, Human Factors practitioners must also 

understand the broader array of proactive and reactive strategies operators use to adapt to 

task demands. EAMs provide a unified framework for disentangling all these processes, 

which holds enormous potential for Human Factors/Ergonomics research. Box 3 outlines 

several best practices for getting the most out of EAM analyses.  

Box 3. Getting the most out of EAMs with good modelling practices 

When developing a new model or applying an existing model to a novel or naturalistic task, researchers 

must ensure that their model produces valid and generalisable inferences. To this end, we outline several 

best practices for modelling that should form part of any thorough model-based analysis (for more detailed 

discussion, see [1,15,83]). 

One common question concerns model complexity. A model should not fail to capture important trends in 

the data (under-fitting) but also not be so complex as to capture spurious or idiosyncratic variation (over-

fitting). To avoid both under- and over-fitting, researchers should ‘bookend’ selected models with more and 
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Concluding remarks  

In this article, we reviewed a recent body of work that has brought EAMs ‘into the wild’ by 

applying them to tasks that embody the complexity and demands of modern workplaces. 

Across many complex work tasks, EAMs provide a coherent account of the latent cognitive 

mechanisms that drive human performance. Accumulation rates can be used to measure 

attention and cognitive capacity, and to identify points at which demands compromise 

performance and safety. Threshold, bias, and rate parameters can identify proactive and 

reactive cognitive control strategies that operators use to meet both expected and 

unexpected changes in demands. Human Factors practitioners can use such insights to 

improve operator training and task design, develop automated support tools, and identify 

when operators risk entering the ‘red zone’. As discussed, many exciting possibilities exist 

for using EAMs to inform important current applied topics, such as automation reliance, and 

less flexible model variants to establish upper and lower bounds on model complexity. This can help find 

the model that most parsimoniously describes the data. 

Another issue closely related to complexity and over-fitting is that of generalizability, or how well a model 

predicts new data (data not used in model fitting). To encourage generalizability, researchers can 

incorporate cross-validation techniques into their model fitting procedures (e.g., fitting the model to a 

subset of data and predicting the withheld portion) or conduct simulation studies that test the predictive 

validity of their models.  

Once an appropriate model has been selected, researchers should conduct parameter recovery studies to 

establish whether the model produces reliable inferences and to diagnose weakly identified (unreliable) 

parameters or model mechanisms. This is done by fitting the model to simulated data and assessing 

whether the model recovers the known data-generating parameters. Good recovery indicates a reliable 

model. Poor recovery points to potentially unreliable model mechanisms and may suggest ways of 

improving future experimental designs (e.g., increased trial numbers, stronger experimental 

manipulations).  

Further confidence in model-based inferences can be obtained by comparing several different models that 

instantiate the same cognitive theory, and by replicating results across multiple studies. For example, at 

least one study featured in this review compared the same theories instantiated in both the LBA and DDM 

frameworks [27] and several included replication studies [24-28]. Across models and studies, points of 

agreement provide convergent validity and increase confidence in inferences. Points of disagreement 

indicate where more caution should be exercised in interpreting a theory and may suggest avenues for 

further research and theoretical development.  
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for integrating EAMs with learning models and broader cognitive architectures to further 

understand operator performance (see Outstanding Questions). In conclusion, the 

application of computational cognitive models like EAMs to representative tasks carries 

reciprocal benefits for applied and basic research. Human Factors research benefits from 

more detailed analyses of latent cognitive processes provided by formal modelling. Equally, 

theoreticians benefit from understanding how their cognitive theories generalise to the 

complex and demanding environments in which most decision making occurs. We therefore 

encourage more researchers to bring computational cognitive models out of the lab and 

into the wild. 

 

Outstanding questions 

• Can EAMs be used to track operators’ cognitive state in real time to predict when support is 

needed (e.g., during periods of high workload or operator fatigue)? Can EAM’s detailed 

measurement of latent cognitive processes open the door to providing operators with 

individualised support (e.g., different interventions when slow responses are due to impaired 

accumulation versus an overly cautious response strategy)? 

• Can integrating EAM’s account of choice and RT into more general cognitive or task network 

architectures give insight into performance in even higher-fidelity work tasks involving more 

continuous, evolving stimuli and events with less predictable onsets and durations? Could such 

integrated models enable researchers to understand and predict system-level work performance in 

complex work tasks? Can EAMs that incorporate learning mechanisms account for moment-to-

moment changes in operators’ cognitive state due to task experience and adaptation? 

• What can EAMs tell us about how operators handle multiple concurrent goals with different 

deadlines, that additionally may vary along several dimensions relevant to operator motivation 

(e.g., the value of achieving the goal, the work required to reach the goal, how quickly progress can 

be made towards the goal, and whether the goal entails approaching a desired state or avoiding an 

undesired state)? Can such knowledge inform the development of automated scheduling 

algorithms that help operators allocate their time efficiently? 

• How can EAMs be used to inform personnel selection and training for cognitively demanding 

safety-critical work tasks? Can the detailed picture of latent cognitive abilities provided by EAMs be 

used to select (exclude) candidates who possess (lack) certain cognitive abilities, such as efficient 

information processing, or to train candidates found to be using suboptimal decision-making 

strategies, such as setting thresholds too low in situations that require high accuracy? 
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